
On Clustering in the Subset Sum Problem

Thomas E. O'Neil
Computer Science Department

University of North Dakota
Grand Forks, ND 58202-9015

oneil@cs.und.edu

Abstract

The research literature on NP-complete problems includes some attempts to identify
easier and harder problems within the class, and the results with respect to Subset Sum
are not particularly conclusive. If the complexity parameter is the cardinality of the set S,
the problem appears to be strongly exponential (as hard as any problems in the class). If
the classical complexity measure of bit length of the problem input is used, however, it
can be shown that Subset Sum has a sub-exponential-time algorithm. This would make it
an easier problem than those that remain strongly exponential when input length is the
complexity parameter.

This paper is intended to contribute evidence that Subset Sum is really an easier problem
– that its apparent sub-exponential complexity is genuine and not just an artifact of an
inefficient representation. We proceed by empirically examining the clustering
phenomenon in the list of sums of subsets of S. When the set of integers S is dense
(when the cardinality of the set is close to the maximum integer within it), we discover
that almost all possible sums are covered by some subset. There appears to be a density
threshold beyond which a subset with target sum t always exists for targets greater than
the maximum value in S and less than the sum of all elements in S minus the maximum.
The proof of such a result would provide the basis for an algorithm whose running time
would remain sub-exponential even for a short, complement-based representation of a
dense set. This, in turn, would solidify the argument that Subset Sum is truly an easier
hard problem.

1 Introduction

The Subset Sum problem is described as follows: given a set of positive integers S and a
target sum t, is there a subset of S whose sum is t? It is one of the NP-complete problems
that is known to have a pseudo-polynomial-time solution [2]. It can be solved by a
backtracking algorithm in time O(2n), where n is the size of set S, or it can be solved by
dynamic programming in time p(t), where p(t) is a polynomial function of the target value
t. Of course, the magnitude of the target value t may be an exponential function of the
number of integers in the set S, and in that case the apparently polynomial-time dynamic
programming solution is really exponential in n.

The current upper bound for Subset Sum is apparently 2O n/2 when size of the input set
(denoted n) is used as the complexity parameter [8]. When the maximum value in the set
(denoted m) is used as the complexity parameter, dynamic programming can be used to
solve the problem in O(m3) time. While most research literature of Subset Sum employs
one of these semantic parameters, there is a third choice. In classical complexity theory,
the complexity measure is the bit-length of the input string. This parameter is formally
determined, simply by counting the bits in the string. The advantage of using the formal
measure is that it requires no semantic interpretation of the input string, and problems
with vastly different semantics can by grouped together in formal complexity classes.
The formal measure is usually not employed for analysis of algorithms, probably because
analysis based on semantic parameters is simpler, and because the complexity
classification is the same under both measures. This is true for the strong NP-complete
problems such as Satisfiability or the Independent Set problem in graphs. The natural
complexity parameters for Boolean expressions are the number of variables and the
number of clauses. The natural complexity parameters for graphs are the number of
nodes and the number of edges. For both these problems, the two optional parameters are
mutually dependent. For Boolean expressions, the number of distinct clauses is bounded
as a function of the number of variables. And with graphs, the number of edges in a
meaningful problem instance is O(n2), where n is the number of vertices. With these
problems, we can choose either of the semantic parameters and obtain an analysis similar
to what we would get using input length as the parameter.

With the Subset Sum problem, however, we do not find a mutual dependence between
the number of objects in the set and the maximum value. We cannot use the list length n
to bound the maximum value m in meaningful problem instances. And favoring one
parameter over the other gives drastically different results. The formal complexity
parameter actually incorporates both the semantic parameters. The bit length of a
problem instance is O(n·log m), and analysis based on this measure actually yields a
result that is distinct from 2O n/2 and O(m3). Stearns and Hunt [7] used input length x
to demonstrate that an algorithm for the Partition problem (a special case of Subset Sum)
exhibits sub-exponential time: 2O x. The significance of this result was probably
obscured by the claim in the same paper that the Clique problem is also sub-exponential,
while its dual problem Independent Set remains strongly exponential. This apparent
anomaly is a representation-dependent distinction, and it disappears when a symmetric
representation for the problem instance is used [4]. Sub-exponential time for Partition,

1

however, appears to have stronger credibility. This result was replicated explicitly for
Subset Sum (using a different algorithm) in [6], and it seems unlikely that symmetric
representation will make it disappear. This sets the stage for the current study, in which
we gather empirical evidence that instances of Subset Sum where the input set is dense (n
is Θ(m)) are very easy to solve. The ultimate goal, beyond the scope of this paper, is to
develop an algorithm for Subset Sum that remains sub-exponential even under the test of
symmetric representation for the input set. This would solidify the argument that Subset
Sum is truly an easier hard problem.

In the sections that follow we explore the relationship between the density of the input set
and clustering of subset sums. As the input density increases, a threshold is encountered
beyond which clustering dominates the output set, and almost all possible sums are
covered by some subset. The empirical evidence suggests that the threshold occurs at
density just above 50%. The experiments are conducted with the aid of the AlgoLab
software [5], a virtual laboratory for empirical study of algorithms.

2 The Density Threshold

Density in the Subset Sum problem has been known to affect the expected running time
in studies that date back to the early 1990's (e.g. [1]). More recently, the complexity of a
specialized version of the problem with applications in cryptography has also been shown
to be highly dependent on density [3]. The classification of density in those studies uses
the threshold of m = 2n to distinguish high (m < 2n) from low (m > 2n). Dynamic
programming works best for high density instances, while backtracking is better for low
density instances. Here we are interested in very high density instances where n is Θ(m),
since these are the only instances for which symmetric representation might affect an
algorithm's time analysis.

For a set of n positive integers S with maximum value m, all possible subset sums fall
within the range {1, ..., m(m+1)/2}. We will use ΣS to denote the sum of the entire set,
and we observe that if S has a subset R that has sum t, it also has a subset (S – R) that has
sum ΣS – t. So we expect that both subset sums and missing subset sums will occur in
pairs.

Our empirical study starts with a program (called AllSums) that allows the user to
randomly generate a set S with a specified minimum, maximum, and size. The program
will create the list of all sums of subsets of S. Since the focus is on dense sets where
almost all target sums will be achievable, the program actually displays the complement
of the output list -- the list of missing sums -- to the user. The number of missing sums
closely approximates the number of clusters in the list of output sums. Figure 1 shows
the results of using AllSums to generate a set of 6 numbers between 1 and 16. The user
enters these parameters in the top panel and presses the Create button. A randomly
generated set consistent with the parameters is displayed in the list box on the left, and a
list of all missing subset sums is displayed in the list box on the right. A scrollable
banded bar is displayed in the top panel representing the input set, and another bar is

2

displayed in the bottom panel to represent the list of sums. The light segments on the bar
correspond to missing values, while the dark segments correspond to values that are
present. This allows the user to visualize the degree of fragmentation or clustering in
both sets. In the experiment of Figure 1, the input set contains only about one-third of
the possible values, and the output list remains somewhat fragmented. Clusters of six or
seven sums have formed, separated by small clusters of missing sums.

Some of the sums in the missing sum list are highlighted. This distinguishes the missing
sums that are greater than or equal to the maximum value m in the input set from the
others. We define a sum t to be central if m < t < ΣS – t, and peripheral otherwise.
Missing peripheral sums should be easy to find – they correspond to missing values in the
input set. Missing central sums, on the other hand, can be hard to find. It would be a
significant and useful discovery to find a density threshold beyond which no central sums
are missing.

Figure 2 shows a typical result for a randomly generated set with about half the possible
values in the input set. The sum list contains a large cluster that contains all central sums.
The only missing sums are peripheral. Almost all sets of 8 values with a maximum of 16
show this pattern. Before we jump to the conclusion that density 0.5 is sufficient to
guarantee clustering, however, we should the consider the special case of an input set that

3

Figure 1: A fragmented sum list for a lower-density set.

has only even numbers. The Allsums program provides limited editing capabilities that
allow the user to build such a set. The Reset button in the center panel creates a set with
all values between the specified minimum and maximum, and the Delete button can be
used to delete selected items from the input set. Figure 3 shows the missing sums for the
set of all even numbers between 1 and 16. All odd sums are missing, so the output set is
highly fragmented. It is interesting to note that adding a single odd number to this set

(any odd between 1 and the maximum) will fill in all central sums, creating the usual
central cluster. This example heightens the expectation that clustering is a threshold
phenomenon – that the degree of clustering increases rapidly over a relatively small
increase in density.

The AllSums program has two options that support a search for an exceptional higher
density set that might have missing central sums. The Hole Search button in the bottom
panel will generate up to 10,000 problem instances until one is found that has missing
central sums. The search terminates with the display of such a set, if it is found, or with
the display of the 10,000th random instance that has only peripheral sums. If the Hole
Search does not turn up any missing central sums, the user can resort to the Try all
button. The program will then calculate all subset sums of all sets with the specified

4

Figure 2: A single central cluster at density 0.5.

minimum, maximum, and size. This, of course, can take a long time. The Try all button
is recommended only for relatively small set sizes.

Figure 4 shows a special case that is discovered using either the Hole Search or Try all
button for a set of 9 numbers between 1 and 16. If all numbers from 2 to 8 are missing
from the input, then no subset adds up to 18 or 83 -- there is a pair of missing central
sums. Again, adding one more number will eliminate the missing central sums. So we
press the Try all button for set size 10, maximum 16, and discover that no instance has
missing central sums. We repeat these experiments for other maximum values and find
that the central cluster is complete whenever the input set size is two more than half of
the maximum, and we propose the following hypothesis:

Hypothesis 1. A set of positive integers with maximum m and size > (m/2+1) has no
missing central sums.

The implication of the hypothesis is that we can design a very efficient decision algorithm
for instances of subset sum where the set size exceeds m/2 + 1. If the target sum t is a
central sum, we simply answer yes. If the target is peripheral, we can conduct a search
based only on the values missing from the input set. We expect that the complexity of

5

Figure 3: Worst-case fragmentation at density 0.5.

such an algorithm would remain sub-exponential, even under symmetric representation
for the input set.

3 The Cluster-count Peak
The experiments in the previous section show results for individual problem instances. It
is also informative to run batches of random instances and compute and display average
results. The AlgoLab program [5] can be employed for this purpose. For the sake of
comparison with the individual instance results described in the previous section, we
begin by running batches of instances where the maximum value is 16. Figures 5 through
7 show the results of an experiment in which sets of size 1 through 16 with a maximum
value of 16 (700 replications of each set size) were generated and tested. Three
algorithms were run on each instance: SumFinder, MissFinder, and BlockFinder. These
are actually three versions of the same algorithm, which creates a list containing the sums
of all subsets of its input set. The result returned by SumFinder is the count of distinct
subset sums; the result returned by MissFinder is the count of all missing central subset
sums; and the result returned by BlockFinder is the count of clusters of consecutive sums
on the sum list. The lists are implement using the IntBlockList data structure, a linked list
of blocks of consecutive integers.

6

Figure 4: Missing central sums at density 9/16.

For each size of input set, the algorithms report a step count and a space requirement as
well as a result value. The step counts and space metrics are identical for the three
algorithms. The step count is the total number of iterations of the innermost loop as the

7

Figure 5: Step counts for calculating all subset sums of sets with 1 to 16 elements.

Figure 6: Space used for calculating all subset sums of sets with 1 to 16 elements.

list of all sums is generated. The space metric is the maximum size reached by the block
list as the sums are computed. Figures 5 and 6 show the step counts and space metrics,
respectively. The curve in Figure 5 indicates moderate polynomial growth in step counts
as the input sets become larger. The curve in Figure 6 is actually very close to the curve
for the BlockFinder result curve in Figure 7. This indicates that the maximum number of
clusters in the sum list during execution is usually equal to the final number of clusters in
the list. There is an obvious peak in the cluster count when the set size is 5.

Figure 7 shows the average sum counts (top curve), missing central sum counts (bottom
curve), and number of sum clusters (middle curve) for each set size. The sum count
curve is somewhat 'S'-shaped, culminating at 136 (the sum of all numbers from 1 to 16).
The missing central sum curve is consistent with Hypothesis 1 – there are no missing
sums for sets of 10 or more numbers. There are also no missing sums for sets of size 8
and 9, indicating that in 700 random instances, the special cases of Figures 3 and 4 did
not occur. The final cluster count follows the missing central sum curve closely, but is
slightly higher. It reflects all missing sums (including peripheral sums) as gaps between
the sum clusters. Some peripheral sums will be missing unless all possible values are in
the input set (for which case the cluster count is 1).

Additional AlgoLab experiments have confirmed that the phenomena described above
persist for larger values of n and m. Figures 8 and 9 show the results of an experiment
with m = 100 and n ranging from 1 to 25. As before, the curve for total subset sums in
Figure 8 is slightly 'S'-shaped, and it appears to make linear progress as n increases
toward the sum of all numbers from 1 to 100. The curves for missing central sums and

8

Figure 7: Comparative average sum /missing sum counts for sets with 1 to 16 elements.

number of sum clusters again are closely related, with the missing central sum count
declining to zero at about n = 16. Both these curves reach a maximum for a small value
of n, but in contrast to the previous experiment, the peaks are distinct. The missing

9

Figure 8: Comparative average sum /missing sum counts for sets with 1 to 100 elements.

Figure 9: Missing central sums vs. cluster counts for sets with 1 to 100 elements.

central sum curve grows faster and peaks sooner than the cluster count, but it also
declines faster to undercut the cluster count just beyond the cluster count peak. Figure 9
shows a closer view of this phenomenon. The missing central sum curve peaks at n = 7
about 25% higher than the cluster count, which peaks at n = 8. By n = 9, the missing
central sum count has fallen below the cluster count. This indicates large blocks of
missing sums at lower values of n.

The position of the cluster count peak (at n = 8) has not moved much beyond its position
in the previous experiment (at n = 5), in spite of the fact that the maximum value m is
more than 6 times larger. This indicates that the expected position of the cluster count
peak is a sub-linear function of the maximum value. The results of additional
experiments are summarized in the table of Figure 10. These results suggest that the
expected position of the peaks is a logarithmic function of m. In fact, the observed
positions of the missing central sum peak exactly match n = lg m for m > 16. The
position of the cluster count peak moves ahead at a slightly higher rate. The logarithmic
relationship between n and m for these peaks is consistent with the known critical region
for the Subset Sum problem. The peaks in cluster count and missing centrals sums
coincide with peaks in step counts when using the best algorithms for the problem.

4 Conclusion

The Subset Sum problem is an NP-complete problem that has a pseudo-polynomial time
algorithm. It can be argued that such problems are easier than the other NP-complete
problems, based on algorithms that solve the problem in sub-exponential time. This
argument would be strengthened if dense instances of the problem could be solved in
time that is a sub-exponential function of the size of the complement of the input set.
Empirical evidence strongly suggests that this can be achieved. Even moderate-density
input sets are likely to have a large central cluster of subsets sums. The cluster is likely to
be present for any sets whose size exceeds the log of the maximum value m in the set.

10

Maximum set value
(m)

Value of n at
cluster count peak

Value of n at
missing central sum peak

8 4 4

16 5 5

32 6 5

64 7 6

128 8 7

256 10 8

512 11 9

1024 12 10

2048 13 11
Figure 10: Observed peaks in cluster count and missing central sums.

Further, it appears that a complete central cluster is guaranteed when the set size exceeds
m/2+1.

The empirical results set the stage for further work. It would be interesting to find or
derive a mathematical model that relates the density of the input set to the probability of
missing central sums. It would also be significant to prove (or find such a proof in
research literature) that there are no missing central sums for sets with more than m/2+1
elements. And finally, an algorithm for dense sets that identifies missing sums in time
that is sub-exponential in the number of missing input values would solidify the argument
that Subset Sum is truly easier than other NP-complete problems.

References

[1] Z. Galil and O. Margalit, “An Almost linear-time Algorithm for the Dense Subset-
sum Problem,” SIAM Journal on Computing, 20(6):1157-1189 (1991).

[2] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of
NP-Completeness, Freeman Press, San Francisco, CA (1979).

[3] V. Lyubashevsky, “On Random High Density Subset Sums,” Electronic Colloquium
on Computational Complexity, no. 7 (2005).

[4] T. E. O'Neil, “The Importance of Symmetric Representation,” Proceedings of the
2009 International Conference on Foundations of Computer Science (FCS 2009), pp.
115-119, CSREA Press (2009).

[5] T. E. O'Neil and S. Kerlin, “A Virtual Laboratory for Study of Algorithms,”
Proceedings of the 42nd Midwest Instruction and Computing Symposium (MICS ’09),
7 pages, Rapid City, SD, (2009).

[6] T. E. O'Neil and S. Kerlin, “A Simple 2O x Algorithm for Partition and Subset
Sum,” Proceedings of the 2010 International Conference on Foundations of
Computer Science (FCS 2010), pp. 55-58, CSREA Press (2010).

[7] R. Stearns and H. Hunt, “Power Indices and Easier Hard Problems”, Mathematical
Systems Theory 23, pp. 209-225 (1990).

[8] G. J. Woeginger, “Exact Algorithms for NP-Hard Problems: A Survey,” Lecture
Notes in Computer Science 2570, pp. 185-207, Springer-Verlaug, Berlin (2003).

11

