
Lock-Free Algorithms for Thread
Safe Programming

Patrick Garrity ‘12 – St. Olaf College – garrity@stolaf.edu

ABSTRACT

An object is lock-free if it guarantees that in a system where
multiple threads are manipulating the object, some thread
will complete its operation on the object in a finite number
of steps, no matter what happens to other threads. More
practically, lock-free programming is a technique to achieve
thread safety without the use of locks, which are the current
standard. Lock-free objects (LFOs) have a number of useful
properties that make them more broadly useful than locked
objects, and also tend to perform well under high contention
(being accessed by many threads at once). Though lock-free
objects are not very common in practice, there is an
opportunity for this to change. Lock-free algorithms (LFAs)
are notoriously difficult to design and prove correct, and
implementing them presents a number of technical
challenges, but over the course of around ten years several
commonly used data structures have been developed. This
paper approaches lock-free objects from a practical
standpoint. It addresses their features and problems, along
with specific implementation issues. This paper also
summarizes a large set of useful lock-free algorithms that
would be broadly useful. Finally, it reports on the author’s
efforts to implement a collection of lock-free data structures
(LFDS) for general use.

1. Introduction

Researchers have developed lock-free algorithms since
before the nineties, though many of the practically useful
algorithms were not published until the past decade. The
rise of multi-core computers and promise of highly
concurrent systems provided a market for efficient
concurrent algorithms. LFAs are particularly desirable in
this market as they tend to perform very well under high
contention.

Specifically, most lock-free research has gone toward
designing algorithms for scalable lock-free data structures,
which offer a number of useful properties in the context of
concurrent access. By definition, LFDS are immune to
deadlock and livelock, which is useful to any developer [12].
Additionally, they maintain this property in the event of
arbitrary thread failure – any number of threads may be
killed, and an LFDS will remain functional [12]. LFDS are
also tolerant of priority inversion, as there is no way for
them to ‘lose’ anything (a lock) in a low-priority thread [12].
Similarly, they are tolerant of thread preemption. In all of
these situations, data structures based on locks may suffer
or cease to function. Finally, LFDS have asynchronous signal
safety, which allows them to be used in signal handlers
safely [12]. Locks are generally unsafe to use in signal
handlers due to the situation where a handler and a thread
are in deadlock. This further prevents many
implementations of malloc and free from use in signal
handlers, as they are lock-based.

2. Problems and Solutions

Despite the impressive features of LFDS, they suffer from a
number of problems that have prevented them from gaining
a strong mainstream presence. The first of these is that LFDS
are difficult to design and prove correct. Furthermore,
implementing an algorithm is difficult as well, and presents
a number of technical challenges and system dependency
issues, some of which are addressed in section 4. Beyond
this, there are three major problems that affect LFDS: the
ABA problem, non-decreasing memory use, and memory
allocation. At the time of writing, solutions exist for all of
these problems.

The ABA problem occurs when a process that has read some
shared memory value A is preempted by another process.
The second process changes the shared memory value A to
B, and then back to A again before the first process
continues. Once the first process resumes execution, it does
not notice that A has changed, and so acts as though this
were true. This causes problems when a lock-free object
deletes some value in one thread, then another thread
allocates a new value at the same location. In this case, the
first thread would have a pointer that has not changed, but
the value being pointed at changed. Solutions to the ABA
problem include tagging, and garbage collection or similar
processes. Tagging involves using spare pointer bits to count
the number of times a pointer has been modified or used
[11]. This tentatively solves the ABA problem, but a counter
may wrap around to the same value the old pointer held. A
more full-proof solution to the ABA problem is to use
garbage collection or a similar strategy for memory
management [11]. Rather than being the goal of memory
management, the ABA problem is usually solved as a side
effect. Since garbage collection does not exist on all systems,
another solution is required for languages such as C.

This leads directly into the issue of non-decreasing memory
use of LFDS. This is caused by an inability to physically
delete any data from an LFDS. Data may be logically
disconnected, but there is no way to determine whether or
not another thread is accessing the removed data. Physically
deleting this data could lead to segmentation faults. The
result is that LFDS will continue to consume memory until
none is left, even if data is removed from them.

Garbage collection solves this problem, but is not generally
available. One of the best-known solutions to this problem is
an algorithm called Hazard Pointers, developed by Michael
[10,11]. This algorithm relies on a global list of pointers to
data that all threads may access. When a thread acquires a
pointer that must point to valid data, this pointer is placed in
the global list. Each thread also maintains a list of pointers to
data it wishes to physically delete. Once this local list
reaches a certain threshold size, every pointer that is not
also a member of the global list is destroyed [11]. This
manual form of garbage collection effectively solves the
memory-use problem, and as a side-effect also prevents the
ABA problem [11].

The memory allocation problem stems from the fact that
most implementations of malloc (or other memory
allocators) are not lock-free. Therefore, LFDS that use these
allocators are not completely lock-free. This problem
requires an implementation of a lock-free allocator,
algorithms for which do exist [12]. There is debate as to
whether these algorithms perform well or comparably to
non-lock-free implementations.

Finally, it should also be mentioned that there are
performance issues associated with lock-free programming.
The atomic operations used may be expensive relative to
locks, may have memory barriers, and using too many can
lead to an overall slowdown. Care needs to be put into
algorithm design to minimize or eliminate these calls when
possible. This slowdown is also architecture-dependent, as
different core/cache setups may produce different
performance. Other problems aside, producing a lock-free
algorithm that performs well requires additional insight.

3. Overview of Algorithms

Over the past twenty years, lock-free algorithms have
undergone significant work. This paper examines this
progress in the context of LFDS which have a wide range of
applications and are commonly useful in concurrent code.

3.1 Stacks and Queues

Various stack algorithms currently exist, and the stack is
arguably the simplest LFDS to design and implement. One of
the oldest lock-free stack algorithms was created through
IBM research based on a traditional stack implementation.
This style of implementation has survived through time and
serves as a starting point in lock-free stack design. Michael
has also designed a similar stack to which he applied hazard
pointers, making it one of the first LFDS to support memory
reclamation. However, both of these stack algorithms suffer
due to the single point of access that is the top of the stack.
Since LFDS are designed to be used in highly concurrent
situations, these stacks may become bottlenecks. Recently,
researchers designed more scalable algorithms that attempt
to manage contention for the top of the stack. One of these,
presented by Hendler, Shavit, and Yerushalmi keeps track of
which stack operation (push, pop, top) each thread is
performing and streamlines the calls internally [2]. The
author of this paper also implemented a stack
independently, though it is equivalent to that presented by
Michael.

Queues are slightly more complicated to implement, but can
still take advantage of having a limited number of access
points. One algorithm, designed by Michael and Scott,
originated in 1996 and has been implemented by the author
of this paper [8]. At one point the Intel Threading Building
Blocks package experimented with using a lock-free
algorithm for their concurrent queue class. However, tests
showed that the atomic CAS operation cost them too heavily
in performance [16].

3.2 Lists, Skip Lists, and Hash Tables

The (singly) linked list algorithm is significantly more
complex than that of the stack or queue, due to the
possibility of arbitrary insertions and removals. This class of
LFDS has been heavily studied, though not all of the
proposed designs are feasible. For instance, some linked list
algorithms are based on DCAS (double compare and swap),
which is generally not available. One practical linked list
algorithm was presented by Fomitchev and Ruppert in 2004,
and relies on CAS combined with the use of two flag bits
[13]. The original solution is based on a list of ordered keys
(which store the list values) but was reworked and
generalized by the author of this paper [13]. This
generalization supports any type of data, does not pay
attention to order, and removes the reliance on keys – the
list only stores values.

An extension of the linked list is the skip list. Skip lists are
ordered linked lists where each node is assigned a random
height, and this height can be used to skip nodes while
searching. Skip lists perform in amortized time O(log(N)),
making them useful in structures such as dictionaries. In the
lock-free field, skip lists have been used in place of binary
search trees due to good BST algorithms not existing until
very recently (2010). Fomitchev and Ruppert presented a
skip list algorithm in 2004 alongside their linked list
algorithm [13]. Additionally, Fraser, Sundell, and Tsigas
have worked to develop lock-free skip list algorithms.

These are directly relevant to hash tables, which rely on sets
to provide buckets. So far hash tables have been
implemented using list-based sets (skip lists) though it may
now be possible to use binary search trees to create hash
tables. In 2002, Michael presented a lock-free hash table
algorithm dependent on the list-based set presented in [8].

3.3 Binary Search Trees and Deques
A good binary search tree algorithm is one of the most
recent contributions to the lock-free field. In 2010, Ellen,
Ruppert, Fatourou and van Breugel presented a leaf-based
tree that implements a dictionary (each leaf is a key-value
pair) [5]. Other similar algorithms have been developed (as
mentioned in the previous section) but do not utilize trees
as their primary structure. For example, Sundell and Tsigas
produced a lock-free dictionary in [6] that instead relies on a
skip list. Finally, significant work has been applied to
development of deques, circular lists, and related data
structures. A prime example of this effort is presented by
Chase and Lev in [3].

4. Implementation Details

Lock-free algorithms generally rely on a special processor
instruction called compare and swap or CAS. This operation
is the common point of many implementations, and must be
understood in order to work in the current field of LFAs. CAS
is an atomic operation that changes a value if and only if it is
equivalent to some expected value. The CAS instruction can
be described by the following C code:

Listing 4.1: Compare and Swap
1: int compare_and_swap(int* dest, int cmp, int swap)

2: {

3: int old_val = *dest;

4: if (old_val == cmp)

5: *dest = swap;

6: return old_val;

7: }

The strength of compare and swap is that multiple
operations are achieved in a single instruction. Since CAS is a
processor instruction, this behavior is achieved without any
locks. This atomicity allows locks to be replaced by clever
applications of this function. An example use-case of CAS is
popping the top of a stack. Listing 4.2 attempts to do so by
finding the top of the stack, getting the next element, then
doing a CAS operation on the top of the stack.

Listing 4.2: Example use of CAS
1: top = top_of_stack;

2: do {

3: cmp = top;

4: next = cmp->next();

5: } while (!cas(top, cmp, next));

Listing 4.2 accounts for concurrent operations - if the top of
the stack is changed between the lines 3 and 5, the call to
CAS will fail. Since CAS is an atomic operation, if call to it
begins, it is guaranteed to complete without interruption.

The CAS instruction is available on most modern 32- and 64-
bit systems, and is therefore a reliable component of these
algorithms. However, using this instruction can be platform
dependent. The GCC, Mac OS X, and Windows libraries all
provide functions for CAS, though each behaves differently.
Additionally, for systems that do not provide CAS, the
instruction must be used through inline assembler. This
situation makes implementing a general-use CAS function
that works on all platforms a non-trivial task.

As an alternative to CAS, the LL/SC (load-linked/store
conditional) instruction is also used. This is an
implementation detail, but has the same effect. One pitfall of
several lock-free algorithms, however, is the use of DCAS
which performs a CAS operation on two non-adjacent words
at once. This operation is potentially useful, but is not
generally supported on hardware. If more than a single
pointer needs to be compared and swapped at once, other
methods must be used. One way to transport additional data
is through the use of spare pointer bits. On a 32-bit system, 2
bits may go unused. On a 64-bit system, 16 bits may be
available. Manipulating spare bits in pointers can be a risky
solution, but it can also provide the solutions to algorithm
implementation without resorting to functions that may or
may not be supported.

There are also efforts to implement lock-free algorithms by
minimizing the use of CAS and atomic primitives. These
generally lead to wait-free implementations (a stronger
version of lock-free – all threads make progress) with high
throughput [1].

V. Library Development

Over the course of several months, the author of this paper
developed a library of lock-free data structures. This library
is implemented in C++, and makes an effort to correspond to
the standard template library data structures when possible.
Over the course of several iterations, a functional stack,
queue, and linked list were completed. Additionally, a
flexible hazard pointer system was implemented that could
easily be used to manage hazard pointers for any LFDS. Both
the stack and queue are memory managed, while the list is a
work in progress. Finally, binary search tree and dictionary
implementations are in development. This library is cross-
platform, and compiles under GCC 4.4+ and Visual Studio
2010 for both 32- and 64-bit systems.

Unfortunately, this project is unavailable to the public and is
maintained as a research project. The original goal of the
project was to create a robust, open-source template library.
Due to patenting issues with certain algorithms that are
currently being investigated, the source cannot be released
at this time. There are at least two growing C libraries, and
the open source community appears to be producing work
in this direction.

VI. Conclusion

There is currently a rich set of lock-free algorithms that have
been published over the course of roughly twenty years.
Although lock-free code has some inherent issues, these
have mostly been addressed and remedied in some way.
Additionally, lock-free objects have strong benefits and a
wider range of use than their locked counterparts at the
occasional cost of performance. Even so, use of these
algorithms has not been standard and implementations are
scattered. There are growing libraries of code designed to be
lock-free, and the author of this paper has also made
progress in this regard.

References
[1] Alex Kogan and Erez Petrank. 2011. Wait-free queues
with multiple enqueuers and dequeuers. In Proceedings of
the 16th ACM symposium on Principles and practice of
parallel programming (PPoPP '11). ACM, New York, NY, USA,
223-234. DOI=10.1145/1941553.1941585
http://doi.acm.org/10.1145/1941553.1941585

[2] Danny Hendler, Nir Shavit, and Lena Yerushalmi. 2004. A
scalable lock-free stack algorithm. In Proceedings of the
sixteenth annual ACM symposium on Parallelism in
algorithms and architectures (SPAA '04). ACM, New York,
NY, USA, 206-215. DOI=10.1145/1007912.1007944
http://doi.acm.org/10.1145/1007912.1007944

[3] David Chase and Yossi Lev. 2005. Dynamic circular work-
stealing deque. In Proceedings of the seventeenth annual
ACM symposium on Parallelism in algorithms and
architectures (SPAA '05). ACM, New York, NY, USA, 21-28.
DOI=10.1145/1073970.1073974
http://doi.acm.org/10.1145/1073970.1073974

[4] Dmitri Perelman, Rui Fan, and Idit Keidar. 2010. On
maintaining multiple versions in STM. In Proceeding of the
29th ACM SIGACT-SIGOPS symposium on Principles of
distributed computing (PODC '10). ACM, New York, NY, USA,
16-25. DOI=10.1145/1835698.1835704
http://doi.acm.org/10.1145/1835698.1835704

[5] Faith Ellen, Panagiota Fatourou, Eric Ruppert, and
Franck van Breugel. 2010. Non-blocking binary search trees.
In Proceeding of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing (PODC '10). ACM, New
York, NY, USA, 131-140. DOI=10.1145/1835698.1835736
http://doi.acm.org/10.1145/1835698.1835736

[6] Hakan Sundell and Philippas Tsigas. 2004. Scalable and
lock-free concurrent dictionaries. In Proceedings of the 2004
ACM symposium on Applied computing (SAC '04). ACM, New
York, NY, USA, 1438-1445. DOI=10.1145/967900.968188
http://doi.acm.org/10.1145/967900.968188

[7] M. Herlihy. 1990. A methodology for implementing
highly concurrent data structures. SIGPLAN Not. 25, 3
(February 1990), 197-206. DOI=10.1145/99164.99185
http://doi.acm.org/10.1145/99164.99185

[8] Maged M. Michael and Michael L. Scott. 1995. Simple,
Fast, and Practical Non-Blocking and Blocking Concurrent
Queue Algorithms. Technical Report. University of Rochester,
Rochester, NY, USA.

[9] Maged M. Michael. 2002. High performance dynamic
lock-free hash tables and list-based sets. In Proceedings of
the fourteenth annual ACM symposium on Parallel algorithms
and architectures (SPAA '02). ACM, New York, NY, USA, 73-
82. DOI=10.1145/564870.564881
http://doi.acm.org/10.1145/564870.564881

[10] Maged M. Michael. 2002. Safe memory reclamation for
dynamic lock-free objects using atomic reads and writes. In
Proceedings of the twenty-first annual symposium on
Principles of distributed computing (PODC '02). ACM, New
York, NY, USA, 21-30. DOI=10.1145/571825.571829
http://doi.acm.org/10.1145/571825.571829

[11] Maged M. Michael. 2004. Hazard Pointers: Safe Memory
Reclamation for Lock-Free Objects. IEEE Trans. Parallel
Distrib. Syst. 15, 6 (June 2004), 491-504.
DOI=10.1109/TPDS.2004.8
http://dx.doi.org/10.1109/TPDS.2004.8

[12] Maged M. Michael. 2004. Scalable lock-free dynamic
memory allocation. SIGPLAN Not. 39, 6 (June 2004), 35-46.
DOI=10.1145/996893.996848
http://doi.acm.org/10.1145/996893.996848
[13] Mikhail Fomitchev and Eric Ruppert. 2004. Lock-free
linked lists and skip lists. In Proceedings of the twenty-third
annual ACM symposium on Principles of distributed
computing (PODC '04). ACM, New York, NY, USA, 50-59.
DOI=10.1145/1011767.1011776
http://doi.acm.org/10.1145/1011767.1011776

[14] Simon Doherty, Maurice Herlihy, Victor Luchangco, and
Mark Moir. 2004. Bringing practical lock-free
synchronization to 64-bit applications. In Proceedings of the
twenty-third annual ACM symposium on Principles of
distributed computing (PODC '04). ACM, New York, NY, USA,
31-39. DOI=10.1145/1011767.1011773
http://doi.acm.org/10.1145/1011767.1011773

[15] Woongki Baek, Nathan Bronson, Christos Kozyrakis,
and Kunle Olukotun. 2010. Implementing and evaluating
nested parallel transactions in software transactional
memory. In Proceedings of the 22nd ACM symposium on
Parallelism in algorithms and architectures (SPAA '10). ACM,
New York, NY, USA, 253-262.
DOI=10.1145/1810479.1810528
http://doi.acm.org/10.1145/1810479.1810528

[16] Wooyoung Kim. The Concurrent Queue Container With
Sleep Support. Intel Software Network Blogs. June 3, 2008.
http://software.intel.com/en-us/blogs/2008/06/03/the-
concurrent-queue-container-with-sleep-support/.

