

Software Project Management and Underlying
Development Factors

Princewill Ibeabuchi and Sayeed Sajal

Department of Math and Computer Science

Minot State University

500 University Ave W, Minot, ND 58707

Email: sayeed.sajal@ndus.edu

Abstract

A software project has two fundamental activity dimensions; the engineering aspect and
project management. In our current generation, businesses have become more reliant on
technology for their day to day business operations. Software managers are under
increasing pressure to create and deliver advanced software applications on schedule and
with limited resource consumptions while taking the risk, controls, management,
delivery, productivity factors, cost models, schedule, organizational issues, safety and
standard issues, and maintenance into account. The purpose of this tutorial is to showcase
the fundamental ideas of current software project management processes and indicate
how these concepts relate to the models of developing software projects both from the
developers and manager’s perspective respectively.

1. Introduction

There has been an increase in over-reliance on software systems by the majority of
today’s companies in their business setting. At the point when the business forms are
changed to meet new necessities, the product frameworks need to experience a relating
change or grow new supporting programming. This is additionally the situation when an
organization presents new business forms. Currently, software systems are frequently
interrelated to other systems, building up another framework much of the time includes
alterations of old frameworks too. Due to these, factors affecting the advancement of
software development becomes hard to anticipate. The improvements of completely new

1

development frameworks and the adjustments of old frameworks are frequently
performed in ventures, realizing out that 23% of all product ventures are dropped before
fulfillment. Moreover, of the finished ventures, just 28% are conveyed on time, with the
normal venture overwhelming the financial plan with 45% [2]. Such has been the size of
the venture of time, exertion, and cash in software systems, that making progress in their
advancement and organization has expended numerous analysts (and obviously,
specialists) over the most recent three decades. As far back as 1975, researchers were
endeavoring to distill the determinants of venture achievement and disappointment, so
that an effective result was almost certain [1], with blended outcomes. The commitment
of this paper is thusly proposed to study 5 of the widely used development models.
Additionally, a portion of the elements contemplated is as of now utilized in the current
models. Subsequently, a portion of these variables are approved by this examination and
some are tested.

2. Outline

The of the paper is structured as follows: Section I recounts diverse software
development process models and development phases. Section II describes different
factors involved in the software project development, from the project idea, development
models utilized, and the success or failure of a software project; factors that decide the
choice of software to be developed are examined, with what constitutes a successful
project and an unsuccessful one. A comparative study of the 5 major models chosen in
this paper is highlighted, with how different factors affect their impact on a software
project in section III. Finally, section IV summarizes the paper with conclusions.

Section I

A. Waterfall model

The Waterfall SDLC (Software Development Life Cycle) model is a successive software
development process model, described to be downward flowing, hence where it got the
name Waterfall; its process motion is similar through different phases that must be
carried out for the software system to be successfully developed. Software process
models, with some variations, all evolved from the classical waterfall model, developed
in the late 1960s and early 1970s. It is still the best and most widely used framework for
describing the software development process [7], by its step by step breakdown of the
development processes to minimize their complexity. The diagram below highlights the
different phases of the Waterfall model.

2

Fig. 1 Waterfall Model [5]

Requirement Analysis Stage: Also known as Software Requirements Specification
(SRS), is a comprehensive description of the software to be developed. It sets the
functional and non-functional requirements. Functional requirements are characterized by
means of case utilization per the users’ interactions with the software. This includes
requirements such as purpose, capacity, outlook, functions, user traits, functional
specification and database necessities. While the non-functional requirement deals with
the constraints, several criteria, limitations, and requirements imposed on the design and
operation of the software rather than on particular behaviors. It includes such properties
as reliability, scalability, testability, availability, maintainability, performance, and
quality standards.

System Design Phase: This process consists of planning and brainstorming for a
software solution. The developers and designers have to work together to lay a solution
plan that includes the architectural design, efficient algorithm, database specification,
user interface design, and data structures.

Implementation Stage: It alludes to the acknowledgment of business plan details and
prerequisites into a solid executable program, database, site, or programming part,
through programming and sending. This is the stage where the genuine code is composed
and aggregated into an operational application, and where the database and content
records are made. At the end of the day, it is the way toward changing over the entire
necessities and diagrams into a generation domain.

3

Testing Stage: It is also called confirmation and approval, which is a procedure for
ensuring that a product arrangement meets the first necessities and particulars, and it
achieves its planned reason. Indeed, a check is the way toward assessing programming, to
decide if the results of a given improvement stage fulfill the conditions intended from the
beginning of that stage. While approval is the path to assessing programming amid or
towards the end of the improvement procedure, to decide if it fulfills indicated
necessities. It is also the stage for debugging the system to correct errors or glitches.

Deployment Stage: Refers to the delivery or guarantee that the developed system is
available for use to the users.

Maintenance Stage: It is the process of changing or updating a software system after
deployment or delivery, to correct errors, upgrade performance and quality. Extra upkeep
exercises can be performed in this stage including adjusting the system to new
developing conditions, obliging new client preference, and expanding programming
dependability.

B. Prototype Model

Prioritizes the development of the actual software, instead of concentrating on
documentation. This way, the actual software could be released in advance. Prototyping
requires more user involvement and allows them to see and interact with a prototype to
provide better and more complete feedback and specifications [4].

Fig. 2 Prototype Model [5]

4

C. Spiral Model

It is a headway methodology depicted by repeatedly underlining a ton of fundamental
improvement shapes, and adequately reducing the risk involved. A prototype is produced
at the end of risk analysis. Its evaluation phase allows the customer to assess the output of
the project to date before the project goes to the next spiral [8].

Fig. 3 Spiral Model [6]

D. Iterative Model

The iterative model is a specific usage of a product advancement life cycle (SDLC),
which centers on an underlying rearranged execution. Additional features are designed,
tested and, added to the system with the iterations.

5

Fig. 4 Iterative Model [10]

E. Agile Model

It alludes to a gathering of programming advancement philosophies, dependent on
iterative improvement, where prerequisites and arrangements advance through a
coordinated effort between self-sorting out cross-practical groups.

Fig. 5 Agile Model [5]

6

Section II

Deciding Factors on Software Choice and Development Utilized

Factor name Definition/Examples
Project type Example; Desktop, Web-Based, Scheduling, etc.

Size of Project An estimation used to quantify the total extent of
the development process, including duration, cost,
and complexity. E.g. Function Point.

Duration of Project Total time to be used in the development process.
Complexity of Project Taking into account the complicated factors that

affect the development process. E.g. Cost, Time,
etc.

Expected Risks Estimation, Productivity Issues, Conflict among
the Team, etc.

Comprehension of User Requirement The poorly specified requirement would definitely
lead to development failure.

Comprehension of the Application area E.g. Image Processing, Robotics Controllers,
Digital Filters.

Involvement of Users/Customers/Shareholders
etc.

Provide data and information directly to the
developers, and help clarify the needs of the users,
with an initial understanding of the system.

Skills and Experience of Developers Knowledgeable and well-practiced in multiple
frameworks and coding languages.

Team Size How many people working on the project at a
time.

Man-machine interaction (MMI) General control of machines with buttons,
remotes, etc.

Availability of Tools and Technology They can speed up or limit the efficiency and
production rate of the development process.

Level of Consistency Consistency in coding makes the process easier to
meta-program, debug, refactor and test the
system.

Table1: Factors affecting the choice of Software [8]

Successful and Unsuccessful Project Planning

Successful Projects Failing Projects
Effective project planning Inadequate project planning
Effective project cost estimating Inadequate cost estimating
Effective project measurements Inadequate measurements
Effective project milestone tracking Inadequate milestone tracking
Effective project change management Inadequate change management
Effective project quality control Inadequate quality control

Table 2: Project Planning [3]

7

A. Findings:

Table 2, displays a comparative study of the 5 software development models briefly
explained earlier in this paper. They are compared on the basis of varying factors/features
and how they affect a software development project lifecycle. Each model has a unique
response to these factors.

Section III

Comparative Study of Different Software Development Models and their
Effects on Development Factors

Model/Features Waterfall

Model
Prototype
Model

Spiral Model Iterative
Model

Agile Model

Precise
Requirement
Specifications

Beginning Frequently
Changed

Beginning Beginning Frequently
Changed

Understanding
Requirements

Well
Understood

Not Well
Understood

Well
Understood

Not Well
Understood

Well
Understood

Cost Low High Expensive Low Very
Expensive

Guarantee of
Success

Low Good High High Very High

Resource
Control

Yes No Yes Yes No

Cost Control Yes No Yes No Yes
Simplicity Simple Simple Intermediate Intermediate Complex
Risk Involved High Low Low High Reduced
Expertise
Required

High Medium High High Very High

Changes
Incorporated

Difficult Easy Easy Easy Difficult

Risk
Identification

Initial Level No Yes No Yes

User
Involvement

Initial Level High High Intermediate High

Overlapping
Phases

No

Yes Yes No Yes

Flexibility Rigid Very Flexible Flexible Less Flexible Very Flexible
Time Frame Long Short Long Long Least Possible

Table 3: Comparison of Different Development Models [9]

8

Section IV

3. Future Findings

This current study was undertaken for this research work and still has the potential for
further extension, by collecting numerous range of data of how individual organizations
in different environments, and specialization of software development, have been
impacted by their utilized models. There are vast ranges of factors that can impact the
outcome of a software project development, like the motivation of the team members,
their work environment, access to more advanced evidence-based analysis, and all these
play a vital part in the success or failure of project development.

4. Conclusion

The Waterfall, Prototype, Spiral, Iterative and Agile models have been studied and
analyzed in depth. The utilization of each model varies, as they are best used for a
different project with varying features and different end goal. Many of the models have
their advantages and disadvantages. The waterfall is one of the oldest models but has its
own disadvantages such as no fair division of phases in the life cycle. Not all the
errors/challenges related to a phase are resolved during the same phase but instead carried
forward to the next stage, which depriving it a lot of time. Whereas the spiral model
resolves such issues [9]. The prototype model poses a great challenge in the identification
of risks; Spiral is very expensive to utilize; Understanding requirements of the iterative
model is hard and makes the development process complicated, and finally, the agile
model makes it difficult to incorporate changes to the process.

References

[1] L. Mcleod, S. G. Macdonell, Factors that Affect Software Systems Development
Project Outcomes: A Survey of Research.

[2] R. Lagerstrom, L. M. von Wurtemberg, H. Holm and O. Luczak. Identifying

Factors Affecting Software Development Cost. Industrial Information and Control
Systems the Royal Institute of Technology Stockholm, Sweden.

[3] C. Jones. Software Project Management Practices: Failure Versus Success.

Software Productivity Research LLC. October 2004.

[4] R. G. Sabale, A. R. Dani. Comparative Study of Prototype Model for Software

Engineering with System Development Life Cycle. ISSN: 2250-3021 Volume 2,
Issue 7(July 2012), PP 21-24.

9

[5] Guru99. MIS Development Process with SDLC, Waterfall, Prototype & Agile.
[Online]. Available: https://www.guru99.com/mis-development-process.html.

[6] B. Boehm, W. J. Hansen. Spiral Development: Experience, Principles, and

Refinements. Spiral Development Workshop, February 9, 2000.

[7] J. Jaak. “Software Project Management: The Manager's View," Communications

of the Association for Information Systems: Vol. 2, 1999. Article 17.DOI:
10.17705/1CAIS.00217

[8] R. R. Raval, H. M. Rathod. Comparative Study of Various Process Model in

Software Development. International Journal of Computer Applications (0975 –
8887). Volume 82 – No 18, November 2013.

[9] D. Jamwal. Analysis of Software Development Models. IJCST Vol. 1, Issue 2,
December 2010.

[10] Martin. 7 Basic Software Development Life Cycle (SDLC) Methodologies:

Which One is best? [Online]. Available: https://www.cleverism.com/software-
development-life-cycle-sdlc-methodologies/

