
 
PROTECTION EFFECTIVENESS AND 

VULNERABILITIES OF THE HEAP WITHIN 
DOCKER CONTAINER SYSTEMS 

 

ABSTRACT 
Virtualization software is written using object-oriented code and contains a heap, 
which is an index of the memory locations of objects and instantiated as a process. 
The PID serves as the logical address of that code in memory. In LINUX a memory 
map is available for any process including the heap. If the heap is modified the 
associated running code will fail when it tries to reference an object but no longer 
has a pointer to its memory address. This paper will focus on the heap in both a 
virtual machine housed within a Docker container and of the Docker software itself. 
The goal was to create a test-bed and try to overwrite portions of each heap. To do 
this the process of finding the process ID, a memory map and the method to 
overwrite the heap was documented. The ramifications of hierarchical software 
design on modules was also addressed. 
 
 

Li Dai, Dennis Guster & Erich Rice 
Information Assurance & Information Systems 

St. Cloud State University 
St. Cloud, MN 56301 

dali0802@stcloudstate.edu 
dcguster@stcloudstate.edu 
eprice@stcloudstate.edu 

  

Li Dai 
Master of Science in 

Information Assurance 
St. Cloud State University 

St. Cloud, MN 56301 
dali0802@stcloudstate.edu 

 

Dennis Guster & Erich Rice 
Information Systems 

St. Cloud State University 
St. Cloud, MN 56301 

dcguster@stcloudstate.edu 
eprice@stcloudstate.edu 

 

   

mailto:eprice@stcloudstate.edu


 1 

INTRODUCTION  
The effectiveness of virtualization to logically isolate hosts has been well proven 
within a cloud environment (Ferreira, K. B., Pedretti, K., Bridges, P. G., Brightwell, R., 
Fiala, D., & Mueller, F. (2012)). However, most virtualization software is written 
using an object-oriented form and thus contains a heap. The heap is basically an 
index of the memory locations of those objects used by the code that is instantiated 
as a process and the process ID ends up serving as the logical address of that code 
in memory (Bouffard, G., Lackner, M., Lanet, J.L., & Johannes, L. (2015)). Within the 
LINUX operating system a memory map can be found for any instantiated process 
within the /proc directory. Once that memory map is displayed the address of the 
heap is easily found. Much research has found that if the heap is modified then the 
associated running code will fail when it tries to reference an object but no longer 
has a pointer to its memory address (Chen, H., Mao, Y., Wang, X., Zhou, D., Zeldovich, 
N., & Kaashoek, M. F. (2011)). 
 
This paper will focus on the heap in both a virtual machine housed within a Docker 
container and the heap of the Docker software itself. The goal was to create a test-
bed and try to overwrite portions of each heap. To do this the process of finding 
the process ID, a memory map and the method to overwrite the heap will be 
documented. 
 
This paper will also address the ramifications of using a hierarchical design. 
Historically, hierarchical design has permeated computer software. This makes 
sense in that it is an elegant means of organizing processing and data. However, it 
does create an interesting vulnerability in that in many cases corrupting the module 
at the top of the hierarchy will have detrimental effects on the modules under the 
module at the top. In this paper, it was interesting to see the results regarding the 
protection of the heap on the container manager. Of course, the goal is to provide 
another layer of abstraction and hence results in another layer that needs to be 
compromised. One would expect if the heap within a given container were 
compromised that it would only effect that container. Conversely, if the container 
manger heap gets compromised one might expect that not only the manager process 
would fail, but all containers housed under it would fail as well. 
 
Object oriented programming (OOP) has proven to be an effective framework for 
software development and certainly provides numerous advantages to developers. 
This concept is not new and goes back at least twenty years. The concepts it 
provides include: reuse of code, better structured programs and an easier transition 
from analysis to implementation are well understood (Guimaraes, 1995). Perhaps 
it is the related concept of interoperability that has driven its acceptance. In a cloud 
architecture there is a wide diversity of applications which share information and 
the portability of objects becomes crucial (Aldrich, 2013).  
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The key to this portability is being able to keep track of where each object resides. 
This necessitates a table that references the object with its memory location. This 
process is the responsibility of the heap, which keeps track of where memory 
objects reside in the memory (Callum, Singer, & Vengerov, 2015). The openness 
of the LINUX operating system makes it easy to determine the memory of the 
heap.  To gain insight into this process, examples will follow in which the attack 
is made against a simple VMware virtual machine running the LINUX operating 
system. In this example a java class entitled “stayrunning” is instantiated under 
process ID 27092. A memory map for this process is then displayed filtered by the 
“string heap”. The resulting output reveals that the heap resides in the relative 
memory address range: 00c75000-00c96000. The difference in the address range 
reveals that the size of the heap is 21000x which translates to 135168 Bytes or 132 
kB. This is a small fraction of the maximum heap size on this host with 1GB. The 
permissions on this segment are set to read, write and private (hidden from other 
classes within the package). By displaying the contents of the iomem file within 
the /proc directory, the expected memory segment resides in the System RAM, but 
not in the kernel area which would be in 0x01000000 range. Therefore, this 
memory segment is protected on the user level but not the kernel level. 
Furthermore, because the process is owned by a user entitled “guster” (userid:  
16779226) one only needs that user’s or higher rights to access the heap’s memory 
segment. Besides gaining access through the operating system the jmap can be 
used within the java code to obtain access to the memory map provided by the 
heap. See code below: 

guster@os:~$ java stayrunning 

This sample program should stay running ==> Fri Feb 15 13:03:37 CST 2019 

guster@os:~$ ps -al 

F  S   UID         PID     PPID   C  PRI  NI ADDR SZ WCHAN  TTY TIME CMD  

0  S 16779226  27092  26591  4  80    0 - 556841 -                  pts/1  00:00:00 java 

guster@os:~$ cd /proc/27092 

guster@os:/proc/27092$ cat maps | grep heap 

00c75000-00c96000 rw-p 00000000 00:00 0       [heap] 

guster@os:/proc/27092$ java -XX:+PrintFlagsFinal -version | grep MaxHeapSize 

uintx MaxHeapSize                       := 1040187392      {product} 

guster@os:/proc$ cat iomem 
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00100000-bfeeffff : System RAM 

 

dguster@eros:~$ jmap 27092 

Attaching to process ID 27092, please wait... 

Debugger attached successfully. 

Server compiler detected. 

JVM version is 24.151-b01 

0x0000000000400000      6K      /usr/lib/jvm/java-7-openjdk-amd64/jre/bin/java 

0x00007f369430a000      437K    /lib/x86_64-linux-gnu/libpcre.so.3.13.1 

0x00007f3694578000      34K     /usr/lib/x86_64-linux-gnu/libffi.so.6.0.2 

The memory segment containing the heap is important for a number of reasons. 
First, it is a very small segment within all available memory and finding it 
randomly would be quite difficult. Second, as the iomem file indicates, it is not 
loaded into the kernel space but rather into the user space. This means that the user 
that owns the process generating the task can view and modify the heap, though 
certainly the root could do this as well (Linux Memory Management, 2016).  This 
means that a hacker with user level access to an application could easily 
contaminate the heap which could halt the process. The example below 
demonstrates how the gnu debugger could be used to extract the contents of the 
heap for process ID 27092 and how objects are linked to a relative memory address. 
Further, once the address and the appropriate user level rights are obtained then the 
“set” command in the debugger could be used to over write a memory address 
which will disrupt the running process. See below that the new value in the heap is 
"The heap is now clobbered!!!!". When the running code next references the heap 
a fatal error is observed which stops the process. 
 
guster@os:/proc/27092$ gdb --pid 27092 
 
(gdb) dump memory ~/gbpheap 0x00c75000 0x00c75f00 
 
guster@os:~$ ls -l 
-rw-r--r--  1 dguster domain users  3840 Feb 15 07:54 gbpheap 
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guster@os:~$ xxd gbpheap | more 
00000000: 0000 0000 0000 0000 5102 0000 0000 0000  ........Q....... 
00000280: 2f75 7372 2f6c 6962 2f6a 766d 2f6a 6176  /usr/lib/jvm/jav 
00000290: 612d 372d 6f70 656e 6a64 6b2d 616d 6436  a-7-openjdk-amd6 
000002a0: 342f 6a72 652f 6269 6e2f 6a61 7661 0000  4/jre/bin/java.. 
000002b0: 0000 0000 0000 0000 3102 0000 0000 0000  
 
(gdb) set {char [3840]} 0x00c75000 = "The heap is now clobbered!!!!" 
(gdb) dump memory ~/gbpheap2 0x00c75000 0x00c75f00 
 
guster@os:~$ xxd gbpheap2 | more 
00000000: 5468 6520 6865 6170 2069 7320 6e6f 7720  The heap is now 
00000010: 636c 6f62 6265 7265 6421 2121 2100 0000  clobbered!!!!... 
00000020: 0000 0000 0000 0000 0000 0000 0000 0000  ................ 
 
guster@os:~$ java stayrunning 
This sample program should stay running ==> Fri Feb 15 13:03:37 CST 2019 
This sample program should stay running ==> Fri Feb 15 13:03:47 CST 2019 
 
This sample program should stay running ==> Fri Feb 15 14:37:33 CST 2019 
# 
# A fatal error has been detected by the Java Runtime Environment: 
# 
# 
[error occurred during error reporting (printing exception/signal name), id 0xb] 
 
, pid=27092, tid=139872320878336 
 

The scenario above illustrates that it is easy to find the heap as well as the objects 
that it is mapping for any given process. What is depicted is just a small fraction 
of what is potentially available. For more information about how this is related to 
java code see: The JMAP Utility (Utility, 2016). Beyond potential denial of service 
attacks there are many performance related and logical attack scenarios that can be 
launched against the heap (Barbu, Thiebeauld, & Guerin, 2010); (Barbu, 
Hoogvorst, & Duc, 2012). The extent of this potential vulnerability is described in 
(Drake, 2011). In this work the author found that the “java runtime environment 
(JRE) was installed on 89% of end-user computer systems. Unfortunately, JRE is 
plagued by a long history of security problems, including vulnerabilities in its 
components built from native code (CVE, 2016). Based on this trend, it is probable 
that many more vulnerabilities remain to be found.” Based on this data additional 
research related to securing the heap is needed. Therefore the purpose of this paper 
is to investigate the effectiveness of the Docker container software of protecting 
the heap of a running java runtime process. 
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REVIEW OF LITERATURE  

Virtualization technologies have been rapidly developing over the past two 
decades, although its inception historically began in the era of mainframe 
computing from the late 1960s into the 1970s (Brief History of Virtualization, 
2012). The use of virtualization technologies based on the x86 architecture has 
greatly accelerated the concept, with companies such as VMware, Oracle, and 
Microsoft refining and expanding their offerings in this area. The main espoused 
benefits to utilizing virtualization technologies have included reduced capital and 
operating costs due to the reduced need to buy and maintain expensive hardware, 
increased IT productivity and efficiency, faster provisioning of servers and other 
computing resources, as well as greatly simplified management of computing and 
data resources (What is Virtualization?, 2019). These benefits have led to the 
advent and wide adoption of cloud computing platforms such as the Amazon Web 
Service and Microsoft Azure clouds, where virtualization technologies play a 
critical role in the managing and provisioning of resources. 
 
While virtualization platforms such as VMware and other hypervisors allow one to 
logically create multiple virtual machines on one piece of “bare metal” physical 
hardware, there are some limitations or at the very least considerations that come 
into play with its use (What is Virtualization?, 2019). The physical server hardware 
requires an operating system such as LINUX, UNIX, or a Windows Server variant 
on top of which the virtualization hypervisor software can run, this then allows the 
creation and deployment of VM’s or virtual machines which can be tasked with 
running multiple services. The one drawback to this setup is that when a VM is 
created it requires a guest operating system to be placed onto it this is needed to 
manage the various application software which run the services. This adds an extra 
layer of system overhead as well as potentially cost (for instance if a Windows 
Server OS is used) and potentially security risk as well through side channel attacks 
(Rama Krishna, S. & Padmaja Rani, B., 2017).  
 
This added OS layer is potentially unnecessary, especially if the intent is to only 
run one dedicated application and segregate it from other applications. For this type 
of a set up a computing container will often times make more sense. 
Containerization, much like virtualization, has its roots starting decades ago with 
the UNIX operating system version 7, which started the concept of process 
isolation (Osnat, 2018). The first early forms of a containerized application were 
being developed in the early 2000’s, the Solaris Containers were released as a beta 
version in 2004 and allowed for separation by zones and even allowed for features 
such as taking snapshots or cloning containers much like what is commonly 
allowed in various virtualization platforms such as VMware (Osnat, 2018). Various 
types of containers were continued to be developed through the first decade of the 
2000’s, although not until the release of the Docker container platform in 2013 did 
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containerization really begin to get widespread market acceptance. The use of 
containers with application developers grew exponentially, although potential 
security issues such as the “Dirty COW” vulnerability shed light on the underlying 
security risks that the new technology presented (Dulgie, 2016). Even so, the use 
of containers such as Docker and Kubernetes continue to make inroads, and has 
been wholeheartedly embraced by major cloud computing providers such as 
Amazon and Microsoft.   
METHODOLOGY  
  
In the introductory section a scenario was presented in which a successful attack was 
launched against the heap of a java class hosted by a standard virtual machine. Much of 
the ease of launching this attack can be traced to the design of the LINUX operating system 
which provides a developer excellent functionality. While a LINUX operating system can 
be made very secure, to do so requires overcoming this functionality by hardening it. 
Specifically, in this case the fact that excellent memory maps for a given process can be 
obtained with just user level privileges means that hacker can zero in on the vulnerable 
memory segment. Further, with user level rights and the known memory address it is a 
simple process to overwrite the vulnerable segment which creates a fatal error and the code 
aborts. This would be especially problematic in a user devised service which would be 
constantly running and linked to some transport layer port. So ultimately, a strategy is 
needed that uses memory segments that are not mapped and have protection above simply 
the user level. The purpose of this paper is to examine the Docker container software and 
assess how well it protects the heap in a java socket call class. To do so it is important to 
evaluate the processes created when a java socket call class is instantiated into the system. 
In the example below a java class entitled “tempserver” is used to illustrate the scenario. 
This java class simply performs temperature conversions. To start this class a “docker run” 
command is entered below and the “Waiting for connection…” message indicates that it is 
running normally. 
 

[dguster@localhost ~]$ sudo docker run tempserver 
[sudo] password for dguster: 
Waiting for connection... 
 

However, in the example provided in the introductory section the java runtime and 
class are called from a directory, but in this example a preexisting image is called. 
The “docker images” command shows that two images have been created and are 
available. These images are the tempserver class and its corresponding client class 
called tempclient.  
 

[dguster@localhost ~]$ sudo docker images 
[sudo] password for dguster: 
 
REPOSITORY    TAG         IMAGE ID            CREATED          SIZE 
tempclient         latest        996eddd76286        41 hours ago      821MB 
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tempserver         latest        73bf19a061d2         41 hours ago      821MB 
 

The “ps” command that follows shows that the image appears to be implemented 
as a shell and is running on port 12400. This shell then serves to isolate the code 
and can be considered as an independent container because it has its own process 
ID.  
 
 
 

[dguster@localhost ~]$ sudo docker ps -a 
 
CONTAINER ID   IMAGE      COMMAND      CREATED    STATUS   PORTS  
30eb22372fe0      tempserver  "/bin/sh 'java Te"   27 hrs ago    Up 27hr    12400/tc                         
 
Looking deeper into the process structure with the “ps” command provides more 
insight. The Docker system itself is running under process ID 10942, whereas the 
tempserver image is running under process ID 10982. The java code itself is 
running under process ID 11013. This situation creates two levels of abstraction: 
the image to the docker process and the java runtime to the image itself. From a 
security point of view this results in two levels of isolation which improves the 
overall encapsulation strategy. Further, it is worth noting that both the image and 
the run time contained therein are owned by the root. This basically eliminates the 
possibility of user owned services. The next question is, does this organizational 
structure protect the memory segments containing the code. 
 

[dguster@localhost ~]$ ps -al 
F  S  UID   PID     PPID   C PRI  NI  ADDR SZ  WCHAN  TTY   TIME     CMD 
4  S    0    10938   10919   0  80     0 - 60284         poll_s      pts/1  00:00:00  sudo 
4  S    0    10942   10938   0  80     0 -  64588        futex_      pts/1  00:00:00 docker 
 
[dguster@localhost ~]$ ps -aux | grep java 
root     10982  0.0  0.0   4280   380 ?        Ss   09:40   0:00 /bin/sh -c java 
TempServer 
root     11013  0.2  1.3 2537756 25888 ?       Sl   09:40   0:00 java TempServer 
 
In the example below process ID for the tempserver container is 15989. An attempt 
is made to find the memory location of the heap with only user level rights and 
permission is denied. Then root level access is attempted via the sudo command 
and a memory address of 0x5577e0a81000 is obtained for the heap. Note the 
memory protection flags are rwp. 
 
[dguster@localhost ~]$ cd /proc/15989 
[dguster@localhost 15989]$ cat maps | grep heap 
cat: maps: Permission denied 
[dguster@localhost 15989]$ sudo cat maps | grep heap 
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[sudo] password for dguster: 
5577e0a81000-5577e0aa2000 rw-p 00000000 00:00 0  [heap] 
 
Next an attempt is made from a debugger to dump the first 8192 Bytes to a file 
called dddd. 
 
(gdb) dump memory /home/dguster/dddd 0x5633e4d85000 0x5633e4d87000 
 
 
On the surface it appears that that heap data was copied into the file. However, a 
dump of the file reveals that the file “dddd” contains nothing but null values. So 
the container appear to protect the contents of the heap from unauthorized reads. 
 
[dguster@localhost ~]$ ls -l 
-rw-r--r--. 1 root    root    8192 Feb 26 10:08 dddd 
 
[dguster@localhost ~]$ od -w1 -c -Ad dddd 
0000000  \0 
* 
0008192 
 
When trying to overwrite the first 3840 Bytes of the heap using a debugger a 
“cannot access memory” message was returned which again appears to confirm the 
effectiveness of the container software. A look at the memory addresses cited is 
interesting. If one looks at the “cannot access memory” message the 8 hex character 
address is the last 8 hex characters of the full 16 hex character address contained in 
the set command (note 4 leading 0’s suppressed). As one would expect the memory 
used within the container is masked so as to protect its contents. So the sub-address 
has a different meaning within the container software than the host itself. A quick 
look at the host level memory map reveals that the sub-address is not actually 
mapped for specific purpose. Further, it was observed that each time the code was 
run different memory address ranges were used. 
 
(gdb) set {char [3840]} 0x5577e0a81000 = "ggggggggggggggggggggggggggggg" 
Cannot access memory at address 0xe0a81000 
 
[dguster@localhost proc]$ cat iomem 
80208000-8020bfff : 0000:00:10.0 
e5c00000-e5cfffff : PCI Bus 0000:22 
 
However, a couple of abnormalities were observed. Occasionally, the attempt to 
write would result in a “broken pipe” error. A pipe is a data transfer mechanism 
often used to support inter-process communication. While the data itself was not 
compromised, the result was an effective denial of service. 
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(gdb) set {char [3840]} 0x5633e4d85000 = 
"gggggggggggggggggggggggggggggggggggg"Write failed: Broken pipe 
 
[dguster@localhost ~]$ sudo docker run tempserver 
[sudo] password for dguster: 
Waiting for connection... 
 
Write failed: Broken pipe 
 
 
An interesting error was also observed on occasion when reading from the dump 
and writing the dump to a user directory. In the example below, two 4kB pages of 
memory were requested to be written to the file heapdumpx. When an attempt was 
made to read that file with the “od” command an input/output error was returned. 
Further on the server code itself (tempserver) returned a fatal error. That error 
appears to be related to memory getting contaminated so that the values (which 
may be pointers) are corrupted. A look at the error report for the stack (contains the 
low level instructions) supports this assessment.  
 
(gdb) dump memory /home/dguster/heapdumpx 0x55f2fbea5000 0x55f2fbea7000 
(gdb) quit 
 
[dguster@localhost ~]$ od -w1 -c -Ad heapdumpx 
-bash: /usr/bin/od: Input/output error 
 
[dguster@localhost ~]$ sudo docker run tempserver 
Waiting for connection... 
 
# 
# A fatal error has been detected by the Java Runtime Environment: 
# 
#  SIGBUS (0x7) at pc=0x00007f27ec2baa2e, pid=6, tid=16 
 
Stack slot to memory mapping: 
stack at sp + 0 slots: 0x00007f27e863ce50 points into unknown readable 
memory: a0 ce 63 e8 27 7f 00 00 
stack at sp + 1 slots: 0x0000000000000001 is an unknown value 
stack at sp + 2 slots: 0x00007f27e863ce50 points into unknown readable 
memory: a0 ce 63 e8 27 7f 00 00 
 
Further, if the address range of the heap is extended past its size as seen in the 
example below, a broken pipe error may result. Note the error appears on both the 
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debug and the tempserver session. Thus it results in a denial of service because the 
container that holds the tempserver code crashes. 
 
set {char [80000000]} 0x55c8fcbc3000 = "ggggggggggggggggggggggggggggg" 
Write failed: Broken pipe 
 
[dguster@localhost ~]$ sudo docker run tempserver 
Waiting for connection... 
 
Write failed: Broken pipe 
 
DISCUSSION/CONCLUSIONS  
Isolation of services is an important tool in providing sound security. The Docker 
container software certainly added to this goal. An examination of the Docker 
related processes revealed three major processes resulted: the Docker software 
itself, the shell for executing the tempserver class and the protected image of the 
tempserver class. The goal of this paper was to examine how well the tempserver 
image itself was protected. First, based on the observations herein it was well 
protected from user level attempts to read or overwrite the data. It was also 
interesting to note that the memory addresses were obscured to some extent by 
truncating the leading part of the full address. Further, the address ranges used by 
the tempserver image were not in the “iomem” map which is the LINUX tool which 
provides the memory ranges assigned to the VM host. This would make it 
somewhat more difficult for a hacker to find the memory range and if the ranges 
were guessed that would then be better protected. So overall the Docker software 
was effective at mitigating memory level attacks from the user level. 
 
If the hacker obtains root level access then a couple of issues were identified. In 
cases where a debugger was used to read content from the heap and then try to 
write them to a file in the default directory there were issues where the write would 
fail and the server process would abort. If the write was successful the actual 
contents of the memory segment would not be written, rather the entire file would 
contain null values (hex 0’s). So data could not be compromised based on the 
observations herein. In other cases, the attempt to write would result in a “broken 
pipe” and the server software would abort causing a denial of service. A look at the 
dump provided by java indicated that an instruction in the stack could not be 
resolved. While the container software did protect the integrity of the data it is still 
vulnerable to memory level attacks, if the hacker can obtain root access.  
 
Overall using the Docker container software does add to the integrity of a server 
image. However, like any security software there are areas that need to be 
protected. Of note is memory protection. Prevention of execution of direct memory 
software such as C or debug at least needs to be monitored. Also, stateful inspection 



 11 

to try to identify and remove such direct memory access software is warranted. On 
a very basic level once again the results herein confirm the importance of limited 
root access and monitoring when it is used. As is typically the case there is no one 
security solution, but solutions that will reduce the probability of success and the 
size of the hacker pool that could achieve success. 
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Appendix 
 
[dguster@localhost ~]$ sudo docker run tempserver 
Waiting for connection... 
 
# 
# A fatal error has been detected by the Java Runtime Environment: 
# 
#  SIGBUS (0x7) at pc=0x00007f27ec2baa2e, pid=6, tid=16 
# 
# JRE version: OpenJDK Runtime Environment (11.0.2+9) (build 11.0.2+9-
Debian-3bpo91) 
# Java VM: OpenJDK 64-Bit Server VM (11.0.2+9-Debian-3bpo91, mixed mode, 
sharing, tiered, compressed oops, serial gc, linux-amd64) 
# Problematic frame: 
# V  [libjvm.so+0xbdba2e] 



 13 

# 
# Core dump will be written. Default location: //core.6 
# 
# Can not save log file, dump to screen.. 
# 
# A fatal error has been detected by the Java Runtime Environment: 
# 
#  SIGBUS (0x7) at pc=0x00007f27ec2baa2e, pid=6, tid=16 
# 
# JRE version: OpenJDK Runtime Environment (11.0.2+9) (build 11.0.2+9-
Debian-3bpo91) 
# Java VM: OpenJDK 64-Bit Server VM (11.0.2+9-Debian-3bpo91, mixed mode, 
sharing, tiered, compressed oops, serial gc, linux-amd64) 
# Problematic frame: 
# V  [libjvm.so+0xbdba2e] 
# 
# Core dump will be written. Default location: //core.6 
# 
# If you would like to submit a bug report, please visit: 
#   http://bugreport.java.com/bugreport/crash.jsp 
# 
 
---------------  S U M M A R Y ------------ 
 
Command Line: TempServer 
 
Host: Quad-Core AMD Opteron(tm) Processor 2384, 1 cores, 1G, Linux 
Time: Wed Feb 27 13:17:14 2019 UTC elapsed time: 529 seconds (0d 0h 8m 49s) 
 
---------------  T H R E A D  --------------- 
 
Current thread (0x00007f27e4093800):  WatcherThread [stack: 
0x00007f27e853e000,0x00007f27e863e000] [id=16] 
 
Stack: [0x00007f27e853e000,0x00007f27e863e000],  sp=0x00007f27e863ce10,  
free space=1019k 
Native frames: (J=compiled Java code, A=aot compiled Java code, j=interpreted, 
Vv=VM code, C=native code) 
V  [libjvm.so+0xbdba2e] 
V  [libjvm.so+0xc9524d] 
V  [libjvm.so+0xd0011e] 
V  [libjvm.so+0xd2c699] 
V  [libjvm.so+0xb935c0] 
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siginfo: si_signo: 7 (SIGBUS), si_code: 2 (BUS_ADRERR), si_addr: 
0x00007f27ed7a1800 
 
Register to memory mapping: 
 
RAX=0x0000000000120cf8 is an unknown value 
RBX=0x00007f27ed7a1800 points into unknown readable memory: f8 0c 12 00 
00 00 00 00 
RCX=0x0000000000000002 is an unknown value 
RDX=0x00007f27ebbe8800: <offset 0x0000000000509800> in /usr/lib/jvm/java-
11-openjdk-amd64/lib/server/libjvm.so at 0x00007f27eb6df000 
RSP=0x00007f27e863ce10 points into unknown readable memory: 50 ce 63 e8 
27 7f 00 00 
RBP=0x00007f27e863ce20 points into unknown readable memory: 50 ce 63 e8 
27 7f 00 00 
RSI=0x0000000000000032 is an unknown value 
RDI=0x00007f27e4022d30 points into unknown readable memory: 50 d3 96 ec 
27 7f 00 00 
R8 =0x0000000000000001 is an unknown value 
R9 =0x00000000000126c7 is an unknown value 
R10=0x00007f27e863cd70 points into unknown readable memory: 00 00 00 00 
00 00 00 00 
R11=0x00225953864993a8 is an unknown value 
R12=0x0000000000000008 is an unknown value 
R13=0x00007f27e4093120 points into unknown readable memory: 40 31 09 e4 
27 7f 00 00 
R14=0x0000000000000002 is an unknown value 
R15=0x00007f27eca86020: <offset 0x00000000013a7020> in /usr/lib/jvm/java-
11-openjdk-amd64/lib/server/libjvm.so at 0x00007f27eb6df000 
 
 
Registers: 
RAX=0x0000000000120cf8, RBX=0x00007f27ed7a1800, 
RCX=0x0000000000000002, RDX=0x00007f27ebbe8800 
RSP=0x00007f27e863ce10, RBP=0x00007f27e863ce20, 
RSI=0x0000000000000032, RDI=0x00007f27e4022d30 
R8 =0x0000000000000001, R9 =0x00000000000126c7, 
R10=0x00007f27e863cd70, R11=0x00225953864993a8 
R12=0x0000000000000008, R13=0x00007f27e4093120, 
R14=0x0000000000000002, R15=0x00007f27eca86020 
RIP=0x00007f27ec2baa2e, EFLAGS=0x0000000000010202, 
CSGSFS=0x0000000000000033, ERR=0x0000000000000007 
  TRAPNO=0x000000000000000e 
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Top of Stack: (sp=0x00007f27e863ce10) 
0x00007f27e863ce10:   00007f27e863ce50 0000000000000001 
0x00007f27e863ce20:   00007f27e863ce50 00007f27ec37424d 
0x00007f27e863ce30:   00000000000126c7 0000000000000001 
0x00007f27e863ce40:   0000000000000032 0000000000000032 
 
Instructions: (pc=0x00007f27ec2baa2e) 
0x00007f27ec2baa0e:   00 00 48 89 f8 48 8b 7f 38 48 85 ff 74 1b 55 48 
0x00007f27ec2baa1e:   89 e5 53 48 83 ec 08 48 8b 58 28 48 8b 07 ff 10 
0x00007f27ec2baa2e:   48 89 03 48 83 c4 08 5b 5d f3 c3 90 66 0f 1f 44 
0x00007f27ec2baa3e:   00 00 55 48 8b 4f 28 48 89 f0 48 63 f2 48 8d 15 
 
Stack slot to memory mapping: 
stack at sp + 0 slots: 0x00007f27e863ce50 points into unknown readable 
memory: a0 ce 63 e8 27 7f 00 00 
stack at sp + 1 slots: 0x0000000000000001 is an unknown value 
stack at sp + 2 slots: 0x00007f27e863ce50 points into unknown readable 
memory: a0 ce 63 e8 27 7f 00 00 
stack at sp + 3 slots: 0x00007f27ec37424d: <offset 0x0000000000c9524d> in 
/usr/lib/jvm/java-11-openjdk-amd64/lib/server/libjvm.so at 0x00007f27eb6df000 
stack at sp + 4 slots: 0x00000000000126c7 is an unknown value 
stack at sp + 5 slots: 0x0000000000000001 is an unknown value 
stack at sp + 6 slots: 0x0000000000000032 is an unknown value 
stack at sp + 7 slots: 0x0000000000000032 is an unknown value 
 
 
---------------  P R O C E S S  --------------- 
 
Threads class SMR info: 
_java_thread_list=0x00007f27e409b9d0, length=9, elements={ 
0x00007f27e4010800, 0x00007f27e4048000, 0x00007f27e404a000, 
0x00007f27e4051800, 
0x00007f27e4053800, 0x00007f27e4055800, 0x00007f27e4057800, 
0x00007f27e4091000, 
0x00007f27e409a000 
} 
 
Java Threads: ( => current thread ) 
  0x00007f27e4010800 JavaThread "main" [_thread_in_native, id=7, 
stack(0x00007f27ed7a8000,0x00007f27ed8a9000)] 
  0x00007f27e4048000 JavaThread "Reference Handler" daemon 
[_thread_blocked, id=9, stack(0x00007f27e8df1000,0x00007f27e8ef2000)] 
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  0x00007f27e404a000 JavaThread "Finalizer" daemon [_thread_blocked, id=10, 
stack(0x00007f27e8cf0000,0x00007f27e8df1000)] 
  0x00007f27e4051800 JavaThread "Signal Dispatcher" daemon 
[_thread_blocked, id=11, stack(0x00007f27e8a42000,0x00007f27e8b43000)] 
  0x00007f27e4053800 JavaThread "C2 CompilerThread0" daemon 
[_thread_blocked, id=12, stack(0x00007f27e8941000,0x00007f27e8a42000)] 
  0x00007f27e4055800 JavaThread "C1 CompilerThread0" daemon 
[_thread_blocked, id=13, stack(0x00007f27e8840000,0x00007f27e8941000)] 
  0x00007f27e4057800 JavaThread "Sweeper thread" daemon [_thread_blocked, 
id=14, stack(0x00007f27e873f000,0x00007f27e8840000)] 
  0x00007f27e4091000 JavaThread "Service Thread" daemon [_thread_blocked, 
id=15, stack(0x00007f27e863e000,0x00007f27e873f000)] 
  0x00007f27e409a000 JavaThread "Common-Cleaner" daemon 
[_thread_blocked, id=17, stack(0x00007f27e843c000,0x00007f27e853d000)] 
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