
LandscapeEC: Adding Geographical Structure to
Cellular Evolutionary Algorithms

Lucas Ellgren and Nicholas Freitag McPhee
Division of Science and Mathematics

University of Minnesota, Morris
Morris, MN 562367

ellgr001@morris.umn.edu
mcphee@morris.umn.edu

Abstract

Evolutionary computation is a field of Computer Science in which possible solu-
tions to a problem are represented as individuals and undergo the basic principles of
recombination and mutation to evolve an optimal or near-optimal solution to a prob-
lem. In this paper we introduce LandscapeEC, a new type of evolutionary algorithm
(EA) that introduces the concept of geography to more effectively evolve solutions to
problems.

In cellular EAs, individuals are placed in cells on a grid, and can only reproduce
with nearby individuals. LandscapeEC is a type of cellular EA which uses geography
to add a landscape to the grid. In real-world biology, organisms in different locations
must adapt to different conditions (e.g., higher temperatures, less rainfall) in order
to survive. In LandscapeEC, geography introduces restrictions that individuals must
meet in order to live in each cell. These restrictions are usually sub-problems derived
from the chosen problem. By arranging these restrictions in the landscape, we can
encourage individuals to gradually make their way across various sub-problems of
roughly increasing difficulty of survival, drawing closer to a full solution as they do.

Here we present the results of experiments with several different kinds of geogra-
phy, including flat geography, gradient geography and fractal geography, all applied
to square 2-D grids. Flat geography is essentially the same as traditional cellular EAs;
individuals do not need to meet any restrictions to live. Gradient geography creates
a smooth gradient of cells that gradually increase in difficulty as they move closer
and closer to the center of the grid. Fractal geography is similar to gradient geogra-
phy, but the gradient is generated using fractals with random noise to create a rough,
unsymmetrical landscape.

In this initial study we used 3-SAT as our test problem, as it is an NP-complete
optimization problem which can be easily broken down into sub-problems. Our com-
parison of these different kinds of geography will determine if adding geography to
cellular EAs will increase their effectiveness, efficiency and ability to maintain a di-
verse population.

1



1 Introduction
Evolutionary Computation (EC) is a branch of artificial intelligence that utilizes the basic
principles of biological evolution in order to find optimal or near-optimal solutions to prob-
lems. In regular biological systems, organisms become better suited to their environment
through a gradual process of changes. Such changes usually occur as genes are passed
down from parents to children with minor mutations. If the resulting organism is better
suited to its environment, then it has a greater chance to live on and spread its genes to the
next generation. In EC systems, we represent potential solutions as individuals, and rank
them based on their fitness. Here, fitness refers to how well the individuals solve the chosen
problem. Individuals which have a higher fitness obtain a greater chance of reproducing
and spreading their genes to the rest of the population. Individuals which have lower fitness
may not be able to reproduce, and their potential solutions die off. Through this Darwinian-
like process of survival of the fittest, we hope the system will create high-quality solutions
to the problem at hand.
Reproduction and the passing of genes down through generations is the main engine that
drives Evolutionary Algorithms (EAs). Reproduction can occur in a variety of different
ways, but generally it follows a straight-forward pattern. First, the system determines how
many new individuals must be created for the next generation. Many EAs put a maximum
on the number of individuals that can be created to prevent the population from growing
too much. After the system knows how many individuals to create, it begins selecting
individuals to be the parents for a new individual. How individuals are selected can be
random, or it can be based on the fitness of the individuals. Then parts are taken from the
genes of the parents and combined to make a new set of genes. This operation is called a
crossover operation. Finally, the genes of the new individuals undergo random mutation.
Mutation is a small change in one or more parts of the genes; it is crucial for maintaining
diversity in the population and exploring new potential solutions. After all of this is done,
the new individual is placed in the population and the process repeats again.
Cellular Evolutionary Algorithms (cEAs) are EAs that divide their population into cells
which are then arranged in a variety of ways, like 2D grids, 3D grids or undirected graphs.
Cells in a cEA can contain either one or many individuals depending on the implementa-
tion. The maximum number of individuals a cell can contain is called its carrying capacity.
In cEAs, individuals can only interact with other individuals in their cell or neighboring
cells. Individuals in cEAs interact with each other similar to most EAs, however mate
selection and reproduction can only occur in the neighborhood of an individual’s cell.
For cEAs to work effectively, individuals must be able to move between cells. This can
happen in one of two ways. The first option is to have all children be born in a random
location within the neighborhood of their parents after reproduction occurs. The other
option is to allow individuals to migrate between cells and have their children be born in
the same cell as their parents. cEAs that use the second option are said to have migration
incorporated in their algorithm. Migration occurs randomly, with every individual given a
random chance to move every generation. Usually individuals are only allowed to move to
a cell directly neighboring theirs, but some cEAs allow individuals to migrate to cells 2 or
more spaces away [1].
The advantage of cEAs over EAs is their ability to maintain diversity. Regular EAs have

2



panmictic mating, which means that any individual has the ability to mate with any other
individual. This can lead to an early convergence on a non-optimal solution within the
problem, since individuals with higher-than-average fitness will dominate the population
and potentially useful alternate solutions get crowded out. Cellular EAs instead have only
local mating, which slows the spread of slightly better solutions in the population. This
allows the algorithm to explore a greater variety of possible solutions instead of rapidly
converging on local optima1.

2 Background

2.1 Basic Components of LandscapeEC
The main purpose of LandscapeEC is to model the effect of geography on cellular evolu-
tionary algorithms, however most of its underlying structure is built upon already existing
components of EC systems. The simplified structure for the runs are detailed in Algo-
rithm 1. In this section, we will go over the basic components of LandcapeEC in detail and
describe how they work together to form a functioning evolutionary algorithm.
The most important factor in any EC system is the reproduction of individuals. In Land-
scapeEC, we first calculate the number of individuals needed for the next generation, and
then generate them using three main operations: selection, crossover and mutation. The
algorithm determines how many new individuals each cell need through the Reproduction
Rate parameter. This is a value usually between 1 and 5 that determines how many new in-
dividuals must be made for each existing individual in a cell (cells are explained in further
detail in section 2.2).
When the algorithm needs to create a new individual, it must first select the individuals to
use as parents. In LandscapeEC we use Tournament Selection with a tournament size of
two. This operation grabs two random individuals from the neighborhood of the current
cell and selects the one with the one with the better fitness to be the first parent. The pro-
cess is repeated for the second parent. Next, crossover occurs, using a Uniform Crossover
operation. This process generates a new bitstring by randomly pulling bits from either of

1A local optimum is a potential solution that has a very high fitness, but is not the optimal solution to the
problem [3]. EAs tend to focus on local optima instead of exploring other potential solutions, causing them
to become “stuck”.

Algorithm 1 Pseudocode for the main run loop of LandscapeEC
runGenerations()

Initialize Starting Population and Grid
while Best Fitness < 1.0 AND Function Evaluations Limit Not Reached do

Perform Migration
Perform Draconian Reaper
Perform Elitism
Perform Reproduction

end while

3



the two parents. For every position in the bitstring, a coin is flipped. If it comes up heads,
then the bit from the first parent is put into the new individual at that point, if it comes up
tails, then the bit from the mother is used. Lastly, mutation occurs in the new individual
through Point Mutation. When this happens, each bit is given a random chance of being
flipped - changing from a 0 to a 1 or vice versa. The chance a bit will flip is determined
by the Average Mutations parameter, which specifies how many bits will flip on average
per individual. After all three processes are finished, the individual is placed into the next
generation of the population.
Another useful process that we use in LandscapeEC is Elitism. While not a vital aspect
to the algorithm, this process allows us to make steady progress without losing valuable
individuals. Elitism simply saves a certain percentage of individuals with high fitness levels
within each cell to keep around for the next generation. How many individuals we keep is
dependent on the Elite Proportion parameter in our code. Elite members are still allowed
to participate in reproduction. However, all members of the non-elite will only live on to
the next generation through their children.

2.2 Cellular Components of LandscapeEC
LandcapeEC, being a cellular evolutionary algorithm, also has components typical of cEAs.
It currently supports 2-D worlds (grids) divided into square cells. The dimensions of the
world are specified by the parameter World Dimensions. When we generate the starting
population within the world, we allow them to be placed within cells according our pa-
rameters. If we set the Starting Location parameter to be ‘Origin’, then only the cell at
coordinates (0,0) will be filled with individuals. If Starting Location is ‘Corners’ then each
of the four corner cells of the grid will be filled with individuals, and if Starting Location
is ‘Everywhere’ then every cell within the world will be filled with individuals. Individuals
are generated with completely random bitstrings.
Without migration, individuals would never spread beyond the cells that they start in. In
our algorithm, we perform migration first before any other operation in the current gen-
eration (see Algorithm 1). Every individual is given the same random chance to migrate,
determined by the parameter Migration Probability. Migration Probability is represented as
a value between 0 and 1, with 1.0 being a 100% chance for an individual to migrate and 0.0
being a 0% chance. Migration Distance is the parameter we include to determine how far
individuals are allowed to migrate. This can be any integer greater than or equal to zero, so
for example a value of 2 would allow individuals to migrate to a cell up to 2 spaces away.
Individuals are also allowed to migrate to cells diagonally around them. Unlike other cEAs,
newly created individuals are not placed randomly within the neighborhood of a cell, they
will always be placed in the same cell as their parents.
After migration happens, a specialized operation called Draconian Reaper occurs. This
operation requires Geography within the world in order to have an effect. This operation is
explored in detail in Section 3.1.

4



2.3 The Boolean Satisfiability Problem
The Boolean Satisfiability Problem, also known as SAT, is an NP-Complete, combina-
torial optimization problem [7]. A SAT problem is defined as having a set number of
boolean variables and a set number of clauses which use said variables. For the problem
to be solved, truth values must be assigned to the set of variables or negated variables that
satisfy each clause. For example, suppose that we have SAT problem E and variables
x1, x2, x3, x4. Suppose that E is defined as: (x1 ∨ x2 ∨ x3) ∧ (¬x1 ∨ x3 ∨ ¬x4). In this
example, there are two clauses. Clauses are a set of variables, which can be negated or not,
joined through the ∨ (OR) operator. The same variable is allowed to appear in different
clauses. The first clause, (x1∨x2∨x3) has no negated variables. For this clause to be satis-
fied, only one of the variables needs to be TRUE. In the other clause, (¬x1∨x3∨¬x4), the
variables x1 and x4 are negated, so this clause can be satisfied if either variable is FALSE
or if x3 is TRUE.
Many people working with EAs have used the SAT problem [1, 2] especially 3SAT prob-
lems. 3SAT problems are SAT problems in which clauses have exactly three variables each.
Most EAs that work with SAT represent potential solutions to the problem as a string of
bits. Each bit can be either 1 or 0, corresponding to a TRUE or FALSE value for the vari-
able in the SAT problem. So for a SAT problem with 50 variables, an individual in the EA
would be represented by a string of 50 bits.
For EC systems using SAT, including LandcapeEC, the fitness of an individual is repre-
sented by the number of clauses the individual satisfies, divided by the total clauses in the
problem. Represented mathematically, this function can be shown as follows: F (b) = e

t

where b is an individual’s bitstring, e is the number of clauses it solves and t is the total
number of clauses in the SAT problem. So an individual’s fitness can be any number be-
tween 0 and 1, where 0 is an individual which satisfies no clauses and an individual with a
fitness of 1.0 has found an optimal solution. Note that it is possible for two individuals to
have the same fitness, but satisfy different clauses.

3 Geography

3.1 The Geography Concept
Geography is the main concept behind LandscapeEC. It has been explored previously [4,
6], but it remains a relatively new concept in the field of EC. In most cEAs, individuals are
allowed to live within any cell as long as they can migrate to it. However, when Geography
is applied to a grid, certain cells have requirements added to them. For an individual to
live in a given cell, it must meet the requirements. This parallels well known biological
concepts. In the real world, organisms must adapt to their environments in order to live in
them successfully. For example, a creature suited to a tropical rain forest would have to
change many of its biological features in order to live and thrive within a desert.
How restrictions are applied to cells within the grid of a cEA can vary, but for the SAT
problem used in this study it is relatively simple. A 3SAT problem can easily be broken
into sub-problems by only checking for a particular subset of clauses. When we put a geo-
graphical restriction on a cell, we require that individuals satisfy a certain group of clauses

5



in order to live within the cell (see Section 2.3 for more information on satisfiability). How-
ever, checking to see whether or not an individual meets the requirements of a cell does not
affect its overall fitness. An individual can have a very high fitness but still be unable to
meet the requirements of the cell its in.
The way we enforce the requirement of the cells is through the Draconian Reaper operation.
This operation is aptly named for its zero-tolerance way of dealing with individuals that are
not up to par with a cell’s requirements. When an individual has migrated to a cell and does
not satisfy all of the clauses it requires, the Draconian Reaper simply removes it from the
population altogether. If an individual doesn’t meet the requirements of a cell it’s just
migrated to, it will be reaped and will not get a chance to reproduce within the cell.
The hypothesis is that adding Geography to a cEA will allow it to maintain a higher level
of diversity, and to find the solutions to difficult clauses quicker than most other cEAs. By
adding selection pressure for only certain clauses, we force individuals to solve them in
order to spread to other areas in the grid. Also, by initially separating populations and let-
ting them slowly merge together, interesting combinations between populations that solve
different clauses may occur.

3.2 Types of Geography
There are a multitude of ways to construct geography within a 2D grid, and during the
production of LandscapeEC we explored several different types of geography, eventually
focusing on the two most interesting that we had discovered. We wanted to focus on cre-
ating geography that encouraged individuals to solve difficult clauses while not restricting
their size too much. This meant that the transition from easy cells to hard cells had to be
gradual. We call cells ’easy’ when they do not have many clauses required to live in them,
and ’hard’ when they require a lot of clauses. The two types of geography that we focus on
in this paper are Gradient Geography and Fractal Geography.
Gradient Geography is named for the smooth transition from easy to hard cells it creates.
It features four corner cells which have no clause requirements, and a cell in the center
in which all clauses are required. Between the corners and the center there is a smooth
gradient of cells that go from ’easy’ to ’hard’ (see Figure 1). In order to construct this
geography, we first make a list of all the clauses for the given 3SAT problem. Then, for
each cell, we compute its distance to the center square. This distance is divided by the
maximum distance to get a percentage, which represents what percentage of the clause list
will be required for a given cell. For example, if we have a clause list consisting of clauses
c1, c2, c3 and c4, then a cell which is 50% of the way from the corner and the center will
have c1 and c2 as required clauses.
Fractal Geography is very similar to Gradient Geography in that it has a gradient of cells
going from easy in the corners to hard in the center. However, Fractal Geography is created
recursively, by repeatedly subdividing the grid into subsections and adding random noise.
This is similar to how fractal terrains are created in the world of 3D modeling [5], and gives
the grid a rough texture (see Figure 2). Fractal geography is constructed by first dividing
the grid into four quadrants. In each quadrant, the cell on the outer corner of the world is
given no clause requirements and the cell in the center of the world is given total clause
requirements. The other remaining corners of the quadrants are given half the clauses of

6



Figure 1: An example of Gradient Geography applied to a 20× 20 grid. The darkness
value of each cell represents how many clauses it requires.

Figure 2: An example of Fractal Geography applied to a 20× 20 grid, with a random
noise factor of 5. Notice its rough, unsymmetrical gradient. The darkness value of each

cell represents how many clauses it requires.

Figure 3: A visual representation of the order in which clause requirements are assigned
to cells in a grid for the generation of Fractal Geography. Grey cells represent those which

have been assigned requirements.

7



the maximum, with a few clauses randomly added or removed to create noise. Then each
quadrant is divided into sub-quadrants, and the corner cells within are given half the clause
requirements of the larger quadrant (plus or minus a few clauses). This process of sub-
division and assigning clause requirements repeats until all cells in the world have been
filled. See Figure 3 for a visual representation of this process.

4 Experimental Setup
In this section, we go into detail about the set of parameters we used for our experimental
runs. For our runs, we focused on comparing four different versions of LandscapeEC:
Non-Cellular, No Geography, Gradient Geography and Fractal Geography. Non-cellular
LandscapeEC mimics a simple non-cellular EA, to use as a point of comparison. Its grid
has only 1 cell, and no migration or reaping occurs. No Geography simulates a common
cEA without any geographical features applied. Migration occurs in this set-up, but no
reaping of individuals happens. Gradient Geography and Fractal Geography utilize the
geographical features of LandscapeEC. Both migration and reaping occur in these setups.
We tested each version on five different 3SAT problems. For each combination of version
and problem, we performed 100 runs. Runs end when they exceed the limit on function
evaluations, or when an optimal solution is found. The five different 3SAT problems, and
their relative difficulty, are listed in Table 1. All of these problems were randomly gener-
ated; their difficulty is based merely on how well our algorithm performed on them, and is
not an official standard. Each version of LandscapeEC used the same operators for selec-
tion, crossover and mutation, which are explained further in Section 2.1.
We wanted each version of LandscapeEC to perform at its best, so we attempted to select
parameters that suited each version. The settings for some parameters clearly give an ad-
vantage to one version, but not others. For example, having a Reproduction Rate of 1.0
benefits Non-Cellular and No Geography versions, but weakens the effectiveness of the
Fractal and Gradient Geography versions. This is because versions with Geography must
accommodate for individuals lost through reaping by producing them at a higher rate. The
parameters used for each version are specified in Tables 2, 3 and 4.

File Name # Variables # Clauses Difficulty
uf50-0456.cnf 50 218 Easy
uf75-015.cnf 75 325 Medium
uf75-05.cnf 75 325 Medium-Hard
uf75-090.cnf 75 325 Hard
uf100-0193.cnf 100 430 Medium

Table 1: The set of 3SAT problems used. Difficulty is relative to how well our algorithm
performs on them.

8



Parameter Value
Average Mutations 1
Reproduction Rate 1.0
Carrying Capacity 4000
Elite Proportion 0.1
World Dimensions N/A
Toroidal N/A
Starting Population N/A
Migration Probability N/A
Migration Distance N/A

Table 2: Parameters used for non-cellular LandscapeEC.

Parameter Value
Average Mutations 2
Reproduction Rate 1.0
Carrying Capacity 6
Elite Proportion 0.1
World Dimensions 20× 20
Toroidal False
Starting Population Corners
Migration Probability 0.1
Migration Distance 1

Table 3: Parameters used for cellular LandscapeEC with no geography.

Parameter Value
Average Mutations 1
Reproduction Rate 3.0
Carrying Capacity 10
Elite Proportion 0.2
World Dimensions 20× 20
Toroidal False
Starting Population Corners
Migration Probability 0.1
Migration Distance 1

Table 4: Parameters used for cellular LandscapeEC with gradient geography and fractal
geography.

9



5 Results
In Table 5, we compare the success rates for each version of LandscapeEC. If an EA has
a higher success rate, then it is usually implied that the EA is more effective at finding
solutions. As shown in the table, No Geography had the highest success rate on average for
all problems, followed by Gradient Geography, then Fractal Geography and finally Non-
Cellular. Non-cellular was the only method to fail on a problem for all 100 runs, and No
Geography was the only method to succeed on a problem for all 100 runs. See Figure 4 for
a box-and-whisker plot of the success rates for each version.
We also compare the number of function evaluations used by each version of LandscapeEC,
as seen in Table 6. We only take into account successful runs for these numbers, since
unsuccessful runs always used 10 million evaluations. EAs that use a lower number of
function evaluations tend to find solutions faster, and therefore it is implied that they are
more efficient. As shown in the table, Gradient Geography tends to use the most function
evaluations, followed by Fractal Geography, followed by No Geography and finally Non
Cellular. See Figure 5 for a box-and-whisker plot of the evaluations used for each version.

Problem File Non-Cellular No Geography Gradient Fractal
uf50-0456.cnf 1% 100% 83% 92%
uf75-015.cnf 0% 73% 60% 44%
uf75-05.cnf 0% 45% 40% 20%
uf75-090.cnf 0% 20% 22% 13%
uf100-0193.cnf 55% 76% 69% 58%
Average Overall 19.6% 62.8% 54.8% 45.4%

Table 5: Success Rate comparison for the different versions

Problem File Non-Cellular No Geography Gradient Fractal
uf50-0456.cnf 4,141,000 126,600 68,200 127,200
uf75-015.cnf N/A 792,400 978,700 1,632,000
uf75-05.cnf N/A 716,900 1,187,000 1,724,000
uf75-090.cnf N/A 450,900 538,500 675,500
uf100-0193.cnf 220,100 755,900 1,933,000 1,646,000
Median Overall 442,100 499,700 718,400 618,600

Table 6: A comparison of median function evaluations used. Only runs that resulted in
successes were used in these statistics.

6 Conclusions
From our results, we see that No Geography was more successful overall at finding an
optimal solution than both types of Geography. This implies that Geography, when ap-
plied to cEAs does not make them more effective. However, looking at the the number of

10



Fractal Locality Manhattan No_locality

0
20

40
60

80
10

0

Success rate vs. method

Method

S
uc

ce
ss

es
 (

ou
t o

f 1
00

)

Figure 4: A box-and-whisker plot of success rates for each version.

Fractal Geography Gradient Geography No Geography Non Cellular

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06
5e

+
06

Number of Fitness Evaluations Used vs. Method

Method

N
um

be
r 

of
 F

itn
es

s 
E

va
lu

at
io

ns
 U

se
d

Figure 5: A box-and-whisker plot of function evaluations used for each version. Only runs
that resulted in successes were used in these statistics.

11



evaluations used by both types of Geography revels an interesting trend. Both Gradient
Geography and Fractal Geography tend to use use more evaluations when they succeed,
which means that they tend to find solutions later in the runs. When No Geography and
Non-Cellular succeed, they tend to do so fairly quickly, using less function evaluations.
Gradient Geography in particular had one quarter of its runs finish later than the runs for
No Geography (see Figure 5). Usually, EAs tend to either find the solution fairly early in a
run or not at all; only rarely do they find solutions late in the run. This implies that the runs
with geography had a greater amount of diversity in their populations, since a high level of
diversity increases the chance of finding solutions later than average.
There is always a margin of error when dealing with EAs, and these experiments are no
exception. The parameters we used for the different versions of LandscapeEC may not
have been the most optimal for our runs. The problems we selected for our runs may have
been too easy to adequately test the performance of cEAs with geography. There is also the
chance that the runs were a fluke and that No Geography doesn’t actually have a higher rate
of success than Gradient or Fractal Geography. However, the results do show evidence to
support the theory that Geography is able to maintain diversity better than No Geography.
Additional work using Geography on problems other than SAT may potentially yield more
interesting results. There is also the chance that cEAs with geography will perform more
effectively on problems where most regular cEAs fail. We hope to further explore the
effects of geography in future research.

References
[1] ALBA, E., ALFONSO, H., AND DORRONSORO, B. Advanced models of cellular

genetic algorithms evaluated on sat. In Proceedings of the 2005 conference on Ge-
netic and evolutionary computation (New York, NY, USA, 2005), GECCO ’05, ACM,
pp. 1123–1130.

[2] GOTTLIEB, J., MARCHIORI, E., AND ROSSI, C. Evolutionary algorithms for the
satisfiability problem. Evol. Comput. 10 (March 2002), 35–50.

[3] JOHNSON, D. S., PAPADIMTRIOU, C. H., AND YANNAKAKIS, M. How easy is local
search? J. Comput. Syst. Sci. 37, 1 (Aug. 1988), 79–100.

[4] KORTH, A., HUTCHINSON, T., AND MCPHEE, N. On the impact of geography and
local mating in evolutionary computation. In Proceedings of Midwest Instruction and
Computing Symposium (2007), MICS ’07, pp. 1–14.

[5] MARTZ, P. Generating random fractal terrain, 1996.

[6] SPECTOR, L., AND KLEIN, J. Trivial geography in genetic programming. In Genetic
Programming Theory and Practice III, T. Yu, R. L. Riolo, and B. Worzel, Eds., vol. 9
of Genetic Programming. Springer, Ann Arbor, 12-14 May 2005, ch. 8, pp. 109–123.

[7] TOVEY, C. A. A simplified np-complete satisfiability problem. Discrete Applied Math-
ematics 8, 1 (1984), 85 – 89.

12


