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ABSTRACT 
 
Cloud computing has become nearly as ubiquitous as the Internet in recent years, with large 
Cloud computing providers such as Amazon, Microsoft, IBM, and Google dominating much of 
the marketplace for public Cloud services. Both individual users as well as enterprises of every 
size have moved their data and computing needs into the Cloud. Often these providers promise a 
lower price point than on-premises solutions. In this paper, the main focus will be on the relative 
speed a Cloud-based system will work over the Internet. In this paper two different Cloud 
computing platforms are compared for performance the Amazon Web Service (AWS) and 
DigitalOcean. Both Cloud providers are based in the United States but have multiple datacenters 
located around the globe. The method by which the two Clouds will be compared is through the 
timing of the use of a distributed encryption system, which was developed by the authors.  
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Introduction 
 
The Internet is a very hostile place and because public clouds are connected to the Internet the 
threat permeates them as well. There have been numerous instances of successful attacks by 
hackers as illustrated by the successful attacks on the likes of Equifax, Anthem and the 
Democratic National Committee among many others. The literature also indicates that if 
properly managed and configured, the new forms of the encryption algorithms can be a quite 
effective tool at thwarting these attacks (Abdalla, M., Bellare, M., & Neven, G., 2010). The 
literature also indicates that too often the algorithms can be misused, a good example is with the 
protocol secure shell (ssh). In that a key is created and stored for long periods of time and it gets 
compromised while stored on the client-side host device (Ylonen, T. & Lonvick, C., 2006). 
 
One effective way of dealing with the key compromise strategy is to make the key more 
complex. This can be done with a key agreement protocol such as is described in (Ylonen, T. & 
Lonvick, C., 2006). In this case both the client and the server would need to be compromised 
(Filipe, J. & Obaidat, M., 2008). Also, there are various scenarios where a key management 
server, such as in a Public Key Infrastructure (PKI) setup is used and, in such cases, that server 
would need to be compromised to obtain the key (Mearian, L., 2009). However, the 
methodology utilized herein involves splitting the key and storing it among multiple hosts 
(Ylonen, T. & Lonvick, C., 2006). This method offers the advantages of fault tolerance and 
obscurity because padding can be used on each segment. Further, the fault tolerance is obtained 
by placing the sub-keys on more than the needed amounts. For example, the sub-keys could be 
placed on five hosts with an N-2 algorithm. In such a case any two of the five nodes could fail 
and the total key could still be recovers. For a detailed explanation of this process see (Redman, 
J., et al, 2013). 
 
This process works quite well within LAN based private cloud where the latency is small. 
However, implementing such a strategy is definitely more challenging in a public cloud which 
requires that access be obtained via the WAN-based Internet. This was especially true in our 
experiment in which the public cloud was 14 hops away from the client using the keys to 
authenticate. The literature certainly does indicate that some application does not run well across 
a WAN, particularly in cases of large data transfers and dependence on sliding window protocols 
(Fall, K., & McCanne, S. 2005). The challenge then is to ascertain if the latency problem is a 
function of the network or the application itself (Guo, C. et al. 2015). Of course there could be an 
interaction between the network and the application which would further complicate the matter. 
The literature does indicate that latency can be a problem in key management systems (Nash, R., 
2016). The latency problem as related to key transfer has been addressed and new protocols 
designed to combat the problem. A good example is (Zhang, X., Lam, S., Lee, D-Y., & Yang, Y.  
2003) which uses a multi-cast strategy to make sure the key arrives in a timely manner and the 
inquiry does not get lost. While this research is useful in LAN-based applications, little research 
has been done that addresses the application of a distributed key scheme in a public-based Cloud. 
To gain an understanding of the latency metric in such a scenario this paper will focus on 
measuring the latency of authentication using a distributed key algorithm. Specifically, several 
different algorithms will be tested in two different public Clouds and the results analyzed to 
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ascertain differences between the two Clouds.  Further, the data will be examined to ascertain the 
probability of any trial exceeding the three second target threshold.  
 
 
Literature Review 
 
Distributing parts of the encryption algorithm across multiple nodes is not a completely new 
concept. However, its use in public Cloud enterprise level applications as suggested herein has 
not been widely done. The basic concept of distributed encryption was suggested and 
implemented in the mid-1990s.  An example of such an implementation is offered in (Postma, 
A., De Boer, W., Helme, A., & Smit, G., 1996). This work suggests the n-t algorithm in which n 
= number of nodes and t = the number of nodes that could be faulty and the key could still be 
recovered. In this system the encryption scenario is started at a root node and follows a preset 
path (or redundant path) until all the needed parts of the key are recovered. 
 
This basic logic has been refined by treating each one of the segments as an independent entity, 
but still utilizing the n-t logic. The definitive work in this regard (Guster, D., Brown, C., & 
Sultanov, R. 2010) used relatively small keys (16 bytes) to implement a proof of concept 
scenario. Further, while the key was 16 bytes only 12 of the bytes were significant and a sliding 
window pattern was used so that even with n = 4 the key could still be recovered even if 2 of the 
4 nodes was down. 
 
The basic ideas were further refined by (Rego, I., Gillespie, N., & Guster, D., 2011) in which a 
UNIX script provided the logic to split an RSA algorithm across several hosts. In this case a pre-
generated key would be read from a file and the output from the UNIX script would be 
considered as fractions of the initial file. When the fragments are re-formed, they first would be 
checked using a file hash such as MD5sum. While this is a new twist in the form presented it 
lacked the complexity required for a production system. 
 
The idea has been refined to the point it could be deployed to a production system by (Redman, 
J., et al, 2013). This algorithm has been expanded to use 24 byte keys, AES-192 encryption and 
up to 6 nodes. This will be the algorithm that is used herein to test the performance of the AWS 
and DigitalOcean Clouds. 
 
Latency has been a problem in distributed applications for some time (Ramaswamy, R., 2000). A 
detailed treatment of the typical problems coupled with expected metrics can be found in (Brook, 
A., 2015). This work also discusses how the concept of threading can be used to achieve 
encapsulation as well as speed up a given application which is the main concept used herein. 
Some of the solutions that are possible by upgrading a datacenter to low-latency ethernet are also 
discussed in (Rumble, S., Ongaro, D., Stutsman, R. Rosenblum, M. & Ousterhout, J., 2011). 
However, unless private Clouds and the Internet as a whole adopt such technology it will have 
very limited influence on the problem discussed herein. 
 
A key management system offers a special challenge in regard to latency, in that if the response 
is not adequate and retries occur it delays the use of any application associated with the target 
host. The basic latency challenges related to a key management system have been described by 
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(Nash, R., 2016).  There have been protocols designed to combat latency issues such as (Zhang, 
X., Lam, S., Lee, D-Y., & Yang, Y.  2003), but such methodologies that use a multi-cast strategy 
may not be effective in a WAN inquiry mode because they rely on resending packets to known 
hosts. Work has been done related to describing and combating latency problems with public 
Clouds (Xu, Y., Musgrave, Z., Noble, B. & Baily, M., 2013) which indicates that for some 
applications latency can indeed be a major problem. There does not appear to be published 
research that directly deal with latency issues with distributed fault tolerant keys. Therefore, the 
experimental trials described herein can be useful in determining the effectiveness of such 
strategies and guide future generations of such systems. 
 
 
Methodology/Results 
 
Randomness in the Key:  It is critical to generate the key using an effective random number 
generator (Eastlake, D., Crocker, S., & Schiller, J., 1994).  The experimentation from (Redman, 
J., et al, 2013) confirmed that the quantum random number generator did offer better results and 
it was used to generate the keys for the current tests as well.  
 
Splitting the Key: There are numerous methods that can be used to split a key into subparts. 
However, because the goal in this study was to ensure both encapsulation and reliability an N-3 
algorithm was tested. For this series of trials, the key was broken up into 24-byte segments, with 
each byte being made up of 8 bits, which can be represented by two hexadecimal characters. For 
these trials the 24-byte / 192-bit key size was utilized. To help ensure secrecy the AES 
(Advanced Encryption Standard) encryption was chosen due to its recognized robustness.   
 

 
 

Figure 1: Key (Top Boxes) with Initialization Vector (IV) and Salt (Redman, J., et al, 2013) 
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Figure 1 above displays a sample 24-byte key in hexadecimal which will require 48 hex 
characters. Below the key is a sample table of how the sample key might be split up. 
Specifically, the six rows in the bottom part of the table represent the six nodes contained in the 
distributed key system and depict how the key might be broken up using the method described 
herein. The blank spaces in the table above represent the missing pieces of the key. Note that 
they are strategically placed so that the whole key can be recovered if any three of the sub-keys 
are recoverable. 
 
 
The Distributed Key Environment: A distributed encryption environment was created on each of 
the two public Clouds with each Cloud receiving the same configuration. Specifically, the 
various nodes utilized a virtual machine architecture using the Xen Server logic and all the 
servers ran Node.js, which utilizes JavaScript which facilitates “fast, scalable” deployment of 
network applications. Node.js was chosen because it uses an event-driven non-blocking I/O 
model. This logic makes it lightweight and efficient which is perfect for data-intensive real-time 
applications that run across distributed devices (Nodejs.org, 2019). In terms of an operating 
system, all of the nodes ran Ubuntu Linux 12.04 64-bit Edition. 
 
 

 
 

Figure 2: Distributed Encryption System (Redman, J. et al, 2013) 
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Figure 2 above provides a visual depiction of how the distributed keys would be accessed and 
assembled to form the full key. Note that an N-3 algorithm is being used in this example. In the 
experiment herein all nodes would reside within a single public Cloud region, i.e. N. Virginia. 
 
The Results of the Trials: The measures of central tendency for each of the two public Clouds 
tested: Amazon Web Service and DigitalOcean are depicted in the two Tables below. The Table 
1 includes five different algorithms and as expected, as the number of nodes increases so does 
the delay. Implementing some type of fault tolerance (t < n) also generally adds to the delay. 
 
 

Test Type 3 of 6 Nodes 4 of 8 Nodes 5 of 8 Nodes 6 of 8 Nodes 8 of 8 Nodes 

Min 287 ms 297 ms 503 ms 516 ms 489 ms 

Max 1516 ms 1559 ms 1802 ms 1669 ms 1574 ms 

Average  570.68 ms 589.41 ms 601.30 ms 605.23 ms 612.56 ms 

Standard 
Deviation  

132.96 ms 133.99 ms 157.01 ms 96.53 ms 134.05 ms 

 
Table 1: Amazon Web Service Cloud (AWS)  

 
 

Test Type 3 of 6 Nodes 4 of 8 Nodes 5 of 8 Nodes 6 of 8 Nodes 8 of 8 Nodes 

Min 292 ms 297 ms 477 ms 491 ms 486 ms 

Max 1666 ms 1533 ms 1836 ms 2030 ms 1407 ms 

Average  520.96 ms 522.71 ms 528.55 ms 539.05 ms 547.20 ms 

Standard 
Deviation  

64.06 ms 27.99 ms 42.85 ms 40.33 ms 41.66 ms 

 
Table 2: DigitalOcean Cloud (DO) 

 
On the surface even if the max values were used to assess latency it would appear that the 3 
second target was met, but that value is just really part of the equation. Given the data above 
even the 292ms value could be problematic in meeting the 3 second target. While ~.292 of a 
second may not seem that significant, one needs to look at the total response time model which is 
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quite complex and involves a number of components. So, the real test then becomes end-to-end 
delay. A good representative example of this model is offered by (Fleming, D., 2004).: User -
Application-Command _CPULocalComputer _NICLocalComputer _Network-Propagation 
_Switch _Network-Propagation _Switch _Network-Propagation _NICFile-Server 
_CPUFile-Server _SCSI-bus _DiskRead, ( …then traverse the path in reverse for the reply).  
 
Given that the network delay on the Internet in the US might often take .5 seconds in each 
direction it is important to optimize each of the parameters. Further, one needs to realize that this 
whole algorithm is based on queuing theory, which means that there is an interaction among all 
the parameters. In other words, a delay of .292 instead of .1 at the first parameter won’t simply 
result in .192 seconds of additional response time. Rather, it will propagate through the entire 
algorithm and the delay will get a little longer with added wait time at each successive 
parameter. To put this in perspective, if one assumes a geometric progression through all 12 
parameters in the algorithm above the result in total added delay would probably exceed 1 
second. 
 
Tables 3 and 4 below provide more detailed information about the effect of implementing fault 
tolerance and having to deal with down nodes which may require additional inquires to more 
than just the minimum number of nodes. It is clear that this scenario definitely increases latency 
in some cases almost to the two second delay level. These values would be troubling and more 
than likely when figuring end-to-end delay would exceed the 3 second target threshold. These 
results indicate that the basic model could be employed and meet the target total end-to-end 
delay target of 3 seconds or less but as the models become more complex the probability of 
meeting the target lessens. One of the primary questions of this study is a comparison of the two 
public Clouds and a quick look at the raw data indicates similar results. However, Figures 3 and 
4 are provided below that depicts the latency relationship in more detail. 
 

Test Type 3 of 6 Nodes            
(3 Nodes Down) 

4 of 8 Nodes            
(4 Nodes Down) 

3 of 8 Nodes            
(5 Nodes Down) 

Min 518 ms 511 ms 523 ms 

Max 1626 ms 1879 ms 1749 ms 

Average 641.40 ms 672.81 ms 696.75 ms 

Standard Deviation 122.09 ms 131.79 ms 156.39 ms 

 
Table 3: Timing Results AWS (Nodes Down) 

 
Test Type 3 of 6 Nodes            

(3 Nodes Down) 
4 of 8 Nodes            

(4 Nodes Down) 
3 of 8 Nodes            

(5 Nodes Down) 
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Min 495 ms 495 ms 507 ms 

Max 2378 ms 2712 ms 1890 ms 

Average 569.50 ms 594.04 ms 612.45 ms 

Standard Deviation 62.20 ms 56.77 ms 49.38 ms 

 
Table 4: Timing Results DO (Nodes Down) 

Comparison of the Two Public Clouds: There was definitely an advantage in reduced latency in 
favor of DigitalOcean. In Figure 3 (3 of 6 nodes) in which no nodes are down the difference is 
fairly consist with about 25 ms or about 5% difference. Further, enough data points were 
collected to be fairly comfortable with these values from a sampling perspective. While the 
difference does not seem significant statistically when one calculates end-to-end delay as 
described above one might expect an added 50 ms if a geometric distribution holds. Figure 4 (4 
of 8 nodes) with no nodes down exhibited larger differences typically in the 75 ms range or 
about a 12% difference. This would be expected because this algorithm is more complex than the 
3 of 6 node method. Once again this would have a more detrimental effect on end-to-end delay 
perhaps as much as 150 ms. This difference while a concern would not make the 3 second target 
implausible.   
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Figure 3: Averages for 3 of 6 Tests Amazon Web Service (Blue) and Digital Ocean (Red)  
 

1 2 3 4 5 6 7 8 9 10
AWS 549.69 637.67 552.83 595.59 536.38 596.01 535.01 576.84 600.14 539.71
DO 515.36 596.1 522.39 512.79 503.02 510.47 506.88 499.46 508.3 508.05
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Figure 4: Averages for 4 of 8 Tests Amazon Web Service (Blue) and Digital Ocean (Red) 
 
 
Discussion/Conclusions 
 
In general, the results were encouraging. The basic algorithms were proven to operate on average 
in an acceptable latency range and while the more complex algorithms added to the delay they 
were still in the acceptable range. However, some of the max values observed reached the 1.5 
second ranges with no nodes down and exceeded 2 seconds with nodes down. In those particular 
cases one would expect the end-to-end delay to exceed the 3 second threshold.  
 
While cloud computing is the prevailing computing architecture it presents numerous challenges 
due to the complexity of its infrastructure. It shines when the major computing takes place within 
the cloud and the hardware supporting the virtual machines is not over subscribed. However, 
getting to the Cloud and receive the results of a query can also add to the overall delay. A couple 
of quick tests from the authors private Cloud to the two public Clouds revealed that the initial 
route to DigitalOcean was 13 hops which equated to a delay of 49 ms. Whereas, the route to 
Amazon Web Service was 18 hops or 86 ms. However, the delay over time reached the 300 ms 
range. In contrast, the DigitalOcean delay remained in the upper 40 ms range. So, based on the 
geographic location of the authors DigitalOcean (San Francisco, CA based datacenter) provided 
an advantage over Amazon Web Service’s (Seattle, WA based datacenter) based on geography 
and the manner in which the Internet is implemented. 

1 2 3 4 5 6 7 8 9 10
AWS 574.02 559.65 632.14 548.35 618.74 620.53 643.61 596.29 627.41 548.92
DO 529.52 534.08 529.4 517.82 525.88 518.49 513.44 518.41 516.8 522.26
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With compromising the key being one of the strategies of choice for hackers it is of utmost 
importance to protect the key. This study showed that distributing the key in a fault tolerant 
manner within a public Cloud was indeed practical. Further, there have been cases in which a 
hacker tried to compromise the key and was not successful but inadvertently (or intentionally) 
deleted the key. This would be a most detrimental situation because the company/individual in 
question would not be able to decrypt and recover their data. In the case of the algorithms used 
herein the hacker would need to compromise several hosts and ascertain how to assemble the key 
from the subparts obtained from the multiple hosts utilized to actually access the data protected 
by the encryption. 
 
In summary, dealing with latency issues within a public Cloud still merits investigation. Tuning 
applications within public Clouds can be a difficult undertaking because the actual control of the 
infrastructure is vested with the cloud provider and the range of observed latency probably will 
be wider and more erratic then if the same application was placed on a private Cloud. The same 
algorithms when tested on the authors’ private Cloud typically ran in the 100 ms range, a 
significant improvement. Given that not everyone can be expected to maintain their own private 
Cloud and given the cost advantages that public Clouds provide one can expect more and more 
applications to be migrated to these public Cloud providers such as the AWS and DigitalOcean. 
One design aspect that needs to be carefully considered is latency and particularly the latency 
over time particularly during high traffic times, such as for a retail business during the holiday 
shopping season. While the primary goal of this study was to test the distributed key algorithm in 
a public Cloud environment the same basic logic could be most useful in determining the 
viability of any application to function effectively within a public Cloud. 
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