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Abstract 
 

Ant Colony Optimization (ACO) is a population-based metaheuristic algorithm for 
optimization problem, inspired by foraging behavior of ants in ant colony. One of its 
variants, the elitist ACO, further reinforces itself with the additional pheromone deposit 
to find the best path. Even though this usually leads to converging on the solution faster, 
it also has the drawback of getting stuck in local minima. In this paper, we describe a 
variation on elitist ACO where the pheromone contribution of best path is further 
predicated by a probability factor. This probabilistic elitist ACO often produces better 
solution for TSP, at the cost of higher number of iterations. Some experimental results of 
this probabilistic elitist ACO is presented 
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1 Introduction 

Ant Colony Optimization (ACO) is a population-based metaheuristic algorithm 
for an optimization problem, inspired by foraging behavior of ants in ant colony [9]. 
ACO is expected to find the near optimal solutions like various nature-inspired 
metaheuristic algorithm or evolutionary algorithm such as particle swarm optimization 
algorithm (PSO), artificial bee colony algorithm, differential algorithm (DE), etc.  
  Ant algorithms are based on the behavior of ants in ant colonies. The ants are 
capable of finding the shortest route from their nest to a food source and coming back to 
the original place [2]. Initially they start their travel randomly at the same speed with no 
clue on how to find the shortest path. The shorter the path is, the more pheromones get 
accumulated; hence, more ants follow the route and form a shorter closed tour. 
Pheromone is the chemical substance excreted by the ants and it works as a mechanism 
of stigmergy among ants [9]. It attracts other ants in search for food. The attractiveness of 
a given path depends on the intensity of pheromones that the ants have deposited during 
their travel. The motion of ants is stochastic. Hence initially the ants choose any routes 
randomly, but they get to choose preferable, i.e. shorter path for their food collection and 
return. Since the pheromone has the characteristics of evaporation, the paths which are 
less likely traversed by ants have less quantity of pheromones. As the longer path has also 
more evaporation of deposited pheromone, the quantity of pheromone on each edge of 
path is indirectly proportional to the edge of the path. Therefore, the ants find the shortest 
path in their indirect communication via the amount of deposited pheromone on their 
path as the pheromone is a mechanism of the sign-based stigmergy among the ants. This 
behavior is simulated with virtual ants in the ACO algorithms. In the original version of 
the ACO, many iterations are needed to find the optimal solution [2]. On the other hand, 
in the elitist version of ACO, converges to local minima sooner, however may skip 
searching for more optimal path [2]. 

A hybrid version of the algorithm with probability p of choosing original version 
of ACO and the elitist version of ACO behavior is discussed in this paper.  Two new 
versions of the algorithms are developed: Probabilistic Elitist ACO (fixed value of p) and 
Dynamic Probabilistic ACO. This hybrid approach does not converge to local minima 
earlier but still finds for more optimal solution, and have less iterations as compared to 
the original ACO. 
 

2 Background 

2.1 Travelling Salesman Problem 

Traveling Salesman Problem (TSP) is a combinatorial optimization problem to find the 
shortest path. TSP is a NP-hard problem where there exists no algorithm to solve it in 
polynomial time; the optimal solution may be obtained in exponential amount of time. In 
the map of a given number of cities, the salesman travels every city exactly once and 
must return to the original city making a whole closed tour. Thus, in the graph model of 
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TSP, the starting node and the ending node are identical. In this paper. There are several 
practical applications of TSP such as planning bus lines, regular distribution of resources, 
finding of customer service route, etc. [3]. There are other application areas as well which 
are not related to travelling routes or non-path finding problems like chain diagram 
optimization, application in crystallography, industrial robot control, computer 
motherboard components layout, drilling holes for electric circuit. [3] 

2.2 Ant System 

Ant System was the first proposed ACO algorithm [15]. It introduced a model of 
pheromone deposition.  

𝜏𝜏𝑖𝑖𝑖𝑖 = (1- 𝜌𝜌) ⋅ 𝜏𝜏𝑖𝑖𝑖𝑖  + ∑ ∆𝜏𝜏𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚
𝑘𝑘=1  

where 𝜏𝜏𝑖𝑖𝑖𝑖 is the pheromone deposit in the edge (i, j), ρ is the evaporation rate and ∆τ k
ij  is 

the pheromone update on the edge (i, j) by each ant k in the colony of m ants. 

2.3 Ant Colony System 

Ant Colony System is a distributed algorithm where ants play the role of cooperating 
agents in order to find the optimal solution. The ACS is built on top of Ant System in 
order to improve the efficiency when it is applied to both symmetric and asymmetric 
TSPs. The communication among the ants is made via the pheromone. Pheromones are 
deposited by the ants on the edges of the rote they travel. In ACS the ants use a 
pseudorandom proportional rule. The probability of an ant to move to a particular city 
from the current city is determined by the parameter q0 and random variable q. ACS also 
introduces Local Pheromone Update.  

2.4 Original Ant Colony Optimization Algorithm for TSP 

Ant System was first applied to TSP. It utilizes a graph representation where each of the 
edges has cost measure, desirability measure. The pheromone is updated at every run 
time by the ants. For symmetric instances of the TSP, the desirability measure is 
𝜏𝜏(𝑟𝑟, 𝑠𝑠) = 𝜏𝜏(𝑠𝑠, 𝑟𝑟) and for asymmetric measure its  𝜏𝜏(𝑟𝑟, 𝑠𝑠) ≠ 𝜏𝜏(𝑠𝑠, 𝑟𝑟). Ants completes a 
closed tour by the probabilistic state transition rule. This is also known as random-
proportional rule. In this rule it helps the ants to take decision on which city to travel 
from a current city and then the next and so on in order to finish one full tour. The 
transition probability to choose the next city s from r is: 
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𝑃𝑃𝑘𝑘(𝑟𝑟, 𝑠𝑠) = �

.
[𝜏𝜏(𝑟𝑟, 𝑠𝑠)]⋅[𝜂𝜂(𝑟𝑟, 𝑠𝑠)]𝛽𝛽

∑ [𝜏𝜏(𝑟𝑟,𝑢𝑢)]⋅[𝜂𝜂(𝑟𝑟,𝑢𝑢)]𝛽𝛽𝑢𝑢𝑢𝑢𝐽𝐽𝑘𝑘(𝑟𝑟)

, 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝐽𝐽𝑘𝑘(𝑟𝑟)

0,                                                      𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒

 

 

where τ(r, s) is the pheromone amount in (r, s) which implies a posteriori effectiveness of 
the move from r to s, η(r, s) is the inverse of distance which implies a priori effectiveness 
of the move from r to s with its amplifying parameter β. Jk (r) is the set of neighborhood 
nodes that are to be visited by ant k positioned on city r. This formula of transition rule 
shows the probability of ant k to travel from city r to s if s belongs to the set of cities 
otherwise its ‘0’. 

Global Updating Rule is applied once all the ants have completed their tour. Pheromones 
get updates eventually. Since the pheromones have the nature of evaporating thus the 
paths which do not gets refreshed or not desirable by the ants will have less pheromones. 
This rule was intended so that the total pheromone updated is equivalent to the remaining 
pheromone (after evaporation) added to the refreshed pheromone. This rule is applied at 
the end. Only globally best ant can construct the route (which deposited more 
pheromone) Thus, the intensity of pheromones is proportional to the shorter paths. The 
pheromone update is done by: 

𝜏𝜏(𝑟𝑟, 𝑠𝑠) ⟵ (1 − 𝛼𝛼)⋅𝜏𝜏(𝑟𝑟, 𝑠𝑠) + �Δ𝜏𝜏𝑘𝑘(𝑟𝑟, 𝑠𝑠)
𝑚𝑚

𝑘𝑘=1

 

where  

Δ𝜏𝜏𝑘𝑘 (𝑟𝑟, 𝑠𝑠) = �
1
𝐿𝐿𝑘𝑘

𝑖𝑖𝑖𝑖 (𝑟𝑟, 𝑠𝑠)𝑠𝑠 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟 𝑑𝑑𝑜𝑜𝑑𝑑𝑒𝑒 𝑏𝑏𝑏𝑏 𝑎𝑎𝑑𝑑𝑜𝑜 𝑘𝑘,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.
   

                                    

Lk is the length of the tour performed by ant k, m is the number of ants. This pheromone 
updating rule is done in order to give higher reinforcement to better solutions. The 
pheromone updating formula is the combination of both the residue pheromone after it 
got evaporated and the refreshed pheromone. The pheromones which are located on the 
edges of the graph act as distributed long-term memory which is not present within the 
ants. The indirect communicated which is formed by this is termed as stigmergy [3]. The 
ant algorithm was found advantageous in finding optimal solution when dealt with 
smaller number of cities but didn’t prove successful for larger number of cities. 
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Ant Colony System introduced the three main rules: i) state transition rule ii) global 
updating rule and iii) local pheromone updating rule. A certain number of ants are 
initialized in a certain number of city -graph. Each of the ants start for their tour by the 
use of both heuristic greedy search and by information obtained from the previous ants. 
The ants update the pheromone on the paths they are traversing by the local pheromone 
updating rule. Once all the tours are completed by the ants the pheromones get updated 
globally while applying the global updating rule. Thus, the edges with more pheromones 
are visited by more ants. This generates the shortest path. 

The ant chooses to go to the next city is by applying the following rule: 

𝑠𝑠 =  �
𝑎𝑎𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑢𝑢𝑢𝑢𝐽𝐽𝑘𝑘(𝑟𝑟) �[𝜏𝜏(𝑟𝑟,𝑢𝑢)]⋅�𝜂𝜂β(𝑟𝑟,𝑢𝑢)��

𝑖𝑖𝑖𝑖 𝑞𝑞 ≤ 𝑞𝑞0 (𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑜𝑜𝑖𝑖𝑜𝑜𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜𝑑𝑑)
𝑆𝑆 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒 (𝑏𝑏𝑖𝑖𝑎𝑎𝑠𝑠𝑒𝑒𝑑𝑑 𝑒𝑒𝑎𝑎𝑒𝑒𝑒𝑒𝑜𝑜𝑟𝑟𝑎𝑎𝑜𝑜𝑖𝑖𝑜𝑜𝑑𝑑)

 

Where Jk is the neighborhood of the city where an ant k is currently located. 

The state transition rule favors the tendency of the ants to move to the next city which 
contains more pheromone and thus the shortest path.  

Local Updating Rule: The edges of the graph get updated each time by the local update 
pheromone rule. An ant finishes each iteration 

𝜏𝜏 (𝑟𝑟, 𝑠𝑠) → (1−𝜌𝜌)⋅𝜏𝜏 (𝑟𝑟, 𝑠𝑠) + 𝜌𝜌⋅∆ 𝜏𝜏 (𝑟𝑟, 𝑠𝑠). 

The pheromone level is changed by the above expression. 

Global Updating Rule: The globally best ant which constructed the shortest route is 
allowed to deposit pheromone. This is performed at the end after all the ants have 
completed their tours. The following rule is applied while the pheromone is updated: 

𝜏𝜏(𝑟𝑟, 𝑠𝑠) ⟵ (1 − 𝛼𝛼)⋅𝜏𝜏(𝑟𝑟, 𝑠𝑠) +  𝛼𝛼⋅Δ𝜏𝜏(𝑟𝑟, 𝑠𝑠) 

where α the pheromone decay parameter. The pheromone update on the edge (r, s),  
Δ𝜏𝜏(𝑟𝑟, 𝑠𝑠) is: 

Δ𝜏𝜏(𝑟𝑟, 𝑠𝑠) = �∆𝑟𝑟𝑟𝑟𝑘𝑘
𝑘𝑘

 

where 
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∆𝑟𝑟𝑟𝑟𝑘𝑘 = �
𝑄𝑄
𝐿𝐿𝑘𝑘
𝑖𝑖𝑖𝑖 𝑎𝑎𝑑𝑑𝑜𝑜 𝑘𝑘 𝑢𝑢𝑠𝑠𝑒𝑒𝑠𝑠 𝑒𝑒𝑑𝑑𝑎𝑎𝑒𝑒 (𝑟𝑟, 𝑠𝑠) 𝑖𝑖𝑑𝑑 𝑖𝑖𝑜𝑜𝑠𝑠 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟.

0                                             𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.
 

 

3 Related Work 

In [1], Dorigo et.al proposed a new model of Ant Colony Optimization to solve 
Travelling Salesman problem. Ants have the capability to remember the previous paths 
they have traversed and thus it will facilitate to find their best-so-far solution in less time. 
They have shown ants with memory can find better solution in less time. They introduced 
the idea of memory of earlier solutions in order to make use of the previous best solution 
which was constructed by the ants who traversed the route before. Here they have 
proposed the algorithm having ants with memory named as Mant ACO. It was found that 
Mant algorithm found optimum value faster in small sized problem. Mant is simple and 
interesting approach. 

In [3] exact algorithms or heuristics are termed in order to reach optimal solution. 
Some of the exact algorithms mentioned are dynamic programming, explicit and implicit 
enumeration, branch and bound method. But there are some disadvantages of these 
methods. They work fine with limited number of nodes. (40-80). Thus, heuristics come to 
play when there is large scale of problems. Heuristics solve specific types of problems. 
Heuristics comprise metaheuristics. The advantage of metaheuristics is that they show 
only the way on how to apply the procedures in order to find solutions. Ant Colony 
Optimization belongs to the category of metaheuristics. Thus, ACO is used in order to 
solve problems like TSP. 

4 Methodology 

4.1 Elitist ACO 

Elitist is a variation on the original ACO algorithm where the best solution 
deposits additional pheromone on each edge that constitutes the current best solution 
during the global update rule application. Given by the equation: 

Δ𝜏𝜏(𝑟𝑟, 𝑠𝑠) = �∆𝑟𝑟𝑟𝑟𝑘𝑘
𝑘𝑘

 +  𝜕𝜕𝜏𝜏(𝑟𝑟, 𝑠𝑠) 

where  
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𝜕𝜕𝜏𝜏(𝑟𝑟, 𝑠𝑠) = �
𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝑔𝑔𝑔𝑔

 𝑖𝑖𝑖𝑖 (𝑟𝑟, 𝑠𝑠)𝑠𝑠 𝑎𝑎𝑒𝑒𝑜𝑜𝑏𝑏𝑎𝑎𝑒𝑒 𝑏𝑏𝑒𝑒𝑠𝑠𝑜𝑜 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.
 

 

and Lgb  is the current global best tour and Qval is a parameter of the number of elite ants . 
This heuristic prioritizes the pheromone deposited by the ants that are part of the current 
global best path. 

4.2 Probabilic Elitist ACO: Our Variation of the Elitist-ACO 

Our approach in this study is similar to the elitist ACO, but the additional 
pheromone contribution from the global best path is not deterministic, rather controlled 
by another probability factor, p∈[0, 1]: 

 

∂𝜏𝜏(𝑟𝑟, 𝑠𝑠) = �
𝑄𝑄𝑣𝑣𝑣𝑣𝑣𝑣
𝐿𝐿𝑔𝑔𝑔𝑔

𝑖𝑖𝑖𝑖 (𝑟𝑟, 𝑠𝑠)𝑠𝑠 𝑎𝑎𝑒𝑒𝑜𝑜𝑏𝑏𝑎𝑎𝑒𝑒 𝑏𝑏𝑒𝑒𝑠𝑠𝑜𝑜 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟 𝑒𝑒𝑖𝑖𝑜𝑜ℎ 𝑒𝑒𝑟𝑟𝑜𝑜𝑏𝑏𝑎𝑎𝑏𝑏𝑖𝑖𝑒𝑒𝑖𝑖𝑜𝑜𝑏𝑏,𝒑𝒑,

0 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑟𝑟𝑒𝑒𝑖𝑖𝑠𝑠𝑒𝑒.
 

 

If p < 0, use the same value of p from the previous iteration. 

The elitist version of the algorithm has a tendency to get stuck in local minima 
due to the recurring pheromone contribution from the current best path starting from very 
first iteration. The probability factor prevents this saturation from happening and in some 
sense this variant can be thought of as a hybrid between the original and elitist ACO, thus 
benefitting from best path reinforcement of elitist ACO as well as new exploration 
potential in the original version. 

Furthermore, we experiment with 2 different ways of choosing the value of the 
probability factor. 

4.2.1 Static Probabilistic Elitist-ACO  (SPE-ACO): 

The 1st approach is to use a fixed static value of p. We choose p=0.5 to ensure both the 
elitist and non-elitist update rule has equal chance of being employed. This has potential 
to prevent saturation at some local minima of the function to be optimized. The downside 
is that on problem instances where elitist update indeed would have led to quick 
convergence, however, this method still has equal probability of choosing the non-elitist 
update rule. Intuitively we want non-elitist update rule to be more likely to be applied 



7 
 

when the solution is far from convergence while elitist approach is more fruitful near 
convergence. Thus, we propose the adaptive dynamic probabilistic elitist approach to 
capture this behavior. 

The elitist version of the algorithm has a tendency to get stuck in local minima due to the 
recurring pheromone contribution from the current best path starting from very first 
iteration. The use of probability factor, p, may prevent it from an early convergence to the 
local minima by reducing the pheromone deposit. This approach with a probability factor 
can be considered as a hybrid between the original-ACO and elitist- ACO, thus 
benefitting from best path reinforcement of elitist ACO as well as new exploration 
potential in the original-ACO. 

4.2.2 Adaptive Dynamic Probabilistic Elitist-ACO (ADPE-ACO): 

To capture the behavior of starting out with original update rule being most likely while 
increasing the probability of elitist updates as we approach convergence, we can define 
probability p adaptive as a function of current best tour length of the current iteration as 
follows: 

 

𝑒𝑒 = 1 −  
𝑜𝑜ℎ𝑒𝑒 𝑐𝑐𝑢𝑢𝑟𝑟𝑟𝑟𝑒𝑒𝑑𝑑𝑜𝑜 𝑏𝑏𝑒𝑒𝑠𝑠𝑜𝑜 𝑎𝑎𝑒𝑒𝑜𝑜𝑏𝑏𝑎𝑎𝑒𝑒 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟 𝑒𝑒𝑒𝑒𝑑𝑑𝑎𝑎𝑜𝑜ℎ

𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑎𝑎𝑢𝑢𝑎𝑎 𝑎𝑎𝑒𝑒𝑜𝑜𝑏𝑏𝑎𝑎𝑒𝑒 𝑜𝑜𝑜𝑜𝑢𝑢𝑟𝑟 𝑒𝑒𝑒𝑒𝑑𝑑𝑎𝑎𝑜𝑜ℎ
 

If p < 0 because the current best tour length is worse than maximum global tour length, 
use the same p from the previous iteration. 

Since the true maximum global tour length is unavailable at the beginning of search, we 
use the tour length obtained in the first iteration of the algorithm itself as the maximum 
global length in the expectation of the tour length decreases as the search progresses 
through iteration. Note that our probability ensures that first few iterations will use the 
pheromone updates of original approach, non-elitist (i.e. p = 0). As the iteration proceeds, 
however, the amount of pheromone update is more taken from the current global best 
tour which is improved from the previous iteration, the probability to take an update from 
the elitist is increased. Thus, the update rule of the elitist ACO will be used with more 
likelihood. Hence, this dynamic probabilistic elitist approach trades the exploration and 
exploitation using the decreasing p; more exploration with the lower p at the beginning of 
the search while more exploitation with the higher p using the best tour as the search 
proceeds.  

5 Experiments 

We generated our input data for the comparative study of the ACO algorithm variants in 
the following manner. We consider a 2-dimensional square of side 100 units. We pick 
random non-repeated integral (x,y) pairs to generate the list of cities. The Euclidean 
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distance among the city points is the distance between cities for the travelling salesman 
problem. We generated datasets for 50 and 100 cities for our experiment, where each 
dataset contains 100 instances of the randomly generated TSP problem. We use number 
of cities multiplied by 100 as an upper bound of the TSP tour length to initialize the 
algorithm. Similarly, an arbitrary constant c=20 multiplied by number of cities is used as 
an upper bound on iterations. 

We first present a case study on a 30 city, 10 instance small dataset to highlight some of 
the key findings. We then present results on the bigger datasets.  

For each instance of dataset in the case study, the following results are examined: 

i) Number of iterations to convergence 

ii) The tour length 

Alongside original ACO and elitist ACO, we have incorporated the static value of 
probability ‘p’ to be 0.5 and the discussed adaptive dynamic probability for the 
pheromone update rule. 

6 Results 

From the original approach, we have obtained the following results from 10 different 
random problem instances with corresponding required iterations to converge and Tour 
length: 

 Solution Tour Length 
 

TSP 
instance 

Original 
ACO 

Elitist 
ACO 

Static 
Probabilistic 
elitist ACO 

Dynamic 
Probabilistic 
Elitist ACO 

0 452.312 453.079 452.312 452.312 

1 481.137 478.069 481.137 477.923 

2 444.356 444.356 445.391 444.356 

3 494.77 487.918 494.821 487.352 

4 468.841 464.9 473.739 458.675 

5 469.742 472.831 463.905 458.454 
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Table 1: Comparisons on Tour Length for30 cities and 100 ants 

Table 1 shows the solution tour length for each instance of problems for four ACO 
algorithms for 30 cities and 100 ants. The optimal or the best tour lengths are only 
recorded. For example, for the instance of ‘0’, the number of iterations is 390 and the best 
tour length is 452.312. The distance between the two nodes are measured by Euclidean 
distance with x and y co-ordinates. 

For the ACO-Elitist approach we generated the results the same way as we did for the 
Original-ACO approach to generate the iterations and the tour lengths (optimal/shortest 
length). Table 2 shows the number of iterations and for respective problem instances in 
each approach. The results show that in static probabilistic variant the number of 
iterations are more compared to other approaches. However, the dynamic variant is able 
to achieve similar quality result in less iterations. 

 

Number of Iterations 

TSP 
Instance Original 

ACO 
Elitist 
ACO 

Static 
Probabilistic 
elitist ACO 

Dynamic 
Probabilistic 
Elitist ACO 

0 390 330 510 90 

1 240 480 240 480 

2 180 210 240 330 

3 240 180 150 210 

4 90 60 390 480 

5 150 120 90 60 

6 420.538 420.538 420.538 420.538 

7 481.068 479.125 471.907 470.699 

8 494.329 492.287 499.828 503.535 

9 501.443 498.12 492.164 495.098 
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6 120 60 90 90 

7 270 150 330 120 

8 150 90 510 150 

9 510 180 480 240 

 

Table 2: Comparisons of the Number of Iterations for 30 cities and 100 ants. 

Figure 1 shows convergence speed to the optimal tour in 4 approaches. Our approach of 
ADPE-ACO converged to a steady state faster than the other three approaches. But, at the 
end there is a change in the graph. It shows that our method has still gone further 
searching for optimal path. Unlike the elitist-ACO and SPE-ACO, ADPE-ACO didn’t 
remain at a certain steady state which may be considered as the plateau of local minima 
length, but it made further improvement after the plateau. Though a greater number of 
iterations was required for ADPE-ACO compared to the other original ACO and elitist 
approach, but ADPE-ACO was more successful in finding the shorter length tour of the 
near optimal solution. 

 

 

Figure 1: Comparison of the convergence speed. 

We ran the 4 algorithms on 100 problem instances of 100 cities and 200 ants. Their 
results are summarized in Tables 3 and 4. 
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TSP 
Instance Original 

ACO 
Elitist 
ACO 

Static 
Probabilistic 
elitist ACO 

Dynamic 
Probabilistic 
Elitist ACO 

0 864.218 861.576 874.16 844.962 

1 836.949 840.198 824.723 825.277 

2 858.032 853.081 883.401 869.011 

3 843.834 837.238 863.536 851.31 

4 852.295 844.843 840.718 850.013 

5 829.119 839.951 825.754 832.84 

6 801.579 801.265 801.09 801.858 

7 806.322 804.324 804.276 814.155 

8 804.88 804.671 804.601 794.419 

9 853.326 848.031 855.191 841.165 

 

Table 3: Tour length in the instances of 100 cities and 200 ants (only 10 instances shown 
out of 100) 

 

 

Table 4: Average tour length of 100 cities 200 ants. 

 

7 Conclusion 
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In this paper we studied closely the three different algorithms the original ACO, elitist 
ACO and our approach of two probabilistic elitist-ACO: static probabilistic elitist-ACO ( 
SPE-ACO) and adaptive dynamic probabilistic elitist-ACO (ADPE-ACO).  Our approach 
of both probabilistic elitist ACO reasonably outperformed the original-ACO and the 
elitist-ACO in the points of the average shortest tour length and the convergence speed. 
In particular, ADPE-ACO made further improvement to the global optimal tour length 
after it once reached to the steady state near to the optimal tour length for a certain 
number of iterations, i.e. plateau of the local minima. 

 

8 Future Work 

Future work will involve doing the study on a larger sample size and doing appropriate 
statistical analysis. Since we have taken the number of cities to be 30 in our case study, 
an extended version of the research can include increasing the number of vertices or cities 
(with respect to the terminology of TSP) and study the results accordingly. The study can 
be done in a more detailed way after generating results from more problem instances and 
more comparisons. The probability constraint and other parameters could be varied as 
well in order to study the difference. 
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