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ABSTRACT 

An object is lock-free if it guarantees that in a system where 
multiple threads are manipulating the object, some thread 
will complete its operation on the object in a finite number 
of steps, no matter what happens to other threads. More 
practically, lock-free programming is a technique to achieve 
thread safety without the use of locks, which are the current 
standard. Lock-free objects (LFOs) have a number of useful 
properties that make them more broadly useful than locked 
objects, and also tend to perform well under high contention 
(being accessed by many threads at once). Though lock-free 
objects are not very common in practice, there is an 
opportunity for this to change. Lock-free algorithms (LFAs) 
are notoriously difficult to design and prove correct, and 
implementing them presents a number of technical 
challenges, but over the course of around ten years several 
commonly used data structures have been developed. This 
paper approaches lock-free objects from a practical 
standpoint. It addresses their features and problems, along 
with specific implementation issues. This paper also 
summarizes a large set of useful lock-free algorithms that 
would be broadly useful. Finally, it reports on the author’s 
efforts to implement a collection of lock-free data structures 
(LFDS) for general use. 
 

1. Introduction 

Researchers have developed lock-free algorithms since 
before the nineties, though many of the practically useful 
algorithms were not published until the past decade. The 
rise of multi-core computers and promise of highly 
concurrent systems provided a market for efficient 
concurrent algorithms. LFAs are particularly desirable in 
this market as they tend to perform very well under high 
contention. 
 
Specifically, most lock-free research has gone toward 
designing algorithms for scalable lock-free data structures, 
which offer a number of useful properties in the context of 
concurrent access. By definition, LFDS are immune to 
deadlock and livelock, which is useful to any developer [12]. 
Additionally, they maintain this property in the event of 
arbitrary thread failure – any number of threads may be 
killed, and an LFDS will remain functional [12]. LFDS are 
also tolerant of priority inversion, as there is no way for 
them to ‘lose’ anything (a lock) in a low-priority thread [12]. 
Similarly, they are tolerant of thread preemption. In all of 
these situations, data structures based on locks may suffer 
or cease to function. Finally, LFDS have asynchronous signal 
safety, which allows them to be used in signal handlers 
safely [12]. Locks are generally unsafe to use in signal 
handlers due to the situation where a handler and a thread 
are in deadlock. This further prevents many 
implementations of malloc and free from use in signal 
handlers, as they are lock-based. 

 
 

2. Problems and Solutions 

Despite the impressive features of LFDS, they suffer from a 
number of problems that have prevented them from gaining 
a strong mainstream presence. The first of these is that LFDS 
are difficult to design and prove correct. Furthermore, 
implementing an algorithm is difficult as well, and presents 
a number of technical challenges and system dependency 
issues, some of which are addressed in section 4. Beyond 
this, there are three major problems that affect LFDS: the 
ABA problem, non-decreasing memory use, and memory 
allocation. At the time of writing, solutions exist for all of 
these problems. 
 
The ABA problem occurs when a process that has read some 
shared memory value A is preempted by another process. 
The second process changes the shared memory value A to 
B, and then back to A again before the first process 
continues. Once the first process resumes execution, it does 
not notice that A has changed, and so acts as though this 
were true. This causes problems when a lock-free object 
deletes some value in one thread, then another thread 
allocates a new value at the same location. In this case, the 
first thread would have a pointer that has not changed, but 
the value being pointed at changed. Solutions to the ABA 
problem include tagging, and garbage collection or similar 
processes. Tagging involves using spare pointer bits to count 
the number of times a pointer has been modified or used 
[11]. This tentatively solves the ABA problem, but a counter 
may wrap around to the same value the old pointer held. A 
more full-proof solution to the ABA problem is to use 
garbage collection or a similar strategy for memory 
management [11]. Rather than being the goal of memory 
management, the ABA problem is usually solved as a side 
effect. Since garbage collection does not exist on all systems, 
another solution is required for languages such as C. 
 
This leads directly into the issue of non-decreasing memory 
use of LFDS. This is caused by an inability to physically 
delete any data from an LFDS. Data may be logically 
disconnected, but there is no way to determine whether or 
not another thread is accessing the removed data. Physically 
deleting this data could lead to segmentation faults. The 
result is that LFDS will continue to consume memory until 
none is left, even if data is removed from them. 
 
Garbage collection solves this problem, but is not generally 
available. One of the best-known solutions to this problem is 
an algorithm called Hazard Pointers, developed by Michael 
[10,11].  This algorithm relies on a global list of pointers to 
data that all threads may access. When a thread acquires a 
pointer that must point to valid data, this pointer is placed in 
the global list. Each thread also maintains a list of pointers to 
data it wishes to physically delete. Once this local list 
reaches a certain threshold size, every pointer that is not 
also a member of the global list is destroyed [11]. This 
manual form of garbage collection effectively solves the 
memory-use problem, and as a side-effect also prevents the 
ABA problem [11]. 



The memory allocation problem stems from the fact that 
most implementations of malloc (or other memory 
allocators) are not lock-free. Therefore, LFDS that use these 
allocators are not completely lock-free. This problem 
requires an implementation of a lock-free allocator, 
algorithms for which do exist [12]. There is debate as to 
whether these algorithms perform well or comparably to 
non-lock-free implementations. 
 
Finally, it should also be mentioned that there are 
performance issues associated with lock-free programming. 
The atomic operations used may be expensive relative to 
locks, may have memory barriers, and using too many can 
lead to an overall slowdown. Care needs to be put into 
algorithm design to minimize or eliminate these calls when 
possible. This slowdown is also architecture-dependent, as 
different core/cache setups may produce different 
performance. Other problems aside, producing a lock-free 
algorithm that performs well requires additional insight. 
 

3. Overview of Algorithms 

Over the past twenty years, lock-free algorithms have 
undergone significant work. This paper examines this 
progress in the context of LFDS which have a wide range of 
applications and are commonly useful in concurrent code. 
 

3.1 Stacks and Queues 

Various stack algorithms currently exist, and the stack is 
arguably the simplest LFDS to design and implement. One of 
the oldest lock-free stack algorithms was created through 
IBM research based on a traditional stack implementation. 
This style of implementation has survived through time and 
serves as a starting point in lock-free stack design. Michael 
has also designed a similar stack to which he applied hazard 
pointers, making it one of the first LFDS to support memory 
reclamation. However, both of these stack algorithms suffer 
due to the single point of access that is the top of the stack. 
Since LFDS are designed to be used in highly concurrent 
situations, these stacks may become bottlenecks. Recently, 
researchers designed more scalable algorithms that attempt 
to manage contention for the top of the stack. One of these, 
presented by Hendler, Shavit, and Yerushalmi keeps track of 
which stack operation (push, pop, top) each thread is 
performing and streamlines the calls internally [2]. The 
author of this paper also implemented a stack 
independently, though it is equivalent to that presented by 
Michael. 
 
Queues are slightly more complicated to implement, but can 
still take advantage of having a limited number of access 
points. One algorithm, designed by Michael and Scott, 
originated in 1996 and has been implemented by the author 
of this paper [8]. At one point the Intel Threading Building 
Blocks package experimented with using a lock-free 
algorithm for their concurrent queue class. However, tests 
showed that the atomic CAS operation cost them too heavily 
in performance [16]. 
 
 
 

3.2 Lists, Skip Lists, and Hash Tables 

The (singly) linked list algorithm is significantly more 
complex than that of the stack or queue, due to the 
possibility of arbitrary insertions and removals. This class of 
LFDS has been heavily studied, though not all of the 
proposed designs are feasible. For instance, some linked list 
algorithms are based on DCAS (double compare and swap), 
which is generally not available. One practical linked list 
algorithm was presented by Fomitchev and Ruppert in 2004, 
and relies on CAS combined with the use of two flag bits 
[13]. The original solution is based on a list of ordered keys 
(which store the list values) but was reworked and 
generalized by the author of this paper [13]. This 
generalization supports any type of data, does not pay 
attention to order, and removes the reliance on keys – the 
list only stores values. 
 
An extension of the linked list is the skip list. Skip lists are 
ordered linked lists where each node is assigned a random 
height, and this height can be used to skip nodes while 
searching. Skip lists perform in amortized time O(log(N)), 
making them useful in structures such as dictionaries. In the 
lock-free field, skip lists have been used in place of binary 
search trees due to good BST algorithms not existing until 
very recently (2010). Fomitchev and Ruppert presented a 
skip list algorithm in 2004 alongside their linked list 
algorithm [13]. Additionally, Fraser, Sundell, and Tsigas 
have worked to develop lock-free skip list algorithms. 
 
These are directly relevant to hash tables, which rely on sets 
to provide buckets. So far hash tables have been 
implemented using list-based sets (skip lists) though it may 
now be possible to use binary search trees to create hash 
tables. In 2002, Michael presented a lock-free hash table 
algorithm dependent on the list-based set presented in [8]. 
 

3.3 Binary Search Trees and Deques 
A good binary search tree algorithm is one of the most 
recent contributions to the lock-free field. In 2010, Ellen, 
Ruppert, Fatourou and van Breugel presented a leaf-based 
tree that implements a dictionary (each leaf is a key-value 
pair) [5]. Other similar algorithms have been developed (as 
mentioned in the previous section) but do not utilize trees 
as their primary structure. For example, Sundell and Tsigas 
produced a lock-free dictionary in [6] that instead relies on a 
skip list. Finally, significant work has been applied to 
development of deques, circular lists, and related data 
structures. A prime example of this effort is presented by 
Chase and Lev in [3]. 
 

4. Implementation Details 

Lock-free algorithms generally rely on a special processor 
instruction called compare and swap or CAS. This operation 
is the common point of many implementations, and must be 
understood in order to work in the current field of LFAs. CAS 
is an atomic operation that changes a value if and only if it is 
equivalent to some expected value. The CAS instruction can 
be described by the following C code: 
 
 



Listing 4.1: Compare and Swap 
1: int compare_and_swap(int* dest, int cmp, int swap) 

2: { 

3:    int old_val = *dest; 

4:    if (old_val == cmp) 

5:        *dest = swap; 

6:    return old_val; 

7: } 

 
The strength of compare and swap is that multiple 
operations are achieved in a single instruction. Since CAS is a 
processor instruction, this behavior is achieved without any 
locks. This atomicity allows locks to be replaced by clever 
applications of this function. An example use-case of CAS is 
popping the top of a stack. Listing 4.2 attempts to do so by 
finding the top of the stack, getting the next element, then 
doing a CAS operation on the top of the stack. 
 
Listing 4.2: Example use of CAS 
1: top = top_of_stack; 

2: do { 

3:     cmp = top; 

4:     next = cmp->next(); 

5: } while (!cas(top, cmp, next)); 

 
Listing 4.2 accounts for concurrent operations - if the top of 
the stack is changed between the lines 3 and 5, the call to 
CAS will fail. Since CAS is an atomic operation, if call to it 
begins, it is guaranteed to complete without interruption. 
 
The CAS instruction is available on most modern 32- and 64-
bit systems, and is therefore a reliable component of these 
algorithms. However, using this instruction can be platform 
dependent. The GCC, Mac OS X, and Windows libraries all 
provide functions for CAS, though each behaves differently. 
Additionally, for systems that do not provide CAS, the 
instruction must be used through inline assembler. This 
situation makes implementing a general-use CAS function 
that works on all platforms a non-trivial task. 
 
As an alternative to CAS, the LL/SC (load-linked/store 
conditional) instruction is also used. This is an 
implementation detail, but has the same effect. One pitfall of 
several lock-free algorithms, however, is the use of DCAS 
which performs a CAS operation on two non-adjacent words 
at once. This operation is potentially useful, but is not 
generally supported on hardware. If more than a single 
pointer needs to be compared and swapped at once, other 
methods must be used. One way to transport additional data 
is through the use of spare pointer bits. On a 32-bit system, 2 
bits may go unused. On a 64-bit system, 16 bits may be 
available. Manipulating spare bits in pointers can be a risky 
solution, but it can also provide the solutions to algorithm 
implementation without resorting to functions that may or 
may not be supported. 
 
There are also efforts to implement lock-free algorithms by 
minimizing the use of CAS and atomic primitives. These 
generally lead to wait-free implementations (a stronger 
version of lock-free – all threads make progress) with high 
throughput [1]. 
 
 
 

V. Library Development 

Over the course of several months, the author of this paper 
developed a library of lock-free data structures. This library 
is implemented in C++, and makes an effort to correspond to 
the standard template library data structures when possible. 
Over the course of several iterations, a functional stack, 
queue, and linked list were completed. Additionally, a 
flexible hazard pointer system was implemented that could 
easily be used to manage hazard pointers for any LFDS. Both 
the stack and queue are memory managed, while the list is a 
work in progress. Finally, binary search tree and dictionary 
implementations are in development. This library is cross-
platform, and compiles under GCC 4.4+ and Visual Studio 
2010 for both 32- and 64-bit systems. 
 
Unfortunately, this project is unavailable to the public and is 
maintained as a research project. The original goal of the 
project was to create a robust, open-source template library. 
Due to patenting issues with certain algorithms that are 
currently being investigated, the source cannot be released 
at this time. There are at least two growing C libraries, and 
the open source community appears to be producing work 
in this direction. 
 

VI. Conclusion 

There is currently a rich set of lock-free algorithms that have 
been published over the course of roughly twenty years. 
Although lock-free code has some inherent issues, these 
have mostly been addressed and remedied in some way. 
Additionally, lock-free objects have strong benefits and a 
wider range of use than their locked counterparts at the 
occasional cost of performance. Even so, use of these 
algorithms has not been standard and implementations are 
scattered. There are growing libraries of code designed to be 
lock-free, and the author of this paper has also made 
progress in this regard.  
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