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Abstract

Parallel and distributed computing has emerged as an increasingly important topic in Com-
puter Science education driven largely by the predominance of multi-core systems, cloud
computing systems and the use of GPU’s for general computation. As fundamental con-
cepts of concurrency become more tightly integrated with undergraduate education there
is a heightened need for projects that have both a practical and accessible parallel solution.
This paper presents a parallel programming project using Java that is based on median fil-
tering digital images. The project is designed for use in an undergraduate computer science
curricula and has been used in a programming languages course. The project has appeal-
ing features since 1) the problem domain lies within the field of multimedia and digital
image processing 2) the problem domain is easily understood 3) the sequential solution is
straightforward to implement 4) the output can be visualized since the output is a digital
image and 5) parallelization provides a clear speedup where the controlling parameters can
be tuned to exhibit both the cost and benefit of synchronization.

Image processing is a field of study within the broader domain of signal processing where a
digital image, commonly referred to as the source image, is processed to produce an output
digital image, which is commonly referred to as the destination image. Digital images
are often filtered to produce an image that is more suitable for later computation or to
produce an image that is more aesthetically or artistically pleasing than the source image.
Median filtering is a non-linear process based on a straightforward statistical analysis of
a local sub-region of an image. This paper gives an overview of median filtering digital
images, provides a naive sequential solution, a design for parallelization, a discussion of
the performance gains and concludes with a discussion of issues related to using the project
in an undergraduate educational setting.



1 Background

Computer science educators have begun to reconsider how parallel computing is taught at
the undergraduate level. While parallel computing has most often been taught as an upper-
level undergraduate elective, if at all, many educators now advocate weaving parallel com-
puting topics into even the the CS0 or CS1 curriculum. Parallel computing has emerged as
an increasingly important [1, 5, 6] due largely to the predominance of multi-core systems,
cloud computing, and using GPU processing for general purpose computation. It seems
inevitable that single cpu systems will only exist in either embedded systems or small
portable devices such as cell phones or PDAs. Since programming concurrent systems re-
quires skills and techniques that extend beyond those involved in sequential processing it is
vital that CS educators inject concurrent programming concepts throughout the curriculum
in appropriate ways and at appropriate levels of complexity and abstraction.

This paper presents a parallel programming project using Java that is based on median fil-
tering digital images. The project is designed for use in an undergraduate computer science
curricula and has been used in a programming languages course. The project has appeal-
ing features since 1) the problem domain lies within the field of multimedia and digital
image processing 2) the problem domain is easily understood 3) the sequential solution is
straightforward to implement 4) the output can be visualized since the output is a digital
image and 5) parallelization provides a clear speedup where the controlling parameters can
be tuned to exhibit both the cost and benefit of synchronization. In technical parlance, the
project requires understanding of fork/join in addition to sychronization on a single method
of a single shared object among the threads of execution.

2 Median Filtering

Image processing is a field of study within the broader domain of signal processing where a
digital image, commonly referred to as the source image, is processed to produce an output
digital image, which is commonly referred to as the destination image. Digital images are
often filtered to produce an image that is more suitable for later computation or to produce
an image that is more aesthetically or artistically pleasing than the source image.

Rank filtering is a non-linear process based on a statistical analysis of neighborhood sam-
ples. Rank filtering is typically used, like image blurring, as a noise-reduction pre-processing
step in a multi-stage processing pipeline. The central idea in rank filtering is to make a list
of all samples within the neighborhood and sort them in ascending order. The term rank
means just this, an ordering of sample values. The rank filter will then output the sample
having the desired rank.

The most common rank filter is the median filter where the output is the element having
median rank; the middle element in the sorted list of samples. For an M × N rectangular
neighborhood (where M denotes the width of the region and N denotes the height) there
are MN samples in the neighborhood. These samples can be sorted by using ranks in
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[0..(MN − 1)] such that the median sample has an index, or rank, of bMN/2c.

Throughout this paper we adopt the convention that the origin of the image is the element
at the upper-left corner of the image, the column index, increases towards the right of the
image, the row index increases downward, indexing is zero-based and that elements are
referenced by their column followed by row. Figure 1(a) shows a 5× 5 source image I that
when median filtered using a 3× 3 region produces the destination image, I of Figure 1(c).
Figure 1(b) shows that the destination element I(2, 2) is computed by first determining the
9 neighbors surrounding the source element I(2, 2) and then determining the median of
those 9 elements. In this example, the nine elements are, when sorted, 50, 52, 53, 55, 59,
60, 61, 65, 253 and have 59 as the median value. Hence, the destination element at location
(2, 2) is given as 59.

Figure 1: Median Filter Example.

Salt-and-pepper noise occurs when pixels of an image are incorrectly set to either their
maximum (salt) or minimum (pepper) values. Median filters are exceptionally good at re-
ducing this type of noise since they do not smear the noise across the image as blurring
filters do. Salt and pepper noise is common in imaging systems that use CMOS or CCD
based image sensors and commercial digital cameras often correct for such hardware de-
fects by applying a median filter to the raw image data prior to shipping the image to the
end user.

3 Project Description

Writing a sequential method to median filter a source image is a trivial task. Assume, for
example, that the image is represented as a two-dimensional array of integers and that the
size of the mask is give as a parameter. The Java methods gives a complete solution for
median filtering a source image.

Listing 1: Sequential Filtering Method
1 public int getMedian(int[][] src,
2 int x, int y,
3 int m, int n, int[] reg) {
4 int counter = 0;
5 for(int dx = -m/2; dx <= m/2; dx++){
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6 for(int dy = -n/2; dy <= n/2; dy++){
7 reg[counter++] = get(src, x+dx, y+dy);
8 }
9 }

10 Arrays.sort(reg);
11 return reg[reg.length/2];
12 }
13
14 public int[][] medianFilter(int[][] src, int m, int n) {
15 int width = src[0].length;
16 int height = src.length;
17 int[][] dest = new int[height][width];
18 int[] region = new int[m*n];
19 for(int y = 0; y < height; y++){
20 for(int x = 0; x < width; x++) {
21 dest[y][x] = getMedian(src, x, y, m, n, region);
22 }
23 }
24 return dest;
25 }

In this solution, the medianFilter method scans the entire array using a raster scan which
proceeds from top-to-bottom and left-to-right within each row. For each element in the
array, the median value of the M × N region surrounding the element is determined and
placed into the destination array. The getMedian method is responsible for taking a single
element of the source and determining the median at that element. Although not shown, the
get method used in getMedian is a thin wrapper around the source array that effectively
extends the source array infinitely in all directions such that all index values are valid.
The get method returns a value of 0 if either of the two indices is invalid and returns the
appropriate element of the source otherwise.

This algorithm is a nave implementation and other well-known approaches, while beyond
the scope of this paper, obtain significant speed-ups by eliminating the need to sort regional
elements and by leveraging the redundant computation that exist between overlapping re-
gions of adjacent elements in the source [2, 3, 4]. Nonetheless, this algorithm can be easily
understood at both the conceptual and implementation level but undergraduate CS students.

3.1 Threading without dynamic load balancing

Median filtering can achieve speedups that scale well with the number of system process-
ing units. Consider, for example, a system having C cores or processing units. A parallel
implementation might create C processes each of which has access to the source and des-
tination arrays. The source image can then be partitioned into C tiles such that each of the
processes is responsible for median filtering the elements within exactly one of these tiles.
Under this scenario, although each process shares access to two objects, there is no possibil-
ity of deadlocks or race conditions since 1) the source image is a read-only data structure
and 2) no two processes will write into the same destination element. Synchronization
between processes is not required and hence the implementation is a straightforward refac-
toring of the sequential code.
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In Java, the Thread class is used to represent a lightweight process or thread of control.
The Thread class is designed to be subclassed such that 1) the subclass encapsulates the
data and methods available to the thread as a normal Java class and 2) the run method is
overridden and represents the code of the thread. Each thread has a start method which
allocates resources for the thread, places the thread into the JVM scheduler and then invokes
the run method. It is important that students understand that the run method should never
be directly executed by the programmer but rather indirectly invoked through the start

method. In addition, each thread has a join method that causes the calling thread to wait
for the called thread to complete prior to proceeding.

Figure 2 shows the states in which a Java thread can exist during its lifetime. Each box
of this figure depicts a state while the labelling of the arrows denotes the methods or op-
erations which cause a transition between states. Figure 2 is not a detailed view of the
thread life cycle but presents a summary of the life cycle. When a thread is first con-
structed it is placed in a ’new thread’ state which corresponds to the start-state of Figure 2.
When the start method of thread is invoked, the JVM allocates resources for execution
of the thread and moves the thread into the runnable state. At some point, the run method
is invoked by the JVM and the JVM scheduler is then responsible for moving the thread
between runnable and running states as the run method progresses. Program-specific op-
erations (i.e. blocking, sleeping or waiting) will cause the thread to move between the ’not
runnable’ and ’running’ states. When the run method terminates, the thread has fulfilled
its responsibilities and moves into the ’dead’ state.

Figure 2: Life cycle of a Java thread.

Consider the filter method in the MedianFilter class of code listing 2. In this method
we are given a source image and a mask size which is denoted by variables m and n. The
method creates a destination array and partitions the source into four 500 × 500 regions
each of which is represented as a Rectangle object. The Rectangle class is defined in
the awt package and is part of the standard Java API. We then create four threads such that
each thread is associated with one of the tiles and is responsible for median filtering only
the elements of the source that fall within the tile. Each thread is then started after which
we wait for them all to complete by joining on each thread. Once all of the threads are
finished, the method returns the destination array.

Listing 2: Parallel Filtering Without Load Balancing
1 public class MedianFilter {
2 public static int[][] filter(int[][] src, int m, int n) {
3 // Create the destination array
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4 int[][] dest = new int[src.length][src[0].length];
5
6 // Create a list in which to store the threads
7 List<MedianThreadNoLoadBalancing> threads =
8 new ArrayList<MedianThreadNoLoadBalancing>();
9

10 // Parition the image into four disjoint tiles
11 Rectangle[] tiles = {new Rectangle(0,0,500,500),
12 new Rectangle(500,0,500,500);
13 new Rectangle(0,500,500,500);
14 new Rectangle(500,500,500,500) };
15
16 // Create four threads. One for each tile.
17 for(int i=0; i<rects.length; i++) {
18 threads.add(new MedianThreadNoLoadBalancing(src, dest, m, n, tiles[i]));
19 }
20
21 // start each thread
22 for(MedianThreadNoLoadBalancing t : threads) {
23 t.start();
24 }
25
26 // wait for each thread to complete prior to returning the destination
27 for(MedianThreadNoLoadBalancing t : threads) {
28 try {
29 t.join();
30 } catch(Exception e) {
31 }
32 }
33
34 return dest;
35 }
36 }

The filter method serves as the driver for the parallel solution. We must also write
a MedianThreadNoLoadBalancing thread which will do the work of median filtering a
single tile of the source image. This code is shown in listing 3.

Listing 3: Parallel Filtering Thread Without Load Balancing
1 public class MedianThreadNoLoadBalancing extends Thread {
2 private int[][] src, dest;
3 private int[] buffer;
4 private int m, n;
5 private Rectangle tile;
6
7 public MedianThreadNoLoadBalancing(int[][] src,
8 int[][] dest,
9 int m, int n,

10 Rectangle tile) {
11 this.src = src;
12 this.dest = dest;
13 this.m = m;
14 this.n = n;
15 this.tile = tile;
16 this.buffer = new int[m * n];
17 }
18
19 public int get(int x, int y) {
20 try {
21 return src[y][x];
22 } catch (ArrayIndexOutOfBoundsException e) {
23 return 0;
24 }
25 }
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26
27 public int getMedian(int x, int y) {
28 int counter = 0;
29 for (int dx = -m / 2; dx <= m / 2; dx++) {
30 for (int dy = -n / 2; dy <= n / 2; dy++) {
31 buffer[counter++] = get(x + dx, y + dy);
32 }
33 }
34
35 Arrays.sort(buffer);
36 return buffer[buffer.length / 2];
37 }
38
39 public void run() {
40 for(int x = tile.x; x < tile.x + tile.width; x++) {
41 for(int y = tile.y; y < tile.y + tile.height; y++) {
42 dest[y][x] = getMedian(x, y);
43 }
44 }
45 }
46 }

The above code is limited in two important ways. First, the implementation creates only
four threads regardless of the computing system on which it is running. On a two-core
platform the creation of four threads serves only to thwart the computation since at least
two of the threads will always be waiting while the others are performing their computation.
Second, the implementation assumes that the source image is of dimension 1000 × 1000
and that each tile is then 500 × 500. We will first consider how the code can be improved
through more general tiling after which we will consider how to dynamically select an
appropriate number of threads.

Tiling an image can be made more general by creating a class that is responsible for tiling a
source of arbitrary dimension using tiles of arbitrary, though constant, dimension. We will
construct a Tiler class that takes a rectangular region and tiles it into tiles. The tiles are
given in raster-scan order as a series of Rectangle objects that are provided one at a time
through a method known as nextTile. The implementation is given in code listing 4.

Listing 4: Tiler class for arbitrary tiling of a source image.
1 public class Tiler {
2 private int tileWidth, tileHeight;
3 private int nextTileX, nextTileY;
4 private Rectangle sourceDimension;
5
6 public Tiler(int[][] data, int tW, int tH) {
7 tileWidth = tW;
8 tileHeight = tH;
9 sourceDimension = new Rectangle(0,0,data[0].length, data.length);

10 nextTileX = nextTileY = 0;
11 }
12
13 public boolean hasMoreTiles() {
14 return nextTileX < sourceDimension.width &&
15 nextTileY < sourceDimension.height;
16 }
17
18 public Rectangle nextTile() {
19 if(!hasMoreTiles()) return null;
20
21 Rectangle result = new Rectangle(nextTileX, nextTileY, tileWidth, tileHeight);
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22 nextTileX += tileWidth;
23 if(nextTileX >= sourceDimension.x + sourceDimension.width) {
24 nextTileX = 0;
25 nextTileY = nextTileY + tileHeight;
26 }
27
28 result = result.intersection(sourceDimension);
29 return result;
30 }
31 }

Note in listing 4 that given a source image (represented as a two dimensional array) and
a tile dimension, the tiler will return a sequence of Rectangle objects through sequential
calls to nextTile. Note that the nextTile method trims tiles to an appropriate size when
the tile would otherwise extend beyond the source image boundary. The intersection

method is an exceptionally convenient tool for this necessary computation. When the entire
source image has been partitioned, subsequent calls to nextTile will return nulls.

Given the Tiler class, the filter method of the MedianFilter class can now be re-
written as shown below. Note that the code is still encumbered by the assumption that the
source image will be completely partitioned into four distinct regions by selecting a 500500
tile size.

Listing 5: MedianFilter driver that uses the Tiler class.
1 // Partition the image into four disjoint tiles of 500 by 500 size
2 Tiler tiler = new Tiler(src, 500, 500);
3
4 // Create four threads. One for each tile.
5 for(int i=0; i<rects.length; i++) {
6 threads.add(new MedianThreadNoLoadBalancing(src, dest, m, n, tiler.nextTile()));
7 }

This leads us to consider how many threads to construct and how the source image can be
partitioned in an efficient manner. Any solution that divides the entire problem space into a
pre-determined number of partitions is not likely to perform well on systems running under
heavy load. Consider, for example, a quad core machine which is running a computation-
ally expensive algorithm unrelated to median filtering on one of the four cores. If median
filtering is performed on this machine, the likely result is that the four threads (each of
which is responsible for approximately 1/4 of the problem space) are assigned to each of
the four cores and hence three of the threads will complete long before the thread that has
been assigned execution on the busy core. Even if the JVM attempts to load balance the
computation, there are essentially five processes vying for four cores on which execute.

4 Threading with dynamic partitioning

A preferable solution to the technique described above is to create one thread per core but
not pre-partition the problem space. We will instruct the threads to filter a series of small
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partitions such that each thread requests a relatively small tile of the source image, filters
that tile, and repeats this process until there are no more tiles left to filter. Faster threads are
then able to process more tiles than slower threads and hence the workload is more evenly
distributed across the system when considered as a whole.

Java provides a convenient method for determining the number of cores on a system which
is accessible through the Runtime class. The availableProcessors() method of the
JVM Runtime object will return the number of processors (or cores) available to the ap-
plication. Our final design utilizes three cooperating classes as shown in the UML class
diagram of Figure 3. The MedianFilter class serves only as the public interface for the
parallel filtering algorithm. The filter method constructs a Tiler object and then con-
structs one MedianThread per processor such that each thread shares the source image, the
destination image, and the tiler object.

Figure 3: UML class diagram for the parallel solution.

The only real change required of the MedianThread of code listing 3 is that the run method
should now loop over all available tiles. This modification is shown below in listing 6. Of
course, the constructor must now accept a Tiler object in place of a single Rectangle

object since the thread is filtering a sequence of tiles (represented by the Tiler) rather than
a single tile.

Listing 6: MedianThread that uses dynamic partitioning.
1 public void run() {
2 Rectangle tile = null;
3 while((tile = tiler.nextTile()) != null) {
4 for(int x = tile.x; x < tile.x + tile.width; x++){
5 for(int y = tile.y; y < tile.y + tile.height; y++){
6 medianFilter(x, y);
7 }
8 }
9 }

10 }

The only change required of the Tiler is that the nextTile method be synchronized since
it is a shared object whereby multiple threads will be competing for access to the next
tile. The only change to the MedianFilter driver is that a single Tiler object be created
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(rather than creating a series of tiles) and this tiler object is then given to each thread that
is constructed. This modification is shown in listing 7.

Listing 7: MedianFilter that uses dynamic partitioning.
1 // Create a Tiler
2 Tiler tiler = new Tiler(src, tileWidth, tileHeight);
3
4 // Create the threads. One per core.
5 for(int i=0; i<Runtime.getRuntime().availableProcessors(); i++) {
6 threads.add(new MedianThreadNoLoadBalancing(src, dest, m, n, tiler));
7 }

5 Conclusion

Students were asked to complete the project by developing the MedianFilter and the
MedianThread classes. Students were provided with the sequential solution and a sketch
of the Tiler class. They were asked to test their implementation by varying 1) the number
of threads created 2) the mask size and 3) the tile size. The interplay between these three
parameters exhibits very interesting behavior that exposes central concepts of any parallel
processing task.

Increasing mask sizes will always require increased processing time regardless of the num-
ber of threads or the tile size. Increasing the number of threads will yield speedups until
the thread count exceeds the available processors. The amount of speedup is, however, also
dependent on the tile size since too large a tile size reduces to an essentially sequential
implementation while too small a tile size also reduces to an essentially sequential com-
putation! Consider a 1 × 1 tile size (a scenario that most students like to suggest as an
option). In this scenario, a large amount of computational overhead is spent in managing
thread access to the tiler since threads are constantly blocking on the nextTile method.
This suggests selection of an optimal tile size that is dependent on the number of available
processors.

Figure 4 illustrates the interplay between tile size and number of threads. The vertical axis
denotes the computation time required to median filter a 4188 × 6570 grayscale image on
a 2.33 GHz quad-core Xeon processor. The horizontal axis denotes the tile size where tiles
are always square. Each line on the chart denotes the number of threads used to median
filter the source image.

Note that a single thread provides the worst relative performance regardless of tile size
since this obviously reduces the parallel solution into a sequential implementation. Also
note that a 1×1 tile size also yielded poor performance due to the threads competing for tiles
through the single tiler object. Tiles on the order of 16 through 1024 in dimension yielded
relatively constant performance while the data series converge towards the right of the
chart since larger tile sizes reduce the problem into sequential performance. Increasing the
thread count yields an increase in computational efficiency until the thread count exceeds
the available processors where note the eight-thread series gives no improvement over the
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Figure 4: Effect of tile size and thread count.

four-thread series as we would expect since the tests were run on a quad-core system.

Students appeared to be interested in the project primarily as it provided an excellent venue
for exploiting parallelism in an accessible and interesting application domain. The majority
of students were able to produce reasonably accurate implementations in addition to writ-
ten comments that indicated an understanding of the interplay between thread count, tile
size and mask size. As an interesting side note, it became apparent that students generally
struggled more with the concept of the Tiler class than with concepts of concurrency and
hence the author recommends that the unsynchronized Tiler class be either explicitly pro-
vided to the students or that the Tiler class be discussed in some detail prior to assigning
the project.
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