

Deep Network Ice Crystal Classification Using Spatial
Pyramid Pooling For Inconsistent Image Dimensions

Riley Conlin and Dr. Anne Denton
Department of Computer Science

North Dakota State University
Fargo, 58105

riley.conlin@ndsu.edu

Abstract

The process of ice crystal classification is currently hindered by the manual effort
required to classify each image into one category. This paper looks at a way to classify
images of ice crystals into one of four categories using convolutional neural networks.
The dataset given has several issues with it, primarily being that each ice crystal image
has a different dimension. Fully-connected layers of neural networks require the image
input to all share the same dimensions and rather than further compromise the dataset by
cropping or distorting it, a process called spatial pyramid pooling is applied to
standardize the size. This process is done in-between the convolutional layers of the CNN
and the fully-connected layers. The results gained showed that from a 40-image training
set it could correctly get over 50% accuracy for 2 of the categories for training images.
This shows potential for the dataset and the process of spatial pyramid pooling though
additional work and a larger dataset is required to draw a more stable conclusion.

1 Introduction

Ice crystal classification is a potentially useful and informative practice for meteorology
and meteorological prediction, such as determining cloud temperature. The primary
roadblocks to widespread practice of classification is the expense of obtaining imagery
and the effort required to manually classify the images. This paper approaches the topic
of classifying these ice crystal images by applying deep neural network learning
processes to them. It also deals in implementing a spatial pyramid pooling layer to allow
training of images of variable dimensions without cropping or distortion.

2 Method

2.1 Dataset

The received dataset is a series of images of ice crystals. These images are categorized by
the type of crystal they are. The categories are: Bullets/Bullet Rosettes, Columns,
Dendrites, and Plates. However, these images are not the ice crystals themselves but are
rather sheets of sub-images, those being the ice crystals. All these ice crystal sub-images
are of variable dimensions and locations. Alongside them are chunks of text that exist
both in the whitespace surrounding the sub-images as well as some that lie in the lower
left-hand corner of the sub-images. An example of an image sheet is shown in Figure 1.

Figure 1: Plate image sheet (not full size).

The sub-images are not necessarily whole ice crystals and the larger ones are more often
than not partials. To prevent unnecessary whitespace and text from being extraneous data
that would throw off a neural network, the sub-images were separated into their own
individual images to be used. The new images are shown in Figure 2. A total of 40
images evenly balanced between categories was manually compiled by cropping images
in Paint.net. These 40 images constitute the training set used.

Figure 2: Three separated Column ice crystals (not full size).

2.2 Neural Network

The convolutional neural network (CNN) was constructed using the Tensorflow library
for Python 3. It further implements Keras for the basic network structure. The first
problem encountered when attempting to use these images together is that they are not
guaranteed to share the same dimensions. This means the fully-connected layers won’t
work. However, the base convolution and pooling layers prior to it do not require images
of the same dimension to function. Prior to being put through the network, the images are
converted to grayscale because color is not important to classification whereas the
structure of the ice crystal is. The constructed CNN is a basic seven-layer model. The
first layer is a convolutional layer of pool size 2 and stride size of 2, the second is a max
pool with pool size of 2x2, next is another convolutional layer of pool size 4 and stride
size of 2, followed by another max pool with pool size of 2x2. The final layers condense
the multi-dimensional tensor into a single dimension shape before it is then compressed
again into the fully-connected softmax layer with 4 outputs, one for each category. In
order to get multi-dimensional images in, a spatial pyramid pooling layer is added after
the last max pooling layer but before the dense layers.

2.2.1 Spatial Pyramid Pooling

As described in Spatial Pyramid Pooling in Deep Convolutional Networks for Visual
Recognition [1], spatial pyramid pooling is a type of pooling layer that claims to enhance
the Bag-of-Words model’s ability to generate the fixed-length vectors required for the
fully-connected layers by “maintain[ing] spatial information by pooling in local spatial
bins.” By sorting into bins of proportional size, the number of bins remain constant, so
the supplied vector has a fixed size in the third dimension. Figure 3 illustrates the layer.
The pyramid chosen for the layer is of shape 1x1, 2x2, 3x3, 4x4, for a total fixed-length
representation of 30. This shape allows for a decent amount of data accuracy to be
maintained which is especially useful for the smaller images.

Figure 3: Spatial pyramid pooling layer where 256 is the filter number of conv5. Image
credit to Spatial Pyramid Pooling in Deep Convolutional Networks for Visual

Recognition [1].

The current working code base is available on a GitHub repository linked in the
references [3].

3 Results

Due to lack of input data and the difficulty of working with the dataset, the training data
was tested against itself. One trained model after several epochs had achieved over 50%
accuracy in identifying Bullets/Bullet Rosettes and Dendrites. The full test results are
listed in Table 1. This shows there is potential in using the dataset and the training
methods though often it would be extreme in either giving 100% confidence in one
singular category or by giving an equal 25% chance to each category. Both situations
would result in that categorization being applied to all the test data. Based on
observations during training, it appeared that under-trained models would result in the
100% confidence result, where over-trained models result in the 25% confidence evenly
distributed.

Overall the results indicate further tuning of the network and pyramid structure could
result in a higher level of accuracy and plausibly over 50% accuracy for all categories
rather than just for half. It is also possible that it is overly difficult a task for this CNN to
tell the difference between several of the categories. More data or a simpler way to

remove the sub-images from the image sheets would be required to draw a more stable
conclusion, though this implies a good start.

Category Correct Incorrect Accuracy

Bullets/Bullet
Rosettes 6 4 60%

Columns 3 7 30%

Dendrites 7 3 70%

Plates 3 7 30%

Total 19 21 47.5%

Table 1: Results given when testing training data.

4 Future Work

Efforts will be made towards programmatically extracting the sub-images from the image
sheets so more data can be used in training the network. Mask R-CNN [2] will be looked
at first for that purpose. Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition also claims to be capable of equal accuracy in object detection so
there is another possibility. There may also be some value in pursuing a way to remove
the text in the lower left-hand corner of the images without compromising the integrity of
the image, as that text takes up a large portion of the image on the smaller-sized images
and likely interferes with the neural network’s ability to see the ice crystal’s structure.

5 Acknowledgements

This material is based upon work supported by the National Science Foundation through
grant IIA-1355466.

References

[1] Kaiming He et al. Spatial Pyramid Pooling in Deep Convolutional Networks for
Visual Recognition. arXiv: arXiv:1406.4729v4 [cs.CV], April 2015
[2] Kaiming He et al. Mask R-CNN. arXiv: arXiv:1703.06870v3 [cs.CV], Jan 2018.
[3] Code Repository. https://github.com/topoftheyear/snowflake-classification

https://arxiv.org/abs/1406.4729v4
https://arxiv.org/abs/1703.06870v3
https://github.com/topoftheyear/snowflake-classification

