
 1

Problem 1 CSS

Professor Plum likes it when the College of Saint Scholastica, CSS, hosts MICS. He wants you to write a

program to generate an ASCII art “CSS” sign. He plans on taping the sign on the side of the van when traveling

to MICS. Since he does not know the dimensions of the sign, he wants your program to take as input positive

integer scaling factors and generate multiple signs of different sizes.

Scaling

Factor

Letter Dimension

of CSS
(# chars × # chars)

Line Width

of All Letters

(# chars)

Blanks Between

CSS letters

1 5 × 5 1 5

2 10 × 10 2 10

3 15 × 15 3 15

10 50 × 50 10 50

Input
The first line contains the number of scaling factors which will be an integer between 1 and 100. Each of the

following lines contains a single positive integer between 1 and 50 which is the scaling factor. The below

sample input has 2 scaling factors.
2

1

3

Output
The output should contain the ASCII art for each sign corresponding to the scaling factors specified by the

input. NOTE: All lines for a sign should be the same length by padding shorter lines with blanks. Five blank

lines are after each case. Output for the above input is shown below.
Case 1:

CCCCC SSSSS SSSSS

C S S

C SSSSS SSSSS

C S S

CCCCC SSSSS SSSSS

Case 2:

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCC SSS SSS

CCC SSS SSS

CCC SSS SSS

CCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCC SSS SSS

CCC SSS SSS

CCC SSS SSS

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

CCCCCCCCCCCCCCC SSSSSSSSSSSSSSS SSSSSSSSSSSSSSS

 2

Problem 2 Circus Sort

Professor Plum has fond memories of visiting a 3-ring circus as a child. When his grandson was learning about

the x-y coordinate plane, he promised a trip to the circus if his grandson could complete the following

challenge. Given a set of (x, y) coordinates corresponding to points on three rings (i.e., circles), determine

which points belongs to which ring and order the points within each ring clockwise from the left-most point.

Professor Plum guarantees that:

 the rings don’t overlap,

 the ring centers are on the x-axis

 the set of points include all points where the rings intersect the x-axis.

Consider, the following three rings with points shown:

The set of points in no particular order would be:

(4.0, 0.0), (-3.0, 0.0), (-7.0, 0.0), (2.0, 2.0), (5.0, 0.0), (0.0, 0.0) , (7.0, 0.0), (0.5, -1.3), (6.5, 0.9)

Professor Plum wants you to write a program to solve this challenge.

Input
The first line contains the number of points to sorts from the three rings. Coordinates will be rounded to the

nearest tenth. The second line contains pairs of floating point numbers corresponding to (x, y) points. For the

above example, the input could be:
9

4.0 0.0 -3.0 0.0 -7.0 0.0 2.0 2.0 5.0 0.0 0.0 0.0 7.0 0.0 0.5 -1.3 6.5 0.9

Output
Three lines of output corresponding to points belongs to each ring from left-to-right. The order of the points

within each ring should be listed clockwise starting from the left-most point. The format of the output is shown

below including a single space before each point and a single decimal place for each x and y value.
Ring 1: (-7.0,0.0) (-3.0,0.0)

Ring 2: (0.0,0.0) (2.0,2.0) (4.0,0.0) (0.5,-1.3)

Ring 3: (5.0,0.0) (6.5,0.9) (7.0,0.0)

x

y

1

1

2

2.

.

. . .
.

. .
.

-1

-1

-2

-2

 3

Problem 3 Invisible Ink
Professor Plum has a hard time remembering all of his passwords. He decides to store all of his passwords in a

text file. To prevent someone from opening the text file and viewing his passwords he encrypts the file using

only the white-space characters of blank-spaces (' ', ASCII character 3210) and horizontal-tabs ('\t ', ASCII

character 910). Thus, someone opening the file will see only a blank screen.

Every 7 space/tab characters in the file encodes a binary number where spaces represent 0s and tabs represent

1s. Each 7-bit binary number encodes for an ASCII value between 0 - 127. (NOTE: ASCII and UNICODE

values are equal in this range)

Professor Plum has written the program to encrypt the passwords to a text file containing only spaces and tabs.

He wants you to write the program to decrypt this file back to the characters for the passwords.

Input
The input contains a single line containing only a multiple of 7 spaces and tabs, except for the ending new-line

character. For example the following input (where a space is shown as ‘s’ and a tab is shown as a ‘t’) encodes

the string “Hi Bob!”. (ASCII value: ‘H’ is 7210 or 10010002, ‘i’ is 10510 or 11010012, ..., ‘!’ is 3310 or

01000012)
tsstsssttstsststssssstsssststtsttttttssstsstsssst

Output
The output contains only the decrypted characters corresponding to the input. For the above example, the

output would be:
Hi Bob!

 4

Problem 4 Circular Primes
Professor Plum’s doctor thinks he should lose weight, and his students think he is old. However, Professor

Plum prefers to think of himself as circular prime. A circular prime number is one that remains a prime

number after repeatedly relocating the first digit of the number to the end of the number. For example, 197,

971, and 719 are all cirular prime numbers. Other numbers that satisfy the circular prime definition are: 5, 11,

13, 37, 79, 113, 199, and 3119.

He wants you to write a program that finds all circular prime numbers between two given positive integers

(inclusive to the numbers given). You may assume that both integers are in the range 1 to 500000.

Input
A single line of input containing two integer values between 1 and 500000.
5 50

Output
The output will be an ascending list of all circular prime numbers between the two integer inputs. The output

should have one number per line. For the example input given above, the output is:
5

7

11

13

17

31

37

 5

Problem 5 Wreck Tangles

Professor Plum occasionally teaches Operating Systems, and this problem reminds him of the opposite of

deadlock.

Bad news. Four strings all pulled up to a four-way stop at exactly the same time. None yielded, and all four

mutually collided with each other and are in a pile-up. Interestingly, they overlap each other only where they

have common letters. For example, suppose dragon is the west string, antelope the north, eagle the east, and

badger the south. These four might pile up in several ways:

Given any four strings, in how many possible arrangements may they pile up? The four strings must enclose at

least one empty square. (The pile-ups above enclose 1, 3, and 4 empty squares, respectively.)

Input
The input consists of a number of cases followed by a sequence of four strings for each test case. The order of

the strings is west, north, east, and south.
2

dragon

antelope

eagle

badger

rabbit

tiger

t-rex

ant

Output
For each case, print a case label and the number of possible pile-ups. For the above input, the output is:
Case 1: 3

Case 2: 1

 a a b a

 n n dragon

 t t d t

 e b e g e

 b l a l eagle

 dragon dragon r o

 d p g p p

 eagle eagle e

 e r

 r

 6

Problem 6 Summit
Professor Plum likes vacationing in the mountains. He wants you to consider this mathematical mountain,

where each non-leaf node is the sum of its two children:

Something’s wrong, however. 27 13 + 15, and 15 5 + 9. If we replace the 15 with 14, then we have a well-

formed mathematical mountain. Given a serialized version of a mountain, where the root is element 0, the root’s

left and right children are elements 1 and 2, and so on down the mountain, print the index of the single incorrect

element and the corrected value. If the incorrect value occurs on the leaf level, then the right child is assumed

to be wrong.

Input
The input consists of a number of cases followed by a line for each tree. The first number on a mountain’s line

is the number of levels in the mountain. The remaining numbers are the node values, separated by whitespace

and in breadth-first order. A mountain will always have at least 3 levels. Each mountain is full and complete,

meaning that all non-leaves have exactly two children and that all leaves are on the bottom-most level.
3

3 27 13 15 6 7 5 9

4 21 9 10 4 5 4 6 2 2 1 4 1 3 2 4

3 29 13 16 5 8 9 1

Output
For each case, print a case label, the index of the incorrect node, and the correct value. For the example input,

the output is:
Case 1: 2 14

Case 2: 0 19

Case 3: 6 7

27

13 15

6 7 5 9

 7

Problem 7 The Plot Thickens

Professor Plum’s wife likes to paint, but Professor Plum is more of a digital kind of guy. Imagine an 8-by-7

canvas of zeroes as shown in Figure 1a. Imagine plotting a 5-by-4 rectangle of ones on it, with its top-left corner

at (2, 3), as shown in Figure 1b.

Imagine plotting a 4-by-5 rectangle of ones on the current canvas, with its top-left corner at (0, 1). However,

whenever the rectangle overlaps any other rectangle, the pixels cancel each other out, as shown in Figure 1c.

Suppose further that we plot a 2-by-2 rectangle at (3, 2). The resulting canvas is shown in Figure 1d.

After plotting a sequence of rectangles to a canvas in this manner, how many pixels are set to 1?

Input
The input consists of a number of cases followed by a line for each case. The first two numbers in each case’s

line are the width and height of the canvas. The third number is the number of rectangles plotted. The remaining

numbers describe each rectangle and therefore appear in groups of 4. Within a group, the first two numbers are

the xy-coordinates of a rectangle’s top-left corner, and the second two are the rectangle’s dimensions.
2

8 7 3 2 3 5 4 0 1 4 5 3 2 2 2

3 3 1 0 0 3 3

Output
For each case, print a case label and the number of 1-pixels in the canvas after all plotting. For the example

input, the output is:
Case 1: 28

Case 2: 9

00000000

00000000

00000000

00000000

00000000

00000000

00000000

(a) Blank canvas

00000000

00000000

00000000

00111110

00111110

00111110

00111110

(b) First rectangle

00000000

11110000

11110000

11001110

11001110

11001110

00111110

(c) Second rectangle

00000000

11110000

11101000

11010110

11001110

11001110

00111110

(d) Third rectangle

 8

Problem 8 Highly Recursive Function
Professor Plum likes recursion, but his students typically find it confusing. During a recent faculty meeting his

mind wandered, and he invented the following recursive mathematical function, H(n):

 H(n) = H(n+5) + H(n+4) + H(n+2) for all value of n -8

 H(n) = n for all value of -8 < n 10

 H(n) = H(n-8) + H(n-5) + H(n-3) for all values of n 10.

He wants you to write a program to compute values of the function H(n).

Input
The first line contains the number of n values to run through the function H(n). Each of the following lines

contain a single integer value of n. All of the values of n and corresponding H(n) values will fit into a 64-bit

signed integer. The below sample input contains three n values.
4

-8

10

-13

-4

Output
For each n value, print to standard output a case label and the value of H(n) as defined above. For the example

input given above, the output is:
Case 1: H(-8) = -13

Case 2: H(10) = 14

Case 3: H(-13) = -58

Case 4: H(-4) = -4

