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Abstract

The  research  literature  on  NP-complete  problems  includes  some  attempts  to  identify 
easier and harder problems within the class, and the results with respect to Subset Sum 
are not particularly conclusive.  If the complexity parameter is the cardinality of the set S, 
the problem appears to be strongly exponential (as hard as any problems in the class).  If 
the classical complexity measure of bit length of the problem input is used, however, it 
can be shown that Subset Sum has a sub-exponential-time algorithm.  This would make it 
an easier problem than those that remain strongly exponential when input length is the 
complexity parameter.

This paper is intended to contribute evidence that Subset Sum is really an easier problem 
– that its apparent sub-exponential complexity is genuine and not just an artifact of an 
inefficient  representation.   We  proceed  by  empirically  examining  the  clustering 
phenomenon in the list of sums of subsets of  S.  When the set of integers  S is dense 
(when the cardinality of the set is close to the maximum integer within it), we discover 
that almost all possible sums are covered by some subset.  There appears to be a density 
threshold beyond which a subset with target sum t always exists for targets greater than 
the maximum value in S and less than the sum of all elements in S minus the maximum. 
The proof of such a result would provide the basis for an algorithm whose running time 
would remain sub-exponential  even for a short,  complement-based representation of a 
dense set.  This, in turn, would solidify the argument that Subset Sum is truly an easier 
hard problem.



1  Introduction

The Subset Sum problem is described as follows:  given a set of positive integers S and a 
target sum t, is there a subset of S whose sum is t?  It is one of the NP-complete problems 
that is known to have a  pseudo-polynomial-time solution [2].   It can be solved by a 
backtracking algorithm in time O(2n), where n is the size of set S, or it can be solved by 
dynamic programming in time p(t), where p(t) is a polynomial function of the target value 
t.  Of course, the magnitude of the target value t may be an exponential function of the 
number of integers in the set S, and in that case the apparently polynomial-time dynamic 
programming solution is really exponential in n.

The current upper bound for Subset Sum is apparently 2O n/2 when size of the input set 
(denoted n) is used as the complexity parameter [8].  When the maximum value in the set 
(denoted m) is used as the complexity parameter, dynamic programming can be used to 
solve the problem in O(m3) time.  While most research literature of Subset Sum employs 
one of these semantic parameters, there is a third choice.  In classical complexity theory, 
the complexity measure is the bit-length of the input string.  This parameter is formally 
determined, simply by counting the bits in the string.  The advantage of using the formal 
measure is that it requires no semantic interpretation of the input string, and problems 
with vastly different semantics can by grouped together in formal  complexity classes. 
The formal measure is usually not employed for analysis of algorithms, probably because 
analysis  based  on  semantic  parameters  is  simpler,  and  because  the  complexity 
classification is the same under both measures.  This is true for the strong NP-complete 
problems such as Satisfiability or the Independent Set problem in graphs.  The natural 
complexity  parameters  for  Boolean  expressions  are  the  number  of  variables  and  the 
number of clauses.   The natural  complexity parameters  for graphs are the number of 
nodes and the number of edges.  For both these problems, the two optional parameters are 
mutually dependent.  For Boolean expressions, the number of distinct clauses is bounded 
as a function of the number of variables.  And with graphs, the number of edges in a 
meaningful problem instance is O(n2), where  n is the number of vertices.  With these 
problems, we can choose either of the semantic parameters and obtain an analysis similar 
to what we would get using input length as the parameter.

With the Subset Sum problem, however, we do not find a mutual dependence between 
the number of objects in the set and the maximum value.  We cannot use the list length n 
to bound the maximum value  m in meaningful problem instances.  And favoring one 
parameter  over  the  other  gives  drastically  different  results.   The  formal  complexity 
parameter  actually  incorporates  both  the  semantic  parameters.   The  bit  length  of  a 
problem instance is O(n·log  m),  and  analysis based on this  measure actually yields a 
result that is distinct from 2O n/2 and O(m3).  Stearns and Hunt [7] used input length x 
to demonstrate that an algorithm for the Partition problem (a special case of Subset Sum) 
exhibits  sub-exponential  time: 2O x. The  significance  of  this  result  was  probably 
obscured by the claim in the same paper that the Clique problem is also sub-exponential, 
while  its  dual  problem Independent  Set  remains  strongly exponential.   This  apparent 
anomaly is a representation-dependent distinction, and it disappears when a  symmetric 
representation for the problem instance is used [4].  Sub-exponential time for  Partition, 
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however, appears to have stronger credibility.  This result was replicated explicitly for 
Subset Sum (using a different algorithm) in [6],  and it  seems unlikely that symmetric 
representation will make it disappear.  This sets the stage for the current study, in which 
we gather empirical evidence that instances of Subset Sum where the input set is dense (n 
is Θ(m)) are very easy to solve.  The ultimate goal, beyond the scope of this paper, is to 
develop an algorithm for Subset Sum that remains sub-exponential even under the test of 
symmetric representation for the input set.  This would solidify the argument that Subset 
Sum is truly an easier hard problem.

In the sections that follow we explore the relationship between the density of the input set 
and clustering of subset sums.  As the input density increases, a threshold is encountered 
beyond  which  clustering  dominates  the  output  set,  and  almost  all  possible  sums  are 
covered by some subset.   The empirical evidence suggests that the threshold occurs at 
density just above 50%.  The experiments are conducted with the aid of the AlgoLab 
software [5], a virtual laboratory for empirical study of algorithms.

2 The Density Threshold

Density in the Subset Sum problem has been known to affect the expected running time 
in studies that date back to the early 1990's (e.g. [1]).  More recently, the complexity of a 
specialized version of the problem with applications in cryptography has also been shown 
to be highly dependent on density [3].  The classification of density in those studies uses 
the  threshold  of  m  = 2n to  distinguish  high (m < 2n)  from low (m > 2n).   Dynamic 
programming works best for high density instances, while backtracking is better for low 
density instances.  Here we are interested in very high density instances where n is Θ(m), 
since these are the only instances for which symmetric representation might affect an 
algorithm's time analysis.

For a set of  n positive integers S with maximum value m, all possible subset sums fall 
within the range {1, ..., m(m+1)/2}.  We will use ΣS to denote the sum of the entire set, 
and we observe that if S has a subset R that has sum t, it also has a subset (S – R) that has 
sum  ΣS – t.  So we expect that both subset sums and missing subset sums will occur in 
pairs.

Our  empirical  study starts  with  a  program  (called  AllSums)  that  allows  the  user  to 
randomly generate a set S with a specified minimum, maximum, and size.  The program 
will create the list of all sums of subsets of  S.  Since the focus is on dense sets where 
almost all target sums will be achievable, the program actually displays the complement 
of the output list -- the list of missing sums -- to the user.  The number of missing sums 
closely approximates the number of clusters in the list of output sums.  Figure 1 shows 
the results of using AllSums to generate a set of 6 numbers between 1 and 16.  The user 
enters these parameters in the top panel  and presses the  Create button.   A randomly 
generated set consistent with the parameters is displayed in the list box on the left, and a 
list  of all  missing subset sums is displayed in the list  box on the right.   A scrollable 
banded bar is displayed in the top panel representing the input set,  and another bar is 
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displayed in the bottom panel to represent the list of sums.  The light segments on the bar 
correspond to  missing  values,  while  the dark segments  correspond to  values  that  are 
present.  This allows the user to visualize the degree of fragmentation or clustering in 
both sets.  In the experiment of Figure 1,  the input set contains only about one-third of 
the possible values, and the output list remains somewhat fragmented.  Clusters of six or 
seven sums have formed, separated by small clusters of missing sums.

Some of the sums in the missing sum list are highlighted.  This distinguishes the missing 
sums that are greater than or equal to the maximum value  m in the input set from the 
others.    We define a sum t to be central if  m < t  < ΣS – t,  and peripheral otherwise. 
Missing peripheral sums should be easy to find – they correspond to missing values in the 
input set.  Missing central sums, on the other hand,  can be hard to find.  It would be a 
significant and useful discovery to find a density threshold beyond which no central sums 
are missing.

Figure 2 shows a  typical result for a randomly generated set with about half the possible 
values in the input set.  The sum list contains a large cluster that contains all central sums. 
The only missing sums are peripheral.   Almost all sets of 8 values with a maximum of 16 
show this  pattern.   Before we jump to the conclusion that density 0.5 is sufficient  to 
guarantee clustering, however, we should the consider the special case of an input set that 
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Figure 1:  A fragmented sum list for a lower-density set.



has only even numbers.  The Allsums program provides limited editing capabilities that 
allow the user to build such a set.  The Reset button in the center panel creates a set with 
all values between the specified minimum and maximum, and the Delete button can be 
used to delete selected items from the input set.  Figure 3 shows the missing sums for the 
set of all even numbers between 1 and 16.  All odd sums are missing, so the output set is 
highly fragmented.  It is interesting to note that adding a single odd number to this set 

(any odd between 1 and the maximum) will fill in all central sums, creating the usual 
central  cluster.   This  example  heightens  the expectation  that  clustering is  a threshold 
phenomenon  –  that  the  degree  of  clustering  increases  rapidly over  a  relatively small 
increase in density.  

The  AllSums program has two options that support a search for an exceptional higher 
density set that might have missing central sums.  The Hole Search button in the bottom 
panel will generate up to 10,000 problem instances until one is found that has missing 
central sums.  The search terminates with the display of such a set, if it is found, or with 
the display of the 10,000th random instance that has only peripheral sums.  If the  Hole 
Search does not  turn up any missing central  sums,  the user can resort  to the  Try all 
button.  The program will then calculate all subset sums of all sets with the specified 
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Figure 2: A single central cluster at density 0.5.



minimum, maximum, and size.  This, of course, can take a long time.  The Try all button 
is recommended only for relatively small set sizes.

Figure 4 shows a special case that is discovered using either the Hole Search or Try all 
button for a set of 9 numbers between 1 and 16.  If all numbers from 2 to 8 are missing 
from the input, then no subset adds up to 18 or 83 -- there is a pair of missing central 
sums.  Again, adding one more number will eliminate the missing central sums.  So we 
press the Try all button for set size 10, maximum 16, and discover that no instance has 
missing central sums.  We repeat these experiments for other maximum values and find 
that the central cluster is complete whenever the input set size is two more than half of 
the maximum, and we propose the following hypothesis:

Hypothesis 1.  A set of positive integers with maximum  m and size  >  (m/2+1) has no 
missing central sums.

The implication of the hypothesis is that we can design a very efficient decision algorithm 
for instances of subset sum where the set size exceeds m/2 + 1.  If the target sum t is a 
central sum, we simply answer yes.  If the target is peripheral, we can conduct a search 
based only on the values missing from the input set.  We expect that the complexity of 
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Figure 3: Worst-case fragmentation at density 0.5.



such an algorithm would remain sub-exponential, even under symmetric representation 
for the input set.

3 The Cluster-count Peak
The experiments in the previous section show results for individual problem instances.  It 
is also informative to run batches of random instances and compute and display average 
results.  The AlgoLab program [5] can be employed for this purpose.  For the sake of 
comparison  with the individual  instance results  described in  the previous section,  we 
begin by running batches of instances where the maximum value is 16.  Figures 5 through 
7 show the results of an experiment in which sets of size 1 through 16 with a maximum 
value  of  16  (700  replications  of  each  set  size)  were  generated  and  tested.   Three 
algorithms were run on each instance: SumFinder, MissFinder, and BlockFinder.  These 
are actually three versions of the same algorithm, which creates a list containing the sums 
of all subsets of its input set.  The result returned by SumFinder is the count of distinct 
subset sums;  the result returned by MissFinder is the count of all missing central subset 
sums; and the result returned by BlockFinder is the count of clusters of consecutive sums 
on the sum list.  The lists are implement using the IntBlockList data structure, a linked list 
of blocks of consecutive integers.
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Figure 4: Missing central sums at density 9/16.



For each size of input set, the algorithms report a step count and a space requirement as 
well as a result value.  The step counts and space metrics are  identical  for the three 
algorithms.   The step count  is the total number of iterations of the innermost loop as  the 
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Figure 5:  Step counts for calculating all subset sums of sets with 1 to 16 elements. 

Figure 6:  Space used for calculating all subset sums of sets with 1 to 16 elements. 



list of all sums is generated.  The space metric is the maximum size reached by the block 
list as the sums are computed.  Figures 5 and 6 show the step counts and space metrics, 
respectively.  The curve in Figure 5 indicates moderate polynomial growth in step counts 
as the input sets become larger.  The curve in Figure 6 is actually very close to the curve 
for the BlockFinder result curve in Figure 7.  This indicates that the maximum number of 
clusters in the sum list during execution is usually equal to the final number of clusters in 
the list.  There is an obvious peak in the cluster count when the set size is 5.

Figure 7 shows the average sum counts (top curve), missing central sum counts (bottom 
curve), and number of sum clusters (middle curve) for each set size.  The sum count 
curve is somewhat 'S'-shaped, culminating at 136 ( the sum of all numbers from 1 to 16). 
The missing central sum curve is consistent with Hypothesis 1 – there are no missing 
sums for sets of 10 or more numbers.  There are also no missing sums for sets of size 8 
and 9, indicating that in 700 random instances, the special cases of Figures 3 and 4 did 
not occur.  The final cluster count follows the missing central sum curve closely, but is 
slightly higher.  It reflects all missing sums (including peripheral sums) as gaps between 
the sum clusters.  Some peripheral sums will be missing unless all possible values are in 
the input set (for which case the cluster count is 1).   

Additional  AlgoLab experiments  have confirmed that the phenomena described above 
persist for larger values of n and m.  Figures 8 and 9 show the results of an experiment 
with m = 100 and n ranging from 1 to 25.  As before, the curve for total subset sums in 
Figure  8  is  slightly 'S'-shaped,  and it  appears  to  make  linear  progress  as  n increases 
toward the sum of all numbers from 1 to 100.  The curves for missing central sums and 
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Figure 7:  Comparative average sum /missing sum counts  for sets with 1 to 16 elements. 



number of sum clusters  again are closely related,  with the missing central  sum count 
declining to zero at about  n = 16.   Both  these curves reach a maximum for a small value 
of  n,  but  in contrast  to  the  previous experiment, the peaks  are  distinct.   The  missing
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Figure 8:  Comparative average sum /missing sum counts  for sets with 1 to 100 elements. 

Figure 9:  Missing central sums vs. cluster counts  for sets with 1 to 100 elements. 



central  sum curve  grows  faster  and  peaks  sooner  than  the  cluster  count,  but  it  also 
declines faster to undercut the cluster count just beyond the cluster count peak.  Figure 9 
shows a closer view of this phenomenon.  The missing central sum curve peaks at n = 7 
about 25% higher than the cluster count, which peaks at  n = 8.  By n = 9, the missing 
central  sum count  has  fallen  below the cluster  count.   This  indicates  large blocks of 
missing sums at lower values of n.

The position of the cluster count peak (at n = 8) has not moved much beyond its position 
in the previous experiment (at  n = 5), in spite of the fact that the maximum value  m is 
more than 6 times larger.  This indicates that the expected position of the cluster count 
peak  is  a  sub-linear  function  of  the  maximum  value.   The  results  of  additional 
experiments are summarized in the table of Figure 10.  These results suggest that the 
expected  position  of  the peaks  is  a logarithmic  function  of  m.   In fact,  the observed 
positions  of the missing central  sum peak exactly match  n = lg  m for  m > 16.   The 
position of the cluster count peak moves ahead at a slightly higher rate.  The logarithmic 
relationship between n and m for these peaks is consistent with the known critical region 
for  the  Subset  Sum problem.   The peaks  in  cluster  count  and missing centrals  sums 
coincide with peaks in step counts when using the best algorithms for the problem.

4  Conclusion

The Subset Sum problem is an NP-complete problem that has a pseudo-polynomial time 
algorithm.  It can be argued that such problems are easier than the other NP-complete 
problems,  based on algorithms  that  solve the problem in sub-exponential  time.   This 
argument would be strengthened if dense instances of the problem could be solved in 
time that is a sub-exponential function of the size of the complement of the input set. 
Empirical evidence strongly suggests that this can be achieved.  Even  moderate-density 
input sets are likely to have a large central cluster of subsets sums.  The cluster is likely to 
be present for any sets whose size exceeds the log of the maximum value  m in the set. 
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Maximum set value 
(m)

Value of n at
cluster count peak

Value of n at
missing central sum peak

8 4 4

16 5 5

32 6 5

64 7 6

128 8 7

256 10 8

512 11 9

1024 12 10

2048 13 11
Figure 10:  Observed peaks in cluster count and missing central sums.



Further, it appears that a complete central cluster is guaranteed when the set size exceeds 
m/2+1.

The empirical results set the stage for further work.  It would be interesting to find or 
derive a mathematical model that relates the density of the input set to the probability of 
missing central  sums.   It would also be significant  to prove (or find such a proof in 
research literature) that there are no missing central sums for sets with more than m/2+1 
elements.  And finally, an algorithm for dense sets that identifies missing sums in time 
that is sub-exponential in the number of missing input values would solidify the argument 
that Subset Sum is truly easier than other NP-complete problems.
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