
Adaptive GPS Algorithms

Chad Seibert
Division of Science and Mathematics

University of Minnesota, Morris
Morris, MN 56567

seib0060@morris.umn.edu

March 16, 2011

Abstract

Global positioning systems (GPS) are very popular as a means of finding a route
from one destination to another. However, some GPS algorithms for finding routes are
not intelligent with respect to current weather conditions, traffic levels, and construc-
tion zones. We design algorithms that allow us to incorporate these factors and find a
path with expected shortest path.



1 Introduction
Finding the shortest distance between two places is a common occurrence when travelling.
Often times, this is done with a global positioning system (GPS) that is capable of provid-
ing directions. These devices often present only one possible option for the route to the
destination. What if the user wanted a path subject to different constraints? That is, not
necessarily the shortest path, but the path that has the tightest bounds on expected travel
time. Also, what if such a system could give better directions by incorporating the current
road conditions? If the roads are covered with glare ice, then we do in fact want to travel the
minimum distance between two points. If some roads are heavy in traffic, then we might
prefer to seek longer routes that will be quicker due to lighter traffic. We design a hybrid
algorithm allowing us to incorporate such information as traffic levels, weather conditions,
and construction zones to find an optimal shortest distance between two points.

2 Preliminary Concepts

2.1 Deterministic Shortest Path Problem
The deterministic shortest path problem lies at the heart of our system. Given a weighted
graph G = (V,E) and two vertices s, t ∈ V , determine a path of least weight from s to
t. Many algorithms have been designed to solve this problem efficiently; one of the most
popular is Dijkstra’s Algorithm. Dijkstra’s algorithm works on directed and undirected
graphs with positive edge weights. We give an overview of the algorithm; the interested
reader should consult [2] for more information.
We begin by marking all nodes as unvisited and setting the start vertex to the current vertex.
By marking, we mean setting a flag associated with each vertex. We then compute the
tentative distance for each unvisited neighbor, that is, the distance to the current node plus
the distance to the neighbor. If this distance is less than the previously recorded distance,
replace the old distance with this instance. After computing all the tentative distances for
each unvisited neighbor, mark the current vertex to visited and set the node with minimal
tentative distance as the current vertex. Continue until the current vertex is the target vertex.
Algorithm 1 describes a pseudo-code of Dijkstra’s algorithm, and we give an illustration of
Dijkstra’s Algorithm in Example 1 below.
Example 1: Given the following instance of a Shortest Path problem, we would like to find
a shortest path from vertex 1 to vertex 10.

We first begin by considering the neighbors of 1. We see that the shortest paths to 2, 3,

1



Algorithm 1 Dijkstra’s Algorithm. G = (V,E) is the graph, s is the source vertex and t is
the destination vertex.

1: for v ∈ V do
2: dist[v]←∞
3: prev[v]← undefined
4: end for
5: dist[t]← 0
6: Q← V
7: while Q 6= ∅ do
8: curmin←∞
9: for each u ∈ Q do

10: if dist[u] < curmin then
11: curmin← dist[u]
12: minnode← u
13: end if
14: end for
15: if curmin =∞ then
16: return ∅
17: end if
18: Q← Q− {u}
19: for each neighbor v of u do
20: tentativedist← dist[u] + weight[u, v]
21: if tentativedist < dist[v] then
22: dist[v]← tentativedist
23: prev[v]← u
24: end if
25: end for
26: end while
27: path← ∅
28: u← t
29: while prev[u] is defined do
30: path← path ∪ {u}
31: u← prev[u]
32: end while
33: return path

2



and 4 are 6, 2, and 8, respectively. We label the vertex the tentative distance from 1 to the
vertex. Since we have considered all the neighbors of 1, it is marked and we never consider
it again. In the following figure, we have the tentative distance to that vertex in italics.

Now, we consider the neighbors of 2, 3, and 4. We start with the vertex with least tentative
distance, in this case, vertex 3. We consider its unmarked neighbors and label them with
their tentative distance. There are two neighbors, 4 and 5. We label those vertices with
their tentative distances by adding the tentative distance from 3 to the weight of the edge
connecting them. We now mark vertex 3 as we have considered all its neighbors. We have
the following graph

Now, we consider the next vertex with minimum tentative distance, that is, vertex 2. We
consider all its unmarked neighbors, which is only vertex 5. We compute the tentative
distance from 1 to 5 by summing the tentative distance of 2 to the edge weight connecting
them. We see that it is less than the current tentative distance for 3. Thus, we overwrite it
and mark 2. We continue the same for vertex 4 and are left with the following

We continue this process until each vertex is marked, leaving us with the following

3



2.2 Fuzzy Numbers
Fuzzy numbers are a generalization of the real numbers where the value refers not to one
specific number, but to a range of numbers. Fuzzy numbers can be defined in many different
ways, for more information about the subject, see [1] [5]. For our research, we limited
ourselves to triangular and trapezoidal fuzzy numbers. A triangular fuzzy number is a
tuple (a, b, c) where a < b < c and a membership function µ defined as

µ(x; a, b, c) =


x−a
b−a : a ≤ x ≤ b
c−x
c−b : b ≤ x ≤ c

0 : otherwise

We similarly define a trapezoidal fuzzy number as a tuple (a, b, c, d) where a < b ≤ c < d
and membership function

µ(x; a, b, c, d) =


x−a
b−a : a ≤ x ≤ b

1 : b ≤ x ≤ c
d−x
d−c : c ≤ x ≤ d

0 : otherwise

We can see that if a trapezoidal number defined as (a, b, c, d) with b = c, then this is also
a triangular number. We see in Figure 1 examples of fuzzy numbers. We can intuitively
think of the fuzzy number on the left as about 2.5 and the fuzzy number on the right as
about 2− 6.

Figure 1: An example of a fuzzy numbers. On the left, we have a triangular fuzzy number;
on the right a trapezoidal number.

4



A fair question to ask is whether its possible to define the basic mathematical operations
(addition, subtraction, multiplication, division) on fuzzy numbers. Given the scope of this
paper, we are only interested in addition on trapezoidal fuzzy numbers, given by

x1 + x2 = (a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2, b1 + b2, c1 + c2, d1 + d2). (1)

We see immediately that given this definition of addition, the set of trapezoidal fuzzy num-
bers is closed under addition.

3 Shortest Path Problem in Graphs with Fuzzy Weights
Now, we extend the shortest path problem to graphs with fuzzy edge weights. Given a
graph G = (V,E,W ) where V is the set of vertices, E is the set of edges, and W is a fuzzy
weight function defined on the edges of G, we wish to determine the shortest path between
two distinct vertices in the graph. Since the edge weights are fuzzy numbers, we must be
clear about what we mean by the shortest path. We define the set P as the set of all paths
from a start vertex s to a terminal vertex t. We define a function l(p) as the length of path
p. Then

sp(s, t) = min
p∈P

l(p)

defines the shortest path. In order to use this definition, we need a method of comparing
fuzzy number. We can do this in several ways.
One method is by defuzzification. Defuzzification is the process of taking a fuzzy and
defining a crisp (non-fuzzy) number. For trapezoidal fuzzy numbers, we define the expected
value as

E(x; a, b, c, d) =
1

4
(a+ b+ c+ d).

This is simply the average of the four control points. We can use the total ordering of the
real numbers as a comparison metric. That is,

x1 < x2 ⇐⇒ E(x1) < E(x2).

For example, if x1 = (1, 2, 3, 4) and x2 = (5, 6, 7, 8) then x1 < x2 ⇐⇒ 2.5 < 6.5, which
is true. Furthermore, we can easily modify Dijkstra’s algorithm by using our comparison
and sum operators. Lines 10 and 21 of Algorithm 1 should use d(x) to defuzzify the dis-
tances before comparison. Line 20 should use the sum method for fuzzy numbers defined
in equation 1.
One major problem with this method is that it does not incorporate the degree of uncertainty
of the fuzzy edge weights being visited. For example, if x1 = (85, 90, 110, 115) and x2 =
(0, 99, 101, 200) both have expected value 100. We present two different approaches to
solving this problem.
Let the uncertainty of a fuzzy number be define as u(x) = d − a. Then, we ask, is there a
path with minimal uncertainty. This is easily solved by setting the weight of each edge as
the uncertainty and using Dijkstra’s algorithm to solve it.
Perhaps we wish to find a path shorter than l with minimal uncertainty. This is an example
of the multi-objective shortest path problem, which is known to run in polynomial time.

5



There are at least two different ways to solve this problem. First, we can modify Dijkstra’s
algorithm to incorporate more than one constraint. Second, we can resort to the standard
LP formulation for the shortest path problem and suitably modifying the objective function.
The interested reader should consult [6] for more information.

4 Stochastic Shortest Path with Recourse
We now turn to the stochastic shortest path problem with recourse. Given a graph G =
(V,A), we define the weights in a stochastic manner. We are given a set of all possible sets
of edge weights called realizations to use the terminology in [4]. An example of such sets
is the following:

r1 r2 r3
e1 1 4 5
e2 8 8 5
e3 7 3 2
e4 3 5 6
e5 1 2 7

Each column represents a separate realization ri ∈ R. Furthermore, each realization is
assigned a probability of being the actual realization, denoted pi. Given an entity starting at
node s, we wish to find the expected shortest path to t. The entity starts at node s and learns
the weights of its neighbors. Using this information, we can eliminate some realizations
that are incompatible with how the entity sees the world. It navigates the world, navigating
nodes and eliminating realizations until there is only one realization, whereby we may
assign the weights given by that realization to the graph and use the shortest path algorithm
from the current vertex to the destination.
We define an information set as a set of realizations that are still possible, given the infor-
mation the entity has acquired so far. We denote this set by I and Il denotes the set of all
information sets with l realizations. Before traversing the graph, we start with I = R. We
let crk(i, j) be the cost of edge (i, j) under realization rk. Now, we define the set

Ad
I = {(i, j) ∈ A | cr1(i, j) = cr2(i, j),∀r1, r2 ∈ I}

which is set of all edges with weights common to all realizations. We defineN c
I (i) as the set

of all information collecting nodes of vertex i given the information set I . An information
collecting node is a node that reduces the size of the set I by giving information that allows
for the elimination of some ri ∈ I .
We now know enough about the problem to give the dynamic programming solution. This
variant of the shortest path problem, called R-SSPPR, was analyzed in depth by George
Polychronopoulos and John Tsitsiklis and more information about the run time analysis
and correctness can be found in [4]. The following algorithm comes directly from [3] and
is present in algorithms 2 and 3. More information about its derivation can be found in
[3, 4].

6



Algorithm 2 Dynamic Programming Algorithm to solve R-SSPPR
1: ∀r ∈ R solve the shortest path problem from s to t
2: for l = 2, . . . , R do
3: for ∀I ∈ Il do
4: for i ∈ N do
5: V (i, I) = min

{
min

j∈NI(i)
{c(i, j) + V (j, I)} , min

j∈N c
I (i)
{c(i, j) + E[V (j, h(j, I))]}

}
6: end for
7: end for
8: end for

Algorithm 3 Solution to the recursive step in Algorithm 2 for a given I
1: V (t, I)← 0
2: V (i, I)←∞
3: i ∈ N − {t}
4: P ← ∅
5: T ← N
6: for i ∈ N = {t} do
7: V (i, I)←∞
8: end for
9: while P 6= N do

10: Find node i∗ with minimum label
11: P ← P ∪ {i∗}
12: T ← T − {i∗}
13: if (i, i∗) ∈ Ad

I then
14: if i ∈ N c

I then
15: if V (i, I) > c(i, i∗) + E[V (i∗, h(i∗, I))] then
16: V (i, I)← c(i, i∗) + E[V (i∗, h(i∗, I))]
17: end if
18: else
19: if V (i, I) > c(i, i∗) + V (i∗, I) then
20: V (i, I)← c(i, i∗) + V (i∗, I)
21: end if
22: end if
23: end if
24: end while

7



5 Conclusion
We have shown two different alternatives to the deterministic shortest path problem, with
applications to GPS path-finding systems. If we can present traffic levels as fuzzy num-
bers, then we can use these weights instead of crisp weights. Since traffic levels are ever
changing, the need for some form of stochastic edge weights is necessary. We can get bet-
ter routes to destinations by incorporating domain knowledge into the problem. With the
R-SSPPR problem, we can define a set of possible edge weights and in doing so requires
the entity to find the shortest path in a graph without knowing which set it is. This is a
much more realistic representation of the problem, where the entity (a vehicle) can observe
the current traffic level, road conditions, or construction zones as it progresses to its desti-
nation. It may have some domain knowledge in the form of edge sets, this corresponding to
knowing what time it is. If the entity knows that taking a certain route is not optimal (rush-
hour, construction zone, etc.), then it can form a new path and continue along it. We can
modify the R-SSPPR problem to incorporate fuzzy edge weights, giving a flexible solution
that allows for optimal path finding under a wide variety of conditions.

References
[1] James J. Buckley and Esfandiar Eslami. An Introduction to Fuzzy Logic and Fuzzy

Sets. 2002.

[2] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1:269–271, 1959.

[3] George H. Polychronopoulos and John N. Tsitsiklis. Stochastic and dynamic shortest
distance problems. DSpace, 1992.

[4] George H. Polychronopoulos and John N. Tsitsiklis. Stochastic shortest path problems
with recourse. Networks, 27:133–143, 1996.

[5] William Siler and James J. Buckley. Fuzzy Expert Systems and Fuzzy Reasoning. Wi-
ley, 2005.

[6] Zbigniew Tarapata. Selected multicriteria shortest path problems: An analysis of com-
plexity, models and adaptation of standard algorithms. Int. J. Appl. Math. Comput. Sci.,
17:269–287, June 2007.

8


