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Abstract 

The World Wide Web Instructional Committee (WWWIC) at North Dakota State 

University has been using Autodesk Maya to develop a high-definition, stereoscopic, 

animated short film for educational purposes.  The film will run twelve minutes and 

contain over 36,000 frames.  Each frame is a high definition PNG image of varying 

complexity, rendered from a model containing hundreds of textures and 750,000 

polygons. To further complicate the situation, this film is in production; segments under 

review will need to be rendered multiple times. 

To tackle this problem a 33 node Beowulf cluster was constructed, using older, retired 

hardware.  To this was added a student lab of 21 multiple core Linux workstations, 

donating idle CPU cycles to render frames.  In addition, our university‟s Center for High 

Performance Computing was employed, adding a portion of the 96 multiple core nodes.  

The challenge became developing a strategy to most effectively coordinate these 

heterogeneous nodes towards an organized rendering of the animation. 
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1 Introduction 

Distributed systems can be used to solve complex problems, but they are in turn complex 

to build and to manage. When a distributed system is composed of disparate and 

heterogeneous computing units, it creates additional issues of control and optimization.  

This paper is comprised of three related themes. First is the story of assembling and 

constructing an ad hoc Beowulf network from a handful of cast-off work-stations and its 

aggregation to an assemblage numbering well over 100 units. Second we describe a load 

balancing algorithm that seeks to fully employ all processors, the fast with the slow, in an 

effort to complete distributed computations as quickly as possible. Third we describe an 

intelligent strategy to further optimize routing and scheduling in those cases where a 

model of input complexity can be constructed through multiple trials.  

2 Background 

The World Wide Web Instructional Committee (WWWIC) at North Dakota State 

University (NDSU) is an ad hoc committee of faculty, staff, and students working to 

advance education through the use of Immersive Virtual Environments (IVE; Slator et al. 

2006).   

As part of this overarching goal, WWWIC is developing a twelve minute, high definition, 

stereoscopic short film depicting a Native American village called On-A-Slant.  We have 

been using Maya 3D animation software for this project and, once completed, the models 

will consist of hundreds of textures and over 750,000 polygons.  The final animation will 

consist of over 36,000 individual frames. 

Rendering is the process by which the software takes the model and associated texture 

files and creates an image, usually representing a frame of the animation (Alias 2005).  

The resulting image will be based on the shading, lighting, and camera currently set in 

the animation.  These attributes can be changed depending on the quality of the render 

job desired.  For example, ray tracing, which is used to calculate the reflections in the 

river in the model, can be disabled, substantially decreasing the time required to render 

the animation.  Thus, there are many parameters that can be changed depending on the 

quality of render, whether it is production quality or simply for internal use and 

commentary. 

To create a full animation, one can imagine a camera moving through a model where a 

picture is taken every 30
th

 of a second.  The individual frames are collected and encoded 

into a movie file.  For a stereoscopic animation, a second camera is created representing 

the second eye, and the process is similar to create an animation.   
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There are two items to note.  First, rendering these 36,000 frames in a reasonable amount 

of time is not feasible using one workstation.  Even on the fastest machine available 

within our lab, a single production-quality frame can take up to fifteen minutes to render.  

Very few frames take a minute or less.  For reference, we estimate that the first 5000 

frames of the film, using the fastest machine of which we have access and a low quality 

render would take over twelve days.  A high quality render takes four times as long. 

Secondly, the animation is currently in development; sections of the movie will be 

rendered repeatedly as changes are made.  To date, each segment of the movie has been 

rendered multiple times, in some cases, dozens of times. Summing these processing times 

over the last six months results in a total exceeding six years of „render time‟. 

3 Deep Background 

In the epic poem, when Beowulf leads his men to Denmark he meets King Hrothgar, who 

is described as “old and good.” When Beowulf defeats Grendel, Hrothgar rewards 

Beowulf and his men with great treasures. Hrothgar loves Beowulf like a son, and in turn, 

Beowulf serves under the rule of Hrothgar during his greatest adventure (Wikipedia 

2011).  

Thus it is written, and so it became Hrothgar that first controlled the ad hoc Beowulf 

cluster, and later the CS department lab machines, and lastly the High Performance 

Center Beowulf cluster. See http://hrothgar.cs.ndsu.nodak.edu/ and especially 

http://hrothgar.cs.ndsu.nodak.edu/maya/ for more information about the current rendering 

project. 

4 Implementation 

To help manage the large scale of the rendering problem, WWWIC began by building a 

Beowulf Cluster.  By utilizing cast-off machines being replaced by other departments on 

campus, the cluster has grown to 33 Pentium 4 workstations of varying processing power.  

These workstations are a no-cost means of expanding WWWIC rendering capabilities.  In 

addition to the WWWIC Beowulf Cluster, the NDSU Computer Science department 

operates a small Linux student lab.  This lab consists of 21 workstations, some with Core 

2 Duo processors, some Intel Quad Core processors, and some with an Intel i7 processor.  

By utilizing the Unix „nice‟ command, these machines can donate idle CPU cycles to 

rendering frames of the animation while still giving priority to student users working on 

their projects.  In practice, student use of this lab is relatively sporadic and there are long 

stretches, especially in the early hours of the morning, when these machines are wholly 

available for rendering. 

In addition to the ad hoc WWWIC Beowulf cluster and the department student lab, the 

NDSU Center for Computationally Assisted Science and Technology (CCAST, formerly 
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known as the Center for High Performance Computing) has a high performance Beowulf 

computing cluster.  This 96 node cluster is a shared resource between other entities on 

campus; at most times only a portion of the nodes is available for WWWIC to render 

frames of the animation. 

Taken together, WWWIC now has (at peak capacity) up to 150 nodes of varying 

hardware and architectures at its disposal to render frames of the animation.  This 

“heterogeneous distributed Beowulf Network” substantially reduces the time required to 

render collections of animation frames.  However, since this distributed system is 

composed of disparate and heterogeneous computing units, and the underlying cluster can 

change based on usage and availability of the nodes, it creates additional issues of control 

and optimization. 

To optimize overall system performance, two key factors are taken into consideration.  

Using performance data gathered from each node, combined with information acquired 

from rendering frames once through the development process, we have designed and 

developed an intelligent frame dispatching system and load balancing algorithm.  The 

aim is to assign frames to nodes for rendering such that total combined render time is 

completely minimized. 

4.1 Job Distribution 

How are frame rendering jobs distributed to the cluster in an optimized way?  For the 

purposes of this paper, an optimized job distribution would result in every node finishing 

its allocation of frames at exactly the same time.  In other words, a situation where one 

node has completed all of its frames while another node has five frames left to render 

would be non-optimal.   

One simple solution would be to distribute the frames equally to all the nodes.  However, 

the nodes in the system do not have equivalent capabilities.  A single frame on an Intel 

Pentium 4 processor may require seven times longer to render than on an Intel i7.  Our 

cluster is made up of heterogeneous nodes, thus the capability of each node must be taken 

into account when dividing the animation into parts to be rendered. 

In addition to the fact that the nodes are not equivalent, individual frames are of much 

different complexity.  Assuming the hardware is held constant, we have determined the 

most complex scenes take eight times longer to render than the simplest ones.  This is 

intuitively explained in terms of modeling constraints.  Some frames in a sequence may 

consist of a single polygon surface (the sky).  This is the simplest of frames, and within 

the scope of this animation the quickest to render.  Other frames may consist of 

complicated ray tracing calculations to create reflections on a river‟s surface, or an avatar 

animated and performing some action or task, or using advanced features, such as Maya 

Dynamics ® to simulate grass moving in the wind, or fire and smoke, or any combination 

of these which serve to increase the time required to render the frame in question.   
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We have collected statistical data for the difficulty of frames in our animation.  Figure 1 

shows the render time required for a particular batch of frames rendered on machines 

with identical hardware with ray tracing disabled.  The changes in the time required to 

render are distinct and follow a pattern.  Frames 0 to frame 150 have Maya Dynamics ® 

to simulate grass, and the time required to render immediate after frame 150 decreases as 

the grass moves out of frame.  Table 1 shows three individual frames and describes the 

complications in each. 

 

Figure 1:  The changes in render time are clearly apparent depending on the section of the 

animation being rendered.  This is the basis for determining frame complexity. 
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Frame Description 

 

Frame 00001:  The grass 

in the foreground uses 

Maya Dynamics ® to 

simulate wind.  Also 

note the large area of the 

river; this entire area 

requires complex ray 

tracing calculations to 

create the reflections.  

This frame is of a 

„medium‟ complexity. 

 

Frame 03450:  This 

frame contains a large 

number of polygons for 

the trees and the garden, 

and also contains a long 

view of the water in the 

distance.  This frame is 

of a „high‟ complexity. 

 

Frame 04000:  This 

frame does not contain 

any ray tracing 

reflections, nor are there 

many polygons in view.  

This frame is of a „low‟ 

complexity; one of the 

simplest in the movie 

and the „easiest‟ to 

render. 

Table 1:  A sampling of the wide and varying complexity of individual frames in the 

animation. 
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4.2 Optimization Issues 

The initial job distribution system created to solve this problem resembled a queue.  

Hrothgar, the head node of the cluster contains a database maintaining the state of the 

nodes.  Each node has a state defined in this database -- the two main states are rendering 

and waiting.  Hrothgar also maintains a list of frames that need to be rendered.  At first 

launch, the head node queries the database and finds the list of nodes that are in a state of 

waiting and dispatches each of these nodes a frame to render.  On receiving a job, a node 

updates its state to rendering; once it finishes rendering, the node parses its log file and 

updates the information about the particular frame in the job database (this includes 

information about the number of seconds required to render, memory usage, page faults; 

essentially all of the information provided by the Maya log file is parsed).  After it the 

node has completed parsing the log, it updates the job database to show that the frame is 

complete and ready to be copied to Hrothgar.  It also updates its machine state to be 

waiting for another frame.  Hrothgar constantly polls the database looking for waiting 

nodes and dispatches to them the next frame (sequentially ascending by frame number) 

until all of the frames have been dispatched.   

In addition to the dispatching daemon that runs on Hrothgar, a retrieving daemon also 

executes.  This daemon is responsible for looking for frames that are complete but not yet 

copied to Hrothgar in the jobs database.  The retrieving daemon copies the image file and 

the Maya log file from the node and other associated cleanup work.  Ultimately we can 

see the progress of the rendering job as frames are finished through an associated web 

page.   

When Hrothgar had direct access to nodes through the network (this being the Beowulf 

nodes and the CS department Linux lab), Hrothgar could simply issue a command to the 

node and it would render.  A complication arises when Hrothgar must issue a command 

to a node on a different private network, as is the case with NDSU‟s CHPC.  Just like the 

Hrothgar Beowulf Cluster, the CHPC has a single head node that is publicly accessible, 

and nodes that exist solely on a private network; thus not directly accessible by Hrothgar.  

The solution is rather simple:  Hrothgar issues a command to the CHPC head node 

identical to the commands sent to any other node.  However, instead of rendering, the 

CHPC head node interprets the command and passes it on to one of the CHPC worker 

nodes.  The worker node does the rendering, and once complete alerts the CHPC head 

node, which then alerts Hrothgar that the frame is complete, just like any other node.  

Therefore the CHPC head node acts as an intermediary bridging the two clusters together.  

This also implies that such a configuration would work between Hrothgar and any other 

cluster, given one publicly accessible member; ultimately meaning Hrothgar could easily 

expand to add additional resources should they become available, whether it would be 

individual nodes or whole clusters. 

This queue system served its purpose well for many months; however, it possesses two 

key inefficiencies we wish to overcome.  First, the system treats each node identically, 

without recognizing differences in processing speeds.  For example, assume there are two 

frames left in the queue.  The Hrothgar Beowulf nodes render around 15% of all the 

frames in a batch, therefore there is a 15% chance that these render jobs will be 
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dispatched to a „slow‟ Beowulf node, even if a faster node is about to become available.  

Given a fast node renders in 15 minutes, and a slow node renders in 60 minutes, it would 

be advantageous for the system to wait for a fast node to finish its current job and then 

allocate it the frames instead of immediately allocating frame to the slower node.   

The second flaw is based in the operation of the Maya rendering software.  Like many 

such systems, when rendering, Maya allows for a starting frame, an ending frame, and a 

„step‟ (a step of three would render every third frame).  In the queue system, each job 

consists of one frame, so each render job would be one frame at a time.  Thus, Maya 

needs to load into memory, load the model, render, and then clean up and end the process 

after every single frame rendered.  Though metrics about this entire process cannot be 

generated, Maya does log the time required to load the necessary model.  On average, this 

takes 30 seconds for every frame rendered in the current queue system.  This would then 

be an underestimate of the cost of rendering one frame with each dispatched job. 

For the purposes of rendering the full animation of 36,000 frames, these small process 

management steps add up to significant overhead.  The Maya system recognizes the issue 

and provides a solution:  instead of having a single frame be a render job, one can set a 

render job to be a sequence of frames.  This effectively reduces the process management 

overhead issues, however it introduces a risk that a slower node might get the final job of 

a sequence of frames; trading one inefficiency for another. 

The difference in render times is only a few days when dealing with the short animation 

of 10-12 minutes we describe here. However the problem grows in severity and 

importance in direct proportion to the length and complexity of the rendering job.  

5 Experimental Methods 

5.1 Hrothgar 2.0 

An ideal rendering system would result in Hrothgar, the head node, distributing all of the 

frames such that each node would receive an appropriate range of frames to render and 

all of the nodes would finish at exactly the same time.  The problem is that all the nodes 

have different capabilities, and all the frames have different complexities.  To move 

forward, we make two assumptions. 

5.2 Node Ability 

The first assumption is that the machine rendering abilities are consistent per machine.  

Given that node “A” can render frame #1000 in 700 seconds once, node A will 

consistently render frame #1000 in 700 seconds (within a small and acceptable variation)  

If the time it takes Maya to render a single frame is inconsistent, it may be difficult to 

distribute the jobs evenly to all of the machines. 
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To examine this assumption, an experiment was constructed.  The experimental question 

is:  what is the difference in the time required for Maya to render a representative frame, 

say frame #1000, between the different groups of nodes?   

To gather the necessary data, each node was instructed to repeatedly render frame #1000 

with ray tracing enabled; a production quality render.  A second experiment was 

performed with ray tracing disabled. 

Overall, we find that the time it takes for Maya to render a frame on a node is consistent 

(usually within ten or twenty seconds).  This of course is to be expected, since no 

parameters are changing.  The node hardware is not changing, nor is the model or the 

frame to be rendered.   

The test did yield two interesting results.  First, we find that in terms of consistency, 

frames with ray tracing are less consistent than frames without ray tracing.  Most of the 

frames rendered without ray tracing finished within a few seconds of the average, while 

frames with ray tracing enabled finished within ten to twenty seconds.  However, when a 

frame can take anywhere from fifteen minutes to an hour to render depending on the 

hardware, twenty seconds should not affect our overall goal of calculating an optimal 

distribution of frames.  

The second fact we found was that Maya performs inconsistently when memory is 

insufficient.  Some of the Beowulf machines have less than 256 MB of memory, in these 

particular cases Maya rendering times were erratic.  However, machines with 256 MB of 

memory or more performed consistently. 

5.3 Frame Complexity 

The second assumption is that given an identical frame, all of the nodes perform 

consistently relative to each other.  For example, if node A can render frame X three 

times faster than node B, is it safe to assume that node A can render the much simpler 

frame Y three times faster than node B? And is it the case, in fact, that node A can render 

any frame three times faster than node B, given that the frame number is consistent 

between the two.  If this is true, it means we can create a representative model of the 

complexity for each frame through the entire animation, and use that information to 

schedule rendering jobs. 

This might be intuitive, however remember that Maya is a black box; we cannot make 

confident assertions about how it may perform.  Variables such as available memory, 

processor speed, and available processors could affect the speed at which Maya will 

render a frame in ways that are not obvious or predictable. 

The experimental question is this:  does the relative amount of time required to render 

frames of different complexity remain constant if the underlying hardware is different.  

So, we took four groups of machines with different processor and memory attributes and 
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instructed them to render a representative sample of frames from the animation, with the 

intention of capturing the different aspects of rendering:  Maya Dynamics, ray tracing 

reflections on the water, Maya animation, simple polygons, and so forth.  These frames 

were specifically frames 5, 720, 1000, 2900, and 3750.  All the machines rendered the 

frames repeatedly to generate a large data set.  The experiment involved production 

quality frames. 

The results are promising.  In particular, on one of the CHPC nodes, frame five takes 

1.587 times longer than frame 1000.  When rendered on a node with a Core 2 Duo 

processor, frame five takes 1.61 times longer than frame 1000.  This difference is quite 

small, and implies that the frame complexity is independent of the underlying hardware 

used to render it.  Therefore, we should be able to make assumptions about how complex 

a frame is, and include that information in our calculations for an optimal render dispatch. 

Given that the two previous experiments showed our two key assumptions are correct, we 

can create an intelligent job dispatching algorithm. 

5.4 Additional Remarks 

We will be rendering segments of this animation repeatedly as changes are made to the 

model.  This poses the question:  If the animation is being changed, will the information 

gathered about the time it takes to compute a frame become unreliable?  Ultimately it 

depends on what the changes are.  For example, a batch was rendered where the number 

of trees in the background was increased.  Other batches are created where we move 

polygons within the model around to different places.  Many of these changes, while 

visually creating a different animation, have very little effect on the time it takes to render 

the frames.  Other changes, such as increasing the time the camera is focused on a body 

of water (because water requires ray tracing for the reflections, which is CPU intensive) 

will alter the time it takes to render substantially.  This is important because the data on 

frame complexity is generated from previous renders.  If a change occurs between 

batches that substantially changes the animation, our assumptions about frame 

complexity are no longer valid and we would need to generate a new set of data to base 

future batches from.  However, since most changes don‟t substantially change the 

animation, it is not a concern. 

6 Dispatching Algorithm 

For this job dispatching algorithm, we use a rate equation to calculate the optimum 

distribution.  The key insight is that we need to abstract away the concept of a frame, and 

instead dispatch frames to the node based on the combined „frame complexity‟ (or render 

units, RU, as we call them through the rest of the paper) of the dispatched frames.  Given 

that frame 1000 is one RU, if frame X takes three times as long to render, frame X would 
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be three RU.  Thus, a RU is a ratio between frames.  Based on the previous two 

experiments, we can make this abstraction. 

We can add up the total render units to determine the total amount of work that needs to 

be completed.  We also know how long each node takes to render one RU.  These two 

numbers can tell us what portion of the total RU each node should render, and the time 

required to complete the rendering of the frames.  The equation is below. 

 

Since we know the number of seconds required for one RU from each node, and we 

know the total number of render units in a set of frames, we can solve this equation for t, 

the time required to render the whole batch.  Once we know t, we can also then find the 

number of render units to allocate each node. 

Note, however, that this creates an imperfect solution.  Eventually, RUs need to be 

translated back into a set of consecutive frames that are allocated to each machine.  Since 

frames cannot be broken down into portions of a frame, we cannot reach the resolution 

required for a perfect allocation.  Each node could be allocated a number of frames that is 

less than their RU rating, however this would result in extra frames remaining at the end 

to be rendered.  Or every node could do one frame above their RU rating, however this 

would result in the final node being allocated less frames to render, thus it would be 

substantially below its total RU allocation.  And, in addition to all of this, trying to find 

an optimum positioning of each node within the set of consecutive frames is a packing 

problem, which we have determined to be np-complete.  However, such inefficiency 

would result in some of the nodes doing one extra frame beyond their allocation of RU.  

If it is optimized in such a way that the best nodes were chosen for this inefficiency, we 

would be adding minutes to a render job that lasts days; this is acceptable. 

7 Conclusion 

The main point to take away from this research is that using distributed job dispatching 

based on node ability and task complexity, while working well for an active rendering 

environment, can also be utilized in any sort of distributed system where information is 

known about the complexity of each task, and there is a measurable cost for the number 

of jobs dispatched.  It works well for Maya rendering because we can make assumptions 

about the complexity of each frame based on previous renders.  Such a model also works 

well for Maya because there is a cost for having many jobs of a small size.  Where the 

original queue model created 5000 jobs for a five thousand frame batch, the new model 

creates only one job per node; in this case decreasing inefficiency that occurs through 

process management.  Assuming 150 available nodes, Maya would be spawned only 150 

times.  With the queue system, Maya would be spawned 5000 times. 



11 

 

8 Acknowledgements 

The authors wish to thank Otto Borchert, Guy Hokanson, and Brad Vender for their 

helpful comments on this paper. The research described in this paper was supported in 

part by National Science Foundation Grant #IIP-0945807 

References 

Alias (2005), Getting Started with Maya 6.5.. 

Slator, Brian M., Richard Beckwith, Lisa Brandt, Harold Chaput, Jeffrey T. Clark, Lisa 

M. Daniels, Curt Hill, Phil McClean, John Opgrande, Bernhardt Saini-Eidukat, 

Donald P. Schwert, Bradley Vender, Alan R. White. (2006). Electric Worlds in 

the Classroom: Teaching and Learning with Role-Based Computer Games. New 

York: Teachers College Press. Columbia University. 192 pages. 

Wikipedia (2011) Hroðgar, Wikipedia [Online].  Available:  

http://en.wikipedia.org/wiki/Hroðgar Accessed 15March11. 

http://en.wikipedia.org/wiki/Hroðgar

