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Abstract
Programmers may use Java diagnostic tools to determine the efficiency of their programs,
to find bottlenecks, to study program behavior, or for many other reasons. Some of the com-
mon diagnostic tools that we examined are profilers and the Java Virtual Machine (JVM)
options that make some internal JVM information available to users. Information produced
by these tools varies in degrees of clarity, accuracy, and usefulness. We also found that
running some of these tools in conjunction with a program may affect the program’s be-
havior, creating what we refer to as an “observer effect”. We examine several tools and
discuss their level of usefulness and the extent to which they impact program behavior.
Additionally, we discovered program instability, i.e. a tendency of a program to change its
behavior when executed with different monitoring tools or multiple times with the same
tool. We discuss potential causes for instability based on information obtained via run-
ning the HotSpot JVM with an option for logging its internal compilation and optimization
process.



1 Introduction
Java programming language is executed by an interpreter known as the Java Virtual Ma-
chine (JVM). Modern JVMs are equipped with sophisticated tools for dynamic program
optimization that profile and optimize the program as it is being executed. In this com-
plex setup, monitoring a program by trying to examine its run-time behavior becomes quite
challenging. The reason for this is that the monitoring tool and the JVM that is running and
optimizing the program all share the same resources (CPU, cache, etc). This may create an
“observer effect”: the change in the program behavior when it is being executed together
with a monitoring tool, whether embedded into the JVM itself or an external one.
In this project we are interested in studying Java program behavior caused by a certain
inheritance pattern related to generic types that we refer to as bound narrowing. Pro-
grams with bound narrowing that are very similar to each other exhibit different behavior
in terms of their run time. While trying to explain the differences, we tried various Java
diagnostics tools, both stand-alone (such as HPROF profiler) and those embedded into the
HotSpotTMVM. In particular, we explored a log compilation option available in the HotSpot
JVM. This option keeps a detailed log of optimizations performed at the run time.
We present the observations about the accuracy and usefulness of the monitoring tools,
using bound narrowing examples as a case study. We show that most of the programs are
stable with respect to the monitoring tools considered in this paper, i.e. relative times in a
group of programs remain the same regardless of the tools (although constant differences
in times for the entire groups have been observed). However, some programs are unsta-
ble, i.e. their behavior patterns change depending on whether they run in the JVM under
default conditions or with a monitoring tool. In fact, some programs behave differently
when executed repeatedly in the JVM with the log compilation option. Since this option
produces a detailed log of both successful optimizations and failed attempts, we were able
to determine what causes the differences in behavior based on these logs.

2 Java Virtual Machine and Diagnostic Tools

2.1 Java Compilation Model
Unlike statically compiled languages, in which a program is optimized and compiled into
machine code in the same step, Java has a two-phase compilation model. First, the program
is compiled by a static compiler, such as Javac, into bytecode for portability. Second, the
bytecodes are executed on any system that has a Java execution environment, referred to as
the Java Virtual Machine (JVM). The JVM that comes standard with the Java Development
Kit (JDK) is called HotSpotTMVM.
Most modern JVMs, including HotSpot, are equipped with a Just-in-time compiler (JIT)
that performs optimizations as the program is being run and may convert a portion or all of a
program’s bytecode to native code “on the fly”. This process is called dynamic compilation.
Two common examples of JIT optimizations are constant propagation and inlining. Con-
stant propagation is when references to a constant in a program are replaced with the con-
stant’s value. Inlining is when the JIT replaces method calls with all of the method in-
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structions. This removes the method call, and therefore method look up, and allows for
further optimizations to take place. Inlining would be similar to copying a whole method
and pasting over the call to that method.

2.2 HotSpot Server Just-In-Time (JIT) Compiler
The HotSpot JVM features two modes, client and server that differ in their JIT compilers.
The server mode provides more optimizations than the client mode and as a result may have
faster run times than client for longer programs. However, the optimizations may be more
time-consuming than those applied by the client mode [6]. The server mode is intended
for server-side applications. Client mode is the default for HotSpot on 32-bit architecture.
It provides faster application startup and requires less memory than server. It is intended
for client-side Java programs, such as applets, and is currently not supported for 64-bit
architecture [3]. In this paper we are only considering the server mode.
HotSpot JVM provides multithreading support. Multithreading is the parallel execution
of a program through various processes, effectively executed by the hardware but may
be handled by the virtual machine. When handled by the hardware, the processes are
divided between the systems processors. However, our system has one processor to limit
variations during dynamic compilation as much as possible. A feature of this JVM is
preemptive multithreading based on native threads; that is, that threads defined in a program
are handled by the JVM and passed to the operating system for support. We observe that
this extends to multithreading JIT compilation, that is, optimizations in JIT compilation
may take place in different threads.

2.3 Profilers, HPROF
A profiler is a piece of software that observes and interacts with a program to gather in-
formation about its execution, such as data on how often methods get called. HPROF is a
specific profiler that can run in two different modes, sampling mode and method counting
mode [2]. Sampling mode will run by finding out what the stack is like at certain time
intervals to get an estimate for how often methods are being called and where they are on
the stack most. Method counting mode, on the other hand, will count how often methods
get called by putting in at least one line of code that creates a counter in the method that in-
crements on each call. This approach is called bytecode injection. Method counting mode
causes a drastic increase in run time due to an overhead of counting. In addition inlining
is disabled because of bytecode injection. This is a type of “observer effect”: observing a
program by means of a profiler changes its behavior [1].

2.4 Internal JVM Diagnostics
Internal JVM diagnostic tools were created by the JVM developers to provide themselves
access to various internal JVM information. These tools were not developed for Java pro-
grammers, which may be the reason that the internal JVM diagnostic tools are somewhat
under-documented and not guaranteed to work for every JVM distribution [5].
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...
14 HashMap::putAll (133 bytes)
15 NarrowedIS::put (13 bytes)
16 NarrowedIS::put (38 bytes)
1% HashMap::putAll @ 90 (133 bytes)
17 HashMap::entrySet0 (28 bytes)
18 HashMap$EntrySet::iterator (8 bytes)
19 HashMap::newEntryIterator (10 bytes)
...

...
14 HashMap::putAll (133 bytes)
15 NarrowedIS::put (13 bytes)
16 NarrowedIS::put (38 bytes)
17 HashMap::entrySet0 (28 bytes)
18 HashMap$EntrySet::iterator (8 bytes)
19 HashMap::newEntryIterator (10 bytes)
...

Figure 1: Showing different results for print compilation for two runs of the same program
(only a fragment shown).

Two of the relevant diagnostic tools we were using are Print Compilation and Log Compi-
lation. They are both flags provided by the JVM. On the command line the flags look like
this [5]:

-XX:+PrintCompilation
-XX:+UnlockDiagnosticVMOptions -XX:+LogCompilation

When the print compilation flag is turned on, a message is printed whenever JIT translates
a method into machine code. This flag provides some information about the JIT behav-
ior, but its output format does not have a clear publicly available documentation and the
results can be confusing. An example of this is the field size of method in bytes where the
number associated with this field is, as evidence suggests, a somewhat arbitrary number to
approximate the size of the method but does not have a clear definition. A method is often
compiled to native code more than once, with different byte sizes. An additional compli-
cation arises from the fact that output of print compilation differs for multiple runs of the
same program, even if the runs take the same time, as demonstrated in Figure 1. In Figure 1
we show a partial print compilation output for two runs of the same program that resulted
in the same running times. We see that between lines 16 and 17 of the output of the first
run there is a reference to HashMap::putAll that does not appear in the second run’s
output.
The log compilation flag turns on logging of the compilation process: when and in what
order program code is translated into bytecode, optimized and translated into native code
where applicable. It also records the information about threads of the JIT compiler and
which tasks they perform. When the log compilation flag is turned on, a second flag, unlock
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diagnostics, must also be turned on. The log is written as a large XML file recording every
action of the JIT, with timestamps. This option produces accurate detailed information for
analyzing program behavior. However, we have observed that using these flags leads to
changes in the behavior of some programs, most likely due to recording information forced
by unlocking the JVM diagnostics See section 5 for more details.

3 Effects of Bound Narrowing

3.1 Generic Types in Java
Generic types are a feature of Java that allows writing program code that is parameterized
over types. For example, generic types allow creation of a Stack class that that allows
instances of Stack to be constructed with any object such as strings or integers, but will
not allow mixing strings and integers in the same instance of Stack. In this case String
or Integer class are referred to as type parameters for the generic Stack class. An
example of generic types is the following class:

public class HashMap<K, V>

HashMap has two type parameters, a key type K and a value type V. An example of the
instantiation of HashMap would be:

HashMap<K,V> myHashMap = new HashMap<Integer,String>();

Here, we instantiate HashMap with an Integer for a key and a String for a value.
This limits the instance of this class myHashMap to only be used with an Integer for a
key and a String for a value.
There can also be type bounds placed on generic types. A type bound is a class or interface
that limits the generic parameters to that class or subtypes of that class or interface.

public class ComparableHashMap<K extends Comparable,
V extends Comparable>

This ensures that the key and the value are of types that implement Comparable interface.
Implementations of HashMap allow for construction of an instance involving any class for
the key or the value. ComparableHashMap has a more strict implementation where the
construction of an instance demands a Comparable or a subtype of Comparable for
the key and value.
Generic types may be subtypes of other generic types. Commonly the type bound of a
subtype is the same as the type bound of its supertype. However, Java allows for the subtype
to have a more restrictive bound than its supertype; also, a non-generic class may inherit
from a generic class or interface by “hard-wiring” a specific type for a type parameter. We
refer to these inheritance patterns as bound narrowing.
An example of bound narrowing where a non-generic class is inheriting from a generic
class is the following:

public class NarrowedHashMap
extends HashMap <Integer, String>
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Here, NarrowedHashMap inherits from the class HashMap where the key and value are
specifically Integer and String, respectively.

3.2 Delays Associated with Bound Narrowing
In our previous research, we found that bound narrowing causes substantial runtime inef-
ficiencies when the JIT is disabled. When bound narrowing is present, the system has to
verify that objects passed to a method of a more specific (narrowed) container by a call to a
method of its more general supertype are of the correct type. When the JIT is not allowed
to perform the necessary optimizations such as inlining, described above, these type checks
have to be performed every time an object is placed into a container. We have found that
some of these delays will go away in runs under default HotSpot JVM conditions (with the
JIT optimizations on) while others remain. In the current research, we are continuing to
study bound narrowing, specifically when the delays remain and why [7].

3.3 Test Cases
The code that we have been testing is based on the HashMap class in the Java collections li-
brary. We chose this code base because of a specific class called PrinterStateReasons
that is a part of the javax package. The reason that PrinterStateReasons is impor-
tant to us is because it is a narrowed version of the generic HashMap and is a real-life
example of bound narrowing. Below, we are showing only relevant fragments of code.

public final class PrinterStateReasons extends
HashMap<PrinterStateReason, Severity>

The bound here is on the way down from HashMap because the PrinterStateReasons
class has a more specific bound than the generic HashMap. PrinterStateReason is
a class that provides information about a printer’s current state while Severity provides
information on how severe that state is. Our version of this code uses Integer and
String instead since PrinterStateReason and Severity have a limited number
of instances.
Our test code accesses the class being tested via an interface, Map, with a key and a value
both bounded to Object. We have a class, HashMap, that implements this interface
that is still completely generic. These classes are copies of the standard Java collection
packages and PrinterStateReasons with our own methods added as needed.

public class HashMap<K,V> extends Map <K, V>

Our test classes, which are the four subclasses in the table below, all extend HashMap and
are based off of the PrinterStateReasons class . Each of these has a different bound
combination as seen in the table below.

Name Notation Key Value
NarrowedIS NIS Integer String
GenericKeyIS GKIS Object String
GenericValueIS GVIS Integer Object
GenericKeyValueIS GKVIS Object Object

5



We define four versions of the testing code, one per each of the test classes above, that test
our code base by repeatedly calling a method in order to determine its running time.
Our tests start with the generic Map interface instantiated as one of our four classes. We
then call a method on the interface and the call gets passed down to the specific class. The
narrowing happens on the arguments passed from the method in Map to the method in our
specific class . The check happens in those classes because in Map the arguments are bound
to Object while the narrowed classes are bound to either Integer or String. Note
that the type check may be optimized away by the JIT (see Section 3.2).
Our test cases, the methods that we are calling in our test classes, for the most part, use a
pair of methods that perform an item-by-item search through the HashMap to try to find
either a key or value equal to what we pass in. An example of this is the containsValue
method shown below. This is just one of many different methods that we have tested.

public boolean containsValue(V value) {
Entry[] tab = table;
for (int i = 0; i < tab.length; i++)

for (Entry e = tab[i]; e != null; e = e.next)
if (value.equals(e.value))

return true;
return false;

}

This method is a copy of the method in HashMap which we duplicated for studying pur-
poses. The table variable is the array of type Entry that HashMap uses to store its data.
Between the four classes of ours, two (NIS and GKIS) have the String type bound for
V, and the other two have the Object type bound. Consequently the type of the parameter
value in the bytecode is String in NIS and GKIS and Object in GVIS and GKVIS.

Map<Integer, String> map = new GKVIS<Integer, String>();
initMap(size, keys, values, map);
boolean result = true;
double timeStart = System.currentTimeMillis() / 1000.0;
for (int i = 0; i < outerLoops; i++) {

for (int j = 0; j < 10000; j++) {
result &= map.containsValue(values[j % size]);

}
}
double timeEnd = System.currentTimeMillis() / 1000.0;
if (result) {

System.out.println(timeEnd - timeStart);
}

initMap() will add items to our Map from our set of keys and values until we reach the
size that we pass in. The given arrays have only four distinct elements (repeatedly added to
the HashMap as needed) to eliminate the need for garbage collection and thus to guarantee
that the running times are not affected by it. We record the start time before we run our
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tests, and then record it again right before the program finishes. The result variable
(a boolean) alternates between true and false in the loop and is used after the loop
(with the value true since the loop runs an even number of times). We use this “dummy”
variable result so that the JIT compiler does not optimize the method calls away entirely
since the JVM compiler will eliminate method calls as useless code if there is no side-effect
from the call.
In order to obtain running times on the order of seconds, we loop over method calls a large
number of times (200,000,000 in examples in this paper). This allows us to accurately
measure the differences in time between the test classes. We separate the iteration into
doubly nested for loops for easier control of the number loops (the outer loop counter is set
as a flag for the test runs).

3.4 Other Test Cases
The other methods in HashMap hierarchy that we tested are listed below:

• IS-put-inl is the same method as put in HashMap, with the test method for it
manually inlined into the classes that we are testing, such as NIS, GKIS, etc. The
reason for manually inlining the testing method was to explore a particular way of
parameter passing in the program.

• IS-contains-v-inl is the same method as IS-contains-v, with the test
method inlined in the same way as IS-put-inl.

• II-contains-v-inl is the same method IS-contains-v except the type of
value is Integer instead of String and its testing method is inlined in the same
way as IS-put-inl.

4 Effects and Accuracy of Java Monitoring Tools

4.1 Pattern Classification for Test Cases and Program Stability
In our tests we have come across different patterns of time differences between the four test
classes, three of which come up in the tests that we describe in this paper. First, there is a
no significant difference pattern which is a run where the four classes all run in the same
times (we consider differences under 0.4 sec to be non-significant, although most cases in
this category are much tighter, often within 0.1 sec). Second, there is the bound narrowing
pattern that manifests the bound narrowing delay described in Section 3.2, where the runs
with the narrowed value (NIS and GKIS) are slower than the generic runs ( GVIS and
GKVIS). The final pattern is what we call the value pattern. The value pattern is where the
narrowed value classes are faster than the generic classes. In these runs the JIT successfully
optimizes away the bound narrowing delay and then takes advantage of knowing the exact
class that the equals method in containsValue (and in similar methods) is called on.
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The exact target class information allows JIT to inline the method, leading to faster runs
for the narrowed tests1.
Our goal is to determine why some runs display a specific pattern. We also discovered that
some test cases act differently under different testing conditions, for instance displaying
the bound narrowing pattern under the default conditions and the value pattern when tested
with HPROF. We refer to runs that exhibit the same pattern for all testing methods (i.e. the
default mode of testing, HPROF, Print Compilation and Log Compilation) as stable, and
to those that have different patterns as unstable. An unstable test case may also have two
different behaviors in the same mode of testing in different tries. In our experience this
may happen in Log Compilation tests.
In the remainder of the section we show results for some stable and some unstable runs for
different ways of testing and discuss the result.
All tests are run on the same machine in /tmp to ensure that network problems do not
interfere with the tests. Below are the machine and the JVM specifications:

AMD AthlonTM 64 Processor 3200+
512MB DDR RAM
Fedora Core 7
Kernel: 2.6.23.17-88.fc7 SMP i686
Java Version: Sun JDK 1.6.16
Time Binary: GNU time 1.7

We use the taskset command to pin the JVM process (and all of its subprocesses) to one
CPU.

4.2 Results for Default Conditions.
In this section we show the results of running the four test cases described in Sections 3.3
and 3.4 under the default conditions in the server mode of the HotSpot JVM. Figure 2
shows the graph for containsValue corresponding to the data in the table. The graph
exhibits the bound narrowing pattern. Due to lack of space we are not showing the graphs
for the other three test cases and just summarize all four results in the table:

Name NIS GKIS GVIS GKVIS Pattern
contains-v 16.18 16.19 15.40 15.55 BN
put-inl 8.48 8.50 8.05 8.07 BN
contains-v-inl 13.94 13.91 15.40 15.72 Value

NII GKII GVII GKVII
contains-v-inl 8.09 8.11 8.09 8.09 No-diff

The first column is the name of the test case: containsValue is the test class explained
in Section 3.3, and the other four runs are described in Section 3.4. We make 200,000,000
method calls for each method being tested in each of the four test classes. The numbers

1In tests that call equals method on a key and not on a value we also found a key pattern which is
the same as the value pattern, but it is sped up on runs with a narrowed key (NIS and GVIS) instead of a
narrowed value. Due to space limitations we are not describing these tests in the paper.
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Figure 2: containsValue, default HotSpot conditions: bound narrowing pattern.

are the averages of program running times, in seconds, for 20 repetitions of each test class.
The last column shows which pattern the test case follows: “BN” stands for the bound
narrowing pattern, “Value” stands for the value pattern and “No-diff” means that there
were no significant difference between the four runs.

4.3 Results for HPROF in Method Sampling Mode
Figure 3 shows the results of running the IS-contains-v test case with the HPROF
profiler in the sampling mode (described in Section 2.3). Not surprisingly, the running
time is more that twice that of the original’s. This is due to the overhead of collecting the
stack sampling information as the program is running. Quite surprisingly, however, the
test exhibits the value pattern: the code versions specialized in the value run faster than
those with a generic value. This contrasts the bound narrowing pattern of this test under
the default conditions.
The difference in pattern can clearly be characterized as an observer effect. However, this
observer effect is surprising for two reasons. Firstly, unlike the counter mode of HPROF,
the sampling mode does not perform bytecode injection. The sampling of the program
stack is performed independently from the program itself. Although it requires stopping
the program every once in a while to record the contents of the stack, this only adds a
constant factor to the program running time and should not affect the relative running times
of the four different versions. The second reason this result is unexpected is that most of
our test cases (including all three of the comparison runs) are stable with respect to HPROF,
i.e. they preserve their default pattern2 The table below summarizes the results for all four

2We observed a similar instability in a test similar to IS-contains-v, not shown due to lack of space.
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Figure 3: containsValue, HPROF in Method Sampling: value pattern

test cases. The measurements are determined exactly the same as for the default conditions,
except each run is repeated 5 times, not 20.

Name NIS GKIS GVIS GKVIS Pattern
contains-v 33.79 33.98 36.14 36.24 Value
put-inl 16.89 16.89 16.05 16.06 BN
contains-v-inl 34.58 33.22 35.84 35.84 Value

NII GKII GVII GKVII
contains-v-inl 17.28 17.13 17.28 17.13 No-diff

4.4 Results for Print Compilation and Log Compilation Flags
Print compilation results do not change the running time for any of the test cases we have
tried, and therefore we are not including its results. Log compilation, however, leads
to interesting results for IS-contains-v, see Figure4. Some of the results exhibit
bound narrowing pattern, and some have value pattern. These results confirm the fact that
IS-contains-v is unstable. They also provide us with compilation logs for both of the
patterns that allow us to study the differences in JIT behavior between the bound narrowing
and the value pattern of the same program. Section 5 shows the important fragments of the
logs and provides discussion. Note that the other three runs are stable, i.e. preserve the
default pattern, as shown in the table below. The averages are for five runs per test class.
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Figure 4: containsValue, Log Compilation: split between bound narrowing and value
patterns

Name NIS GKIS GVIS GKVIS Pattern

contains-v
2: 15.21
3: 16.17

1: 15.34
4: 16.20 15.40 15.56 Unstable

put-inl 8.48 8.51 8.05 8.07 BN
contains-v-inl 14.05 13.95 15.58 15.35 Value

NII GKII GVII GKVII
contains-v-inl 8.09 8.09 8.12 8.09 No-diff

5 Analysis of Compilation Logs and Implications

5.1 Compilation Logs
We have provided a sample of two of the logs obtained by the Log Compilation tests of
IS-contains-v for the NIS run: one faster run at 15.21 seconds and one slower run
at 16.17 seconds. We are only showing fragments of the logs for space and clarity reasons
since the logs themselves are large XML files. The first of these is a run that exhibited
the value pattern and the second exhibited the bound narrowing pattern. For more in depth
explanations of the log compilation terms, see [4].

FASTER RUN:
First Thread:
<klass id="511" name="java/lang/Object" flags="1"/>
<method id="609" holder="533" name="equals" return="486"
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arguments="511" flags="1" bytes="88" iicount="6611"/>
<call method="609" count="4188" prof_factor="1" inline="1"/>
<method id="610" holder="533" name="equals" return="486"

arguments="511" flags="1" bytes="88" iicount="6612"/>
<call method="610" count="4189" prof_factor="1" inline="1"/>

Second Thread:
<task compile_id="1" compile_kind="osr"
method="TestNarrowedIS main ([Ljava/lang/String;)V"
bytes="2330" count="1" backedge_count="14564" iicount="1"
osr_bci="942" stamp="0.125">
<method id="715" holder="533" name="equals" return="486"
arguments="511" flags="1" bytes="88" iicount="6612"/>
<call method="715" count="4189" prof_factor="1" inline="1"/>

SLOWER RUN:
<task compile_id="1" compile_kind="osr"
method="TestNarrowedIS main ([Ljava/lang/String;)V"
bytes="2330" count="10000" backedge_count="5803" iicount="1"
osr_bci="942" stamp="0.131">
<klass id="511" name="java/lang/Object" flags="1"/>
<method id="707" holder="603" name="containsValue"
return="486" arguments="511" flags="4161" bytes="9" compile_id="2"
compiler="C2" level="2" iicount="10000"/>
<dependency type="unique_concrete_method" ctxk="603" x="707"/>
<call method="707" count="35620" prof_factor="1" inline="1"/>
<inline_fail reason="already compiled into a big method"/>

The abbreviation osr, as seen in the samples, is short for on-stack replacement. On-stack
replacement is the process of replacing a method with its more optimized version directly
on the program stack as the program is being executed. Log Compilation shows that the
JIT runs two separate threads that start at the same time. Our observations show that there
is no significance to a particular operation taking place in the first or the second thread.
However, we have found that second thread will typically have the optimizations for faster
runs. The iicount and backedge count are for how many times the method in question gets
called, but they do not seem to be very important. The key is whether or not the test case
gets inlined into the calling context successfully.
The first run, the faster of the two and showing the value pattern, inlines containsValue
into main first, and it later inlines equals into containsValue. The second run,
the slower of the two and showing the bound narrowing pattern, does things the oppo-
site way, inlining equals into containsValue first. However, when it tries to inline
containsValue into main, it fails with the reason of ”already compiled into a big
method”. This fail reason means that containsValue was too large after it was inlined
with equals to be inlined into main. In this specific test, main was the calling context
(see the second code fragment in Section 3.3) of containsValue.
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The logs for the tests we ran fall under one of three different categories. If, as is the case
for IS-put-inl the narrowed test classes fail to inline into the calling context, we get
the bound narrowing pattern. IS-put-inl is a more complicated method, and we do
not have complete analysis of its compilation log at this point. We observed that in the
case of IS-contains-v-inl the narrowed test classes succeed in inlining the testing
method into the calling context, but the generic ones fail. This corresponds to the value
pattern (the narrowed classes are faster than the generic ones). Finally, when all four of
the classes succeed in inlining into the calling context, we get the no significant difference
pattern which is the case for II-contains-v-inl.

5.2 Analysis of Compilation Logs and Hypotheses
In our analysis of the compilation logs, we have come up with a hypothesis to explain
the three different patterns that we have seen. No significant difference shows up if the
compilation log has both the narrowed and generic classes succeed in inlining the test case
into its calling context. The value pattern shows up if the inlining of the generic classes
fails and the inlining of the narrowed succeeds. Bound narrowing shows up if narrowed
classes fail to inline the tested method into the calling context, regardless of whether the
generic classes succeeds or fails to inline the test case. We have found that if generic fails
to inline and narrowed fails, then it shows bound narrowing. We have reason to believe that
if generic succeeds inlining then the bound narrowing will be more extreme.
In addition, we have observed that test runs with an Integer bound for a value (rather
than the String, as in most of our examples) are stable and fall into value pattern or no
significant difference, except on put runs. We believe that the reason for this is because
the method size of equals in Integer is smaller which make the inlining of the method
work irregardless of order. The exception being put because the methods for those runs
are larger and fail to inline.

6 Conclusions and Future Work
The table below shows the summary of comparing different diagnostic methods:

Diagnostic Method Time Change Pattern Change Information
Amount

Print Compilation no time change no pattern change some

hprof(sampling)
approximately
doubles times can change patterns moderate amount

hprof(counting) drastic increase significantly inaccurate

Log Compilation
no significant

change can change the pattern detailed, accurate

Print compilation is the method with the least impact, but it does not produce enough
information to be able to detect important optimizations, in particular inlining. As shown
in [1], HPROF in the method counter mode creates a drastic time increase and may disable
inlining, therefore it is not useful for our purposes. The sampling mode of HPROF increases
the running times by a moderate amount. However, it may change the behavior of unstable
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programs. Finally, log compilation produces helpful information, but may also change the
behavior of unstable programs. We observed that unstable programs may produce different
running times in repeated runs with log compilation. We were able to analyze the logs for
two runs with the log compilation option that resulted in two different running times. The
logs gave us an insight into the behavior related to the bound narrowing inheritance. We
were able to identify a sequence of optimizations that leads to failure to inline the method
under testing. We developed a hypothesis for explaining the distinction in patterns for our
current set of tests.
Future work includes analysis of more compilation logs with the goal of generalizing the
patterns to other tests, such as those that use put methods which we currently cannot
explain. We also plan to check the dependency of this approach on the maximum method
size for inlining by setting the JVM flag that controls this parameter. Another promising
direction to explore is multithreading in JIT: we can set the number of threads and thus get
an indirect control over thread scheduling. Finally, we plan to identify code patterns that
lead to program instability. It may be wise to advise programmers to avoid these patterns.
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