

MACHINE LEARNING (ML) FRAMEWORK FOR

IDENTIFYING INCONSISTENCY IN SOFTWARE

REQUIREMENT DOCUMENTS (SRD)

Tamaike Brown

Department of Computer Science, North Dakota State University, Fargo,

ND 58102, USA

Tamaike.brown@ndus.edu

Abstract

The use of Natural Language (NL) in software requirement specification (SRS)

documents introduces inconsistency. Numerous tools and methods are available for

managing requirements. However, there are few procedures and tools that provide

support for analyzing inconsistency in SRS textual documents. Detecting inconsistencies

in SRS document is a challenging task that has spark the interest of researchers. The

primary methods used to identify inconsistencies in NL SRS document are reviews and

inspections. However, the application of human labor is time consuming, ineffective and

introduces difficulties.

This paper describes a framework for identifying inconsistency in SRS documents. The

proposed tool incorporates a knowledge base system that integrates the semantic and

syntactic analysis of requirements.

CCS Concepts:

• Software and its Engineering ➝ Software Functional Properties • Correctness ➝

Consistency

Keywords
Inspection, inconsistency

1

1. Introduction

The first stage of the software development life cycle (SDLC) is the requirement phase.

This stage involves eliciting requirements from stakeholders in natural language (NL),

analyzing requirements, negotiating and revising requirements before all stakeholders

sign off on the final document. That is, the software requirement specification document,

SRS [31]

Requirement elicitation, the process of gathering and combining systems functionalities

from stakeholders is the first phase of the requirement stage and has a direct impact on

the quality of the software produced [13] [14] [16]. It is imperative at this stage that

intensive human communication occurs in order to gather the correct requirements [15].

Subsequently a software requirement specification document is developed. This

document captures all the required aspects of the system including functional

requirements. At one end of the pendulum, stakeholders should be able to specify their

needs as it relates to the system under development. On the other end, there must be

some automated inspection procedure in place to check the SRS document for

inconsistencies. Because SRS is the fundamental building block that guides the

development process and this document should be free of defects such as ambiguity,

incorrectness and must be analyzed as it pertains to consistency, completeness and

correctness before all stakeholders sign off in agreement with its content [17]. To add,

according to authors Xowghi and Gervasi addressing consistencies in SRS document

directly has an impact on reducing incompleteness and incorrectness [18]. Nelson and his

co-authors discovered that software developers design systems that contain embedded

errors because these systems are dependent on the system requirements [32]. Errors in

requirements are expensive to fix, increase development time due to rework and result in

maintenance issues. According to Nelson:

“A software error costing a mere $1 when caught early in the life cycle, cost $5 to correct

at midpoint and $100 to correct later in the life cycle”

Based on Nelsons statement it is imperative that early detection of inconsistency is done

in order to reduce overall SDLC related cost as well as to improve product quality.

As the utilization of software continues to proliferate in today’s society, software quality

is becoming increasingly a paramount issue. As a matter of fact, with the exponential

increase in software applications, inspection has equally grown as a vital activity for the

purpose of validating requirement specification documents. Software inspection has been

in existence for over three decades to ensure specifications and domain properties are

equivalent to the requirements thus, Broy and Denert (2002) rightly stated:

“Inspections are now 30 years old and they continue to improve software quality and

maintainability, reduce time to delivery and lower development cost”

[M. Broy & E. Denert, 2002 pp. 215] [11]

2

Software engineering literature consistently designates inspection and testing as two

widely renowned activities for software quality improvement. However, while both

methods are used for defect detection (such as inconsistencies, ambiguity, and

incompleteness) and removal in software products, testing can only be done when the

software has been implemented. On the other hand, inspection (manual or automated) is

the only method that can be applied in the early stage of the software development to

prevent rework of application requirements, design and code by finding defects and

removing them [7] [8] [9] [10].

Even though inspections have been utilized for more than three decades, it is quiet

alarming that software is still being released with defects [1]. For that reason, further

innovative research is needed to discover more real-world, simple, effective and

automatable inspection methods [12].

James Martin (1984) stated, “The root cause of 56 percent of all defects identified in

software projects are introduced during the software requirement stage of the

development life cycle” [6]. This may be because requirements are gathered through NL

[3]. The possibility of dissimilarities in interpretation and understanding by various

stakeholders can expeditiously lead to defects such as ambiguity, inconsistency,

incorrectness, omission and superfluous information, just to name a few [1]. Hence,

according to Alshazly et al., it is vital to detect these defects in the interest of conserving

resources and the conformance to requirements. In addition, it is necessary to uncover

defects to preserve software quality and reliability by removing bugs [1]. Kamalrudin

also noted that one of the major contribution to imprecision or defects in software

requirement specification document is the use of natural language [2]. According to

Fabbrini (2001) et al, SRS documents tend to contain errors because of the use of NL

when translating requirements from stakeholders [4].

Numerous documented research focus on identifying inconsistencies in software

requirements whether the model use is formal (example Zed language / Z notation) or

semi-formal (example NL). For instance, Grant et al, used Z notation specification to

validate and verify functional requirements for safety critical systems [5]. However,

most of the studies ignore or does not define an automated procedure for inspecting

textual document for inconsistencies.

Therefore, our research set out to define a procedure to identify inconsistencies in

software requirement specification that can be automated for future studies, with

particular emphasis on the functional requirements.

Although there are many definitions for Inconsistency, in the context of this work, we

will utilize the description of Inconsistent as defined by Alshazly et al., to be:

Any part of the functional requirements document that is inconstant with other related

functional requirements of the same type, structure or with the problem that the SRS

artifacts solves [1]. Inconstant with regards to use of words, terminology, and internal

logics [25] [26] [27].

3

This study is motivated by results of prior research whose limitations spark the need to

develop a new methodology to detect inconsistency. Our work takes into account some

properties of the studies reviewed as well as built on their limitation to create an

improved approach.

2. Related Works

In this segment, we presents previous studies on identifying inconsistencies in SRS

document.

Paper Approach Result

Kamalrudin

[2]

Develop an automated tool

for detecting inconsistencies

between textual SRS and use
case (use case are generated

from interactions list)

The evaluation of the study concluded that the researchers were able to trace

natural language requirements to a set of abstract interactions. Interactions

(use case) are a compilation of phases extracted from the natural language.
Nonetheless, the tool was not able to exhaust all possible forms of

inconsistencies, since traceability is difficult [20]. The tool requires more

work be done in order to fully address the need to reduce inconsistences in
requirements. For example, the need to have a library to extend the opportunity

of locating consistent interactions.

XLinkit [19]

First order logics, object Z

specifications, specification
tests, model abstraction and

model checking to verify

requirements.

In order to detect

inconsistencies goal
elaboration, order abduction

and morphing of path

(knowledge & rule base)

The tool was able to manage consistency between software artefacts generated

at each stage of the software development life cycle.

Sugimoto et

al.[21]

Requirement Framework

Model to detect inconsistency
of SRS. Application of the

Dempster and Shafer’s theory

was applied to interpret the
inconsistency.

Researchers were able to locate 2 inconsistent requirement sentences of 46

sentences

Koth et al

[28]

Heuristics Approach with
specification requirement and

semantics

The use of semantic checker as an incremental evaluation approach efficiency
was improved. That is, the methodology prevents the re-evaluation of the

entire XML document when new semantics information is added about

attributes, rather it uses the previous saved semantics computation to make
comparison to the new modification.

Table 1: Summary of Approaches to Detecting Inconsistencies in Software Requirement

Specification Document

4

In an effort to document the gap that exist in detecting inconsistencies in software

requirements Kamalrundin noted a deficiency in the inconsistencies tools literatures, in

terms of the need to assess different representation and check for inconsistencies between

scenario and textual descriptions [2]. The researcher proposed a consistency

management and tracing tool within the Eclipse-based Marama meta-development

environment that is able to trace requirements back to their design representation,

particularly the use case diagram [2]. In the authors’ analysis, the innovative tool should

assist in correcting requirements during the translation process by identifying

inconsistencies between the NL requirements and interactions. The proposed

methodology incorporated four steps. (1) Collection of NL requirements (2) Analysis is

performed on NL requirements using a database comprising of use case interactions (3)

use case models are generated and (4) items are selected from the use case and compare

to the NL [2]. While the author focused on scrutinizing inconsistencies of requirements,

yet again another study only looks on keeping requirements consistent between informal

(NL) and semi-formal (use case) requirements. Moreover, no mention was made on the

protocols that govern identifying appropriate generated use case models to compare to

NL.

Kozlenkov et al developed a knowledge based tool with the capability of ensuring

consistency between different artefacts produced at different stages in the software

development life cycle with main focus on large and complex systems. In addition, the

instrument ensures that the system under development meets the functional requirements

[19]. One of the significant shortcoming of the study is the use of formal specifications.

In order for users to make use of formal specifications they need to have a detail

knowledge of the modeling language or have the language explain to them continuously.

In addition, while the researchers were busy checking for inconsistencies between

models, there has been no method incorporated in their tool to first check for

inconsistencies within the SRS document. Since all models are based on the SRS, which

is the driving force of the system, it is very necessary and imperative that this document

is thoroughly check for such aforementioned defects. So as to prevent any carrying over

of defects (inconsistency) due to the use of NL.

Other researchers utilize techniques such as domain ontology and ontology Library

Management System to detect and correct inconsistencies between NL and other analysis

and design representation [23] [24].

In 1999 Sugimoto proposed a static technique to locate and interpret inconsistency of

SRS documents [21]. The study defined inconsistencies in two forms; 1. Illegal use of

words and 2. When two or more requirement sentences that define the same data

structure differs. The authors implement their methodology my making use of the

requirement frame model to detect inconsistencies of SRS [21]. The operation of the

requirement frame model integrates the following concepts:

 Identifying objects (verbs) and object types (attributes)

 Define operations among objects and role of the operations (cases) where cases

represent concepts about agents, objects, goals of operations.

Based on the concepts, three major frames were formed [21] [22].

 A noun level frame

5

 A sentence level frame

 A functional frame

In order to determine the feasibility of the technique the authors developed a text-base

requirement language name X-JRDL that is based on the requirement frame model. The

purpose of X-JRDL dictionary is to analyze and simplify sentences that is transferrable

into CRD (conceptual requirement description). X-JRDL description (words such as

pronouns, verbs and adjectives) is analyzed using three interpreters. Verbs are further

categorized into different concepts to find illegal use of words which the researchers

categorized as a form of inconsistencies. Subsequently the defined procedure was applied

to a stock control system. Of the 46 sentences in the SRS two (2) inconsistencies were

identified [21]. While giving credit to the researchers for developing such novel approach

the study falls short in the following aspects:

 It is difficult to prove the successfulness of the approach if readers are unable to

identify the actual number of inconsistencies in the document use to support the

study.

 The dictionary was written in Japanese language, hence that limits the ability to

accept the study in a general scenario.

 The dictionary excludes the use of noun instead pronouns are incorporated in the

X-JRDL. This is undesirable since a SRS document and any translation thereof

must be specific about the actors who should perform particular requirements as

define in the SRS document. Not being specific about who or what should

perform system functionality may lead to yet another form of inconsistency in the

SRS.

 The methodology requires automation in order to further identify any anomaly in

the proposed procedure and enhance the technique.

On the other hand, the results additionally provided insights into how the proposed

method can be ameliorated for automation.

Koth et al., [28] developed a methodology based heuristic analysis approach coupled

with requirement specifications and semantics. This approach was selected by the

researchers because in comparison with its counterpart formal analysis, heuristic analysis

does not require the structure of mathematical model for making decisions [29] and is

capable of specifying the steps for achieving required goal [30]. In addition, this is the

most commonly used technique for identifying consistencies or inconsistencies in

requirements. The semantic incremental attribute evaluation technique was developed

and used on Extensible Markup Language (XML) document. This approach introduces

incremental facilities and evaluates the attributes associated to XML semantics by adding

incremental strategy to XML semantic evaluator [28]. In order to check the consistency

of documents repeatedly until a consistent document is produced the Propagate

Algorithm was also employed [28].

Gnesi et al. [33] developed and implemented a tool so called Quality Analyzer for

Requirement Specification (QuARS) for analyzing lexical and syntax in software

requirement documents. The function of the tool is to extract structured information and

metrics for detecting linguistic inaccuracies and defects that can result in ambiguity at the

later phases of the software development process. The lexical component looks on a word

6

in a language (example strong) while the syntactic component concentrates on the

arrangement of words in a sentence (example, the users should enter website with

password. – This can be interpreted as the website is only accessible when a user enters a

password or that a website that has a password is only accessible to the user. Because

QuARS is limited to defect identification and readability an updated version of QuARS

was released named QuARS Express by Bucchiarone et al that incorporate improvement

on defect identification and readability analysis [34].

3. Proposed Approach

We are proposing a methodical approach to our new hybrid technique. Figure 1 shows

our proposed approach. The process of identifying inconsistencies in the SRS document

will begin with comparing the requirements of each bucket to the consistency attributes

or rules stored in the knowledge base database from a semantic and syntactic point of

view. The semantic looks on the meaning of words in a language. While the syntactic

concentrates on the analysis of requirement statement constructs. Once a rule has been

broken, the tag for that requirement will be recorded. Subsequently, a log file will

summarize each rule that has been broken that is associated with a particular requirement.

Figure 1: Proposed Approach

Our proposed technique involves the following steps:

 Loading a textual SRS document to the system.

 Grouping related requirements into different buckets. The system should be

capable of recognizing requirement ID such as 1.1.a. The goal of grouping relate

items into different buckets is to facilitate effective and efficient analysis of the

data as well as to reduce re-evaluation processing time. In addition, this will help

to record analysis result such that all inconsistency rule pertaining to a

requirement appears together.

 Tag each requirement in a bucket: - A suffix associated with a bucket will be

added to the tag of each requirements. The goal is to refine the scope of re-

evaluation of the SRS document after modification. For example, if a change is

7

made to a particular section of the SRS document, only that specified bucket will

be evaluated after the requirement had been added to the bucket rather than all

buckets. Also, tagging each requirement provides identification of consistency

rule violation traceability from the machine learning knowledge based system to

the initial requirement

 Parse Requirements: - Requirement will be parsed from both a syntactic and

semantic standpoint. As outlined earlier on the syntax component will focus on

the construct of a sentence. Syntactic parsing will highlight the part of speech

such as verb or noun of a word in a sentence as well as the role of each word.

Meanwhile the semantic parsing of the document will identify specific words and

phrases in sentences of the SRS document.

 In our approach we put forward the need for inclusion of a machine learning

knowledge base system (MLKBS). So that the system will be able to draw upon

the knowledge of human expert to identify inconsistency issues that normally

require human competence. The knowledge base system (MLKBS) will be

directly identifying and locating inconsistencies by making use of machine

learning systems with Meta data for storing all the information related to

requirements and rules.

o The MLKBS incorporate a comprehensive Meta dictionary which is a

collection of facts about the system’s domain within the database to check for

verbs, nouns etc.

o The MLKBS should be able to provide reasoning about information in the

knowledge base by identify sentences and performing comparison amongst

sentences syntax and semantics rules.

o The system must be able to store values for check attributes to reduce

validation time when modification is done to the SRS document.

The machine learning system will make use of all the stored data in Meta data for further

data mining and automated reasoning.

Figure 2: Algorithm for Identifying Inconsistency in SRS document

8

Number of inconsistency identify (NoI) = ∑ 𝑏𝑛
𝑖=1

Where b represents buckets

Where n represents number of buckets

Figure 3: Mapping a Requirement to Consistency Rules in the Knowledge Base System

Figure 3 illustrates how each requirement will be compared to the consistency rules

stored in the library of the KBs.

4. Case Study

The case study below shows from an abstract level how the automated system should

function. We assume the development of a website that allows users to make purchasing

of items online. Our customer requires that only users with authorized access – user

name and password are allowed to use the website. We are assuming that our customer

means well when stating the needs of the business. Initially, we do not have a clear

knowledge about the domain, table 2 and table 3 shows our beginning requirements and

consistency attributes.

Requirements ID Requirement Description Requirement tag

Number

Req 1.0 The user shall enter website

with a user name and

password

Req_1<b1>

Req 2.0 The software shall support

database entry

Req_2<b1>

Req 3.0 Accessing the website allows

purchasing

Req_3<b1>

Req 4.0 Users who do not have a user

name and password are

denied access to the website

Req_4<b1>

Req 5.0 Users whose user name and

password appears in the

database shall be

authenticated

Req_5<b1>

Req 6.0 Password must be strong

containing letters (upper and

lower case), numbers and

special characters

Req_6<b1>

Table 2: Beginning Online System Requirement

9

Where b1 represents bucket one which is the suffix for each tag

Requirement

Tag Number

Consistency

Attribute ID

Consistency Attributes

(syntactic and semantic Rules)

Req_1<b1> CA1 If user enter user name and

password then allow user access

to the website

Req_2<b1> CA2 If database exist then user data

shall be stores in the database

Req_3<b1> CA3 If user is authenticated then user

will be allowed to purchase

Req_4<b1> CA4 If user does not have a user

name or password then user will

be prevented from entering the

website

Req_5<b1> CA5 If user name and password

exists in the database then the

user is valid

Req_6<b1> CA6 If password contains upper and

lower case letters, numbers and

special characters then it is

strong

Table 3: Consistency Attributes

For demonstration purpose, we are only using one bucket (b1). Each requirement will be

compared to all the constraint attributes that exist in the knowledge base system.

Requirement

tag number

Consistency Attributes

CA1 CA2 CA3 CA4 CA5 CA6

Req_1<b1> Y N N N N N

Req_2<b1> N Y N N N N

Req_3<b1> N N Y N N N

Req_4<b1> N N N Y N N

Req_5<b1> Y N N N Y N

Req_6<b1> N N N N N Y

Table 4: Identifying Inconsistency Result Table

Table 5: Resulting Log File

Log File

Req_1<b1> is inconsistency with CA2,

CA3, CA4, CA5, CA6

Req_2<b1> is inconsistency with CA1,

 CA3, CA4, CA5, CA6

Req_3<b1> is inconsistency with CA1,

 CA2, CA4, CA5, CA6

Req_4<b1> is inconsistency with CA1,

 CA2, CA3, CA5, CA6

Req_5<b1> is inconsistency with CA2,

 CA3, CA4, CA5

Req_6<b1> is inconsistency with CA1,

 CA2, CA3, CA4, CA5

NoI in b1 = 29

10

5. Conclusion And Future Work

We defined a new approach for identifying inconsistencies in SRS document. This

approach has taken into consideration strengths of previous study such as Gnesi et al,

Sugimoto and Koth et al. It builds on those systems techniques shortcomings and it

incorporates the use of knowledge based system.

Future work is required to build the system or find means to integrate systems together

that will identify inconsistency in SRS document as outlined by this approach.

6. References

[1] Alshazly, A.A.; Elfatatry, A.M.; Abougabal, M. S. Detecting Defects in Software

Requirements

Specification. Alexandria Engineering Journal,

2014 53, Pages 513–527 http://dx.doi.org/10.1016/j.aej.2014.06.001

[2] Kamalrudin, M. Automated Software tool for checking the inconsistencies of

Requirements. IEEE/ACM International Conference on Automated Software

Engineering (2009)

[3] Aceituna, D.; Hyunsook Do; Walia, G.S.; Lee, Seok-Won. Evaluating the use of

model-based requirements verification method: A feasibility study. Empirical

Requirements Engineering (EmpiRE), 2011 First International Workshop on

 Year: 2011 Pages: 13 - 20, DOI:

10.1109/EmpiRE.2011.6046248 IEEE Conference Publications

[4] Fabbrini, F., et al. The linguistic approach to the natural language requirements

quality: benefit of the use of an automatic tool. in Software Engineering

Workshop, 2001. Proceedings. 26th Annual NASA Goddard. 2001

[5] Grant, E.S; Jackson, V.K.; Clachar, S.A.; Towards a Formal Approach to

Validating and Verifying Functional Design for Complex Safety Critical Systems.

Journal on Computing (JoC) Vol.2 No.1, April 2012.

[6] Martin, J. An Information Systems Manifesto.

Prentice Hall, 1984

[7] Fagan, M. Design and Code Inspections to reduce Errors in Program

Development, IBM System Journal 15 (3) 1976) 182 – 211.

[8] Fagan, M., Advances in Software Inspection, IEEE Transactions on Software

Engineering 12(7) (1986) 744-751.

[9] Ackerman, A.F.; Buchwald, L.S.; Lewski, F.H. Software Inspection: An effective

verification Process, IEEE Software 6(3) (1989) 31-36

[10] Hetzel, B., The Complete Guide to Software Testing, John Wiley & Sons, USA,

1988.

[11] Broy, M.; Denert E. Software Pioneers: Contribution to Software Engineering.

2002

[12] Parnas, D.L.; Lawford, M. The Role of Inspection in Software Quality Assurance,

IEEE Transaction on Software Engineering 29(8) (2003) 674-676.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Walia%2C%20G.S..QT.&newsearch=true

11

[13] Somerville, I. Requirements Engineering: A Good Practice Guide. New Delhi,

India: Wiley 2009

[14] Aurum, A.; Wohlin, C., Engineering and Managing Software Requirements. New

York, NY, USA: Springer, 2006.

[15] Anwar, F.; Razali, R.; Ahmad, K. Achieving effective communication during

requirement elicitation – A conceptual framework. In Proceeding 2nd Int. Conf,

Softw. Eng. Comput. Syst., 2011, pp. 600-610

[16] Gerald Kotonya, I.S. Requirement Engineering Process and Techiques, ed P.P.W.

Professor Davis Barron. 1998, West Sussex England: John Wiley & Sons Ltd 282

[17] Denger, C.; Berry D.M.; Kamsties, E. Higher Quality Requirements

Specifications through Natural Language Patterns, in Proceedings of the IEEE

International Conference on Software-Science, Technology \& Engineering. 2003,

IEEE Computer Society. p. 80

[18] Zowghi, D.; Gervasi, V. On the interplay between consistency completeness, and

correctness in requirements evolution. Information and Software Technology,

2003. 45(14): p. 993-1009

[19] Kozlenkov, A.; Zisman, A., Are their Design Specifications. Consistent with our

Requirements? In Proceedings of the 10th Anniversary IEEE Joint International

Conference on Requirements Engineering. 2002, IEEE Computer Society. p. 145-

156

[20] Aalinoja Julo, OM. Software requirements implementation and management.

Software && systems engineering and their applications 2004 vol 1(3). Pp. 1.1 –

1.8

[21] Sugimoto, H.; Ohnishi, A. A detecting and Interpreting Method of Inconsistency

of Software Requirement Specifications. 1999, IEEE

[22] Ohnishi, A. Software Requirements Specification Database based on

Requirements Frame Model. Proc. IEEE International Conference on

Requirements Engineering (ICRE ’96), 1996, pp. 221-228

[23] Patel, K.; Gandhi, S., Inconsistency measurement and remove from Software

Requirement Specification. 2014, IJEDR (International Journal of Engineering

Development and Research). Vol 2(2)

[24] Zhu, X.; Jin, Z. Inconsistency measurement of Software Requirements

Specification: An Ontology-Based Approach.Proc. IEEE International conference

on Engineering of complex computer systems, ICECCS 2005, pp 402-410

[25] Kamalrudin, M.; Sidek, S., Software Requirements Validation and Consistency

Management. International Journal of Software Engineering and Its Applications.

Vol. 9, No 10 (2015), pp. 39-58

[26] Zowghi, D.; Gervasi, V., “On the interplay between consistency, completeness

and correctness in requirements evolution”, Information and Software

Technology, vol. 45, (2003), pp. 993-1009

[27] Satyajit, A.; Mohanty, H.; George, C., “Domain consistency in requirements

specification,” Proc. Fifth International Conference on Quality Software 2005

(QSIC 2005), pp. 231-238

12

[28] Koth, Y.; Gondow, K.; Katayama, T., “An incremental evaluation approach to

check the consistency of XML documents”, Proc. IEEE International Conference

on Systems, Man and Cybernetics 2002, vol. 6.

[29] Silver, E.A., “An overview of Heuristic Solution Methods”, The Journal of the

Operational Research Society, vol. 55, (2004), pp. 936-956.

[30] Sutcliffe, A.A.G.; Maiden, N.A.M., “Bridging the requirements gap: policies,

goals and domains”, Proc. Seventh International Workshop on Software

Specification and Design, (1993), pp. 52-55

[31] Malhotra, R.; Chug, A.; Hayrapetian, A.; Raje, R. “Analyzing and evaluating

security features in software requirements. International Conference on

Innovation and Challenges in Cyber Security (ICICCS-INBUSH), 2016.

[32] Nelson, M; Clarke, J; Spurlock, M.: Curing the Software Requirments and Cost

Estimating Blues. PM-Nov-Dec, 1999

[33] Gnesi, S., Fabbrini, F., Fusani, M., and Trentanni, G.: An automatic tool for the

analysis of natural language requirements, CRL Publishing: Leicester, 2005.

[34] Bucchiarone, A., Fantechi, A., Gnesis, S., Lami, G., and Trentanni, G.: QuARS

Express – An Automatic analyzer of natural language requirements, Proceeding

of 23rd IEEE/ACM International Conference on Automated Software

 Engineering, pp. 473-474, 2008.

