

A system for improving beginner-level error messages in
Clojure

Ethan Uphoff, Dexter An, Elena Machkasova
Computer Science Discipline
University of Minnesota Morris
Morris, MN 2567
uphof012@morris.umn.edu,anxxx154@morris.umn.edu,elenam@morris.umn.edu

Abstract

Clojure is a Lisp programming language which is implemented in Java and runs on the
Java Virtual Machine (JVM). It was developed and released in 2008 by Rich Hickey and
has gained wide popularity around the world since then. It is in Lisp category of
languages, and has simple syntax typical of Lisp languages. As a Lisp, it was specifically
designed to support immutability, with an additional benefit of providing support for
parallel processing. Since Clojure is very simple in its syntax and immutability-based
semantics and runs on the JVM, it would be ideal to teach in an introductory level
programming course. Unfortunately, Clojure has a few barriers for beginners, the most
problematic one being its error messages. Since Clojure is implemented in Java, its error
messages are just Java exceptions, and are incomprehensible to those new to
programming. The system that we are developing replaces Clojure error message by
more beginner friendly messages that avoid Java terminology.

Our system, called babel, is integrated into Clojure runtime system as middleware for the
interpreter known as nREPL. It makes use of a new Clojure feature known as Spec: a
system of contracts that specify requirements for function arguments (such as the number
of arguments and their datatypes). Spec-based errors provide detailed information about
failing arguments. However, not all errors can be processed via Spec: syntax errors or
run-time errors, such as “file not found” error on file loading cannot be checked using
Spec. Our system consists of several components:

1. Spec contracts that are loaded at the start of the middleware,
2. Middleware that intercepts an error message if it occurs,
3. Lookup of necessary additional information about the error in the Clojure

runtime system; this lookup includes getting the stacktrace for the exeception that
occurs,

4. Error message replacement
5. Optional logging which helps developers see what Clojure error messages

occurred in a session and what they were replaced by.
Future work on our system will include usability testing and fine-tuning error message
processing. For more information see https://github.com/Clojure-Intro-Course/babel.

https://github.com/Clojure-Intro-Course/babel

