

Deep Insight And Analytics Into the
Git Repositories

Aaron Salvo

Computer Science

University of Wisconsin-Parkside

Kenosha, WI 53144

salvo002@rangers.uwp.edu

Babita Thapa

Computer Science

University of Wisconsin-Parkside

Kenosha, WI 53144

thapa002@rangers.uwp.edu

Ryan Groves

Computer Science

University of Wisconsin-Parkside

Kenosha, WI 53144

grove021@rangers.uwp.edu

Dr. Zaid Altahat

Computer Science

University of Wisconsin-Parkside

Kenosha, WI 53144

altahat@rangers.uwp.edu

Ian Gilbert

Computer Science

University of Wisconsin-Parkside

Kenosha, WI 53144

gilbe016@rangers.uwp.edu

2

Abstract

Projects of any magnitude, when worked on by a team, are stored on remote

repositories such as Git. Each of these repositories contains vast information about

each file committed and its contributors. It can be beneficial to collect and study

this information, whether by the development team or by an audit group in the

future. Obtaining that information and deciphering it from the command line is

unpractical. It requires a polling approach where the user must proactively look for

something specific in the code history. Users could easily miss important events or

alerts about the code if they manually check for events and they will certainly miss

alerts that they don’t know to look for. Git allowed us to check which areas of the

code are changing the most. This is an indication of a possible refactoring

opportunity.

1 Introduction

To solve the issue of studying the development of projects, we created the application Git

Repositories Analytics. This application receives a user-chosen git repository and

visualizes desired information with clear, understandable graphs. These graphs, while

designed to be readable for anyone, are particularly useful for code consumers such as

project managers and the developers themselves to ensure high software quality. For

instance, it could allow one to quickly analyze what files are changed the most and act

accordingly (perhaps the file has many bugs, or its design prevents seamless

maintainability). Beyond this, it can also help managers find what files a contributor works

on the most, inspect the history of a single file or contributor, or even learn and compare

contributor commit styles. The current status of the application provides these services

through a web application. Flask [1] was used to build the the web application and Python

is used on the back-end to run the analyses of the user-chosen git repository and generate

JSON files. These JSON files are then used to create graphs with D3.js [2]. The application

currently lacks an automatic alert service, but it is something planned for the next phase of

the application.

2 Related Works

There are other projects in development similar to this one, however, these projects often

times provide raw statistics or do not have a clean interface to interact with [6, 7]. That is

where our project separates itself from the rest. Our project consists of a nice, clean, easy-

to-use interface with no command-line arguments to remember. The application has been

divided into separate tabs, or windows, to give clear lines of separation between its abilities

and the data provided. Any data the user wishes to view is presented in clean, easy to

understand graphs. This limits our ability to convey all information at once, but we believe

that the easier to use format will be more beneficial.

3

Figure 1: Web Interface

3 Method

We followed the agile development methodologies throughout the project. Specifically

Scrum and JIRA were used for the tasks and project management. GitLab was used as the

code repository and Microsoft team was used as a technology to communicate within the

team and share file. The project can be categorized in three different sections:

3.1 Extracting the Data

The data is a key factor for the whole project. For this project, Python was used on the

back-end to extract the data from the repositories. The repositories are the one user chooses

providing with the link for Git repositories. The Python script then analyzes the chosen

repository using the Python library gitPython [3]. The library allows Python to access the

server's terminal directly for all git related commands.

The script’s first step is to take the user given URL and process it with gitPython.

Depending on whether the repository exists on the machine, the repository is either cloned

or a fresh copy is pulled. Regardless of which command is performed, the script also creates

a "repo object;" this object is used by gitPython to execute all future git commands on that

repository. This repo object is saved and passed to the analysis functions.

The next step is to perform the user chosen analysis function. To do this, the script passes

in the given repo object and a handful of user defined parameters to the corresponding

function. Finally, the function will carry out its analysis by calling git log commands

through gitPython. Each function spits out a human readable JSON file that is fit to graph

using d3.

3.2 Visualizing the Data

4

Another important process was visualizing the data. D3.js was used for a nice and clear

representation of the data. At first, experiments were done with various file type like csv

and tsv. Then a better solution was found to work efficiently in parsing the data and

visualization using JSON file. Atom and WebStorm were used as IDE to write it

The application uses the JSON file to represent the data in a quantitative way. Currently,

the File History and the Author History graph options are used for the visualization. The

File History graph is a histogram which is also interactive to the user and changes the color

based on any touch in the bar. The X-axis is the name of the file and the Y- axis is based

on the number of commits ranging from 0 to the maximum number of commits. And the

Author History Bar has a little complex code. Written in JavaScript using D3.js, it

implements the bubble line graph based on the date and time. The date on the X-axis and

the time on the Y-axis is parsed from the JSON data field and using the substring method.

The Bubble also coincides with the point in the graph. The size of the bubble is based on

the number of files changed. That means if there is more file changed in the commit, the

bubble will appear larger. Also, the point in the graph displays all other details parsed from

the JSON file. The graph uses the dimple library available online from dimplejs.org. There

are plenty of visualizations in D3 library. These can be used for future graphs and

representation based on any contents.

3.3 Creating the Web

Final phase of our project was to create a web application putting everything together.

Flask was used to build the web application in the front end. We have the application

prompt the user for the link to the Git repositories. The page also allows the option to

choose the graph type. Based on the user preference, the data is parsed from the repositories

and the graph would be created representing the aspects of the data. The Flask framework

integrates smoothly with the Python scripts we wrote. Since Python has strong support for

git repositories and Flask is written in Python, Flask was chosen.

4 Results

Utilizing the complete application, we can generate graphs for researching purposes, useful

for any team of developers. As an example, let’s inspect the bitcoin repository on GitHub

[4]. Our first task will be to choose a function via the “Graph Type” field and use the “Total

Commit Statistics” function:

5

Figure 2: Total Commit Statistics

 Next, we need to input the bitcoin GitHub URL:

Figure 3: Inputting GitHub URL

The generated graph shows a list of files (organized from most committed to least) with

the number of commits per file shown. For scale, the average number of commits per

repository is displayed with a red line:

Figure 4: Commit graph for Bitcoin

For more information, the user can hover over a file’s bar to see the filename, the file’s

exact commit count, the percentage of all commits dedicated to the file, and the size of the

file in bytes:

6

Figure 5: Hovering over a bar gives more information

Already we can learn a few things from this graph. For one, we know the top fifteen most

changed files at a glance (fig. 3). Two, we can view the size of each file and try to notice

oddities. Generally, larger files will have more commits than smaller ones, but we can see

that isn’t always the case (see fig. 4.4 vs. fig. 4.2/4.3). This could invite further research,

especially if one found a very small file that was being changed constantly; this could imply

a volatile, buggy file. The third piece of information is that we can tell main.cpp has been

removed due to its size of 0 (fig. 4.1).

Using the same repository, we can parse the authors to see who is most active:

7

Figure 6.1Author List of 15

Something apparently obvious is the number one contributor is far more active than

anybody else. While no other contributor has exceeded 2000 commits, Wladimir J. van der

Laan has more than 6000 to his name. If we expand our search to the top 200 authors, the

difference becomes even more obvious:

Figure 6.2: Author List of 200

8

 It should be noted that this application does not play well with big data. When the number

of authors is increased to such a high amount, the graphs become increasingly confusing

to read. As another example of this, let’s use the application to inspect the complete commit

history of the main author, Wladimir J. van der Laan:

Figure 7: Too Much Data

This is practically unreadable for most. Future updates can help remedy this by allowing

the user to zoom or scroll through the graph. Currently, it is best to instead limit the search

to something much more manageable. In this case, let’s view Wladimir J. van der Laan’s

commit history during the past week:

Figure 8: Last week’s commits

Now we have a digestible timeline. We can tell the date and time with each commit’s x/y

coordinates and hovering over the commit gives more precise information such as the exact

9

date and times, the commit hash, and the reason for the commit. This graph also works for

file’s as well, allowing users to see how a file has been changed over time.

5 Future Work

Future work will consist of adding additional graphs so users may visualize and present

data in a way that accentuates the data that is being explored. This includes different graph

types as well as radial options for manipulating the data that has already been stored. This

will also include an option for storing and saving this data for later use, as well as a search

function for sorting through the stored repos. An alert system will be built which will

require integration with a git repository. Each time a commit is made, our application

kicks in and run the analysis and generate any alerts.

6 Conclusion

Results summary: The application’s graphs are helpful for identifying active

contributors, inspecting what files require the most changes, and researching an author or

file’s history over a set period. The data obtained through use of the application will be

useful in identifying trends and identifying abnormalities over the lifetime of a repository.

7 References

[1] http://flask.pocoo.org

[2] Bostock, Mike. “Data-Driven Documents.” D3.Js, d3js.org/.

[3] https://gitpython.readthedocs.io/en/stable/

[4] Bitcoin. “Bitcoin/Bitcoin.” GitHub, 25 Mar. 2019, github.com/bitcoin/bitcoin.

[5] https://d3js.org

[6] "Mining Software Engineering Data from GitHub"; Georgios Gousios, Diomidis

Spinellis; : IEEE/ACM 39th International Conference on Software Engineering

Companion (ICSE-C); 2017

[7] "A Dataset of the Activity of the Git Super-repository of Linux in 2012"; Daniel M.

German, Bram Adams, Ahmed E. Hassan; 2015 IEEE/ACM 12th Working

Conference on Mining Software Repositories; 2015

https://d3js.org/

10

