

Impact of Software Tools and Environment to the

Development Process

Christopher Abbas, Sayeed Sajal
Department of Computer Science

Minot State University
500 University Ave W, Minot, ND, 58707

Sayeed.Sajal@minotstateu.edu

Abstract

There’s a variety of software tools, with different and distinct functions both to the
programmer, and its users; its utilization is pending on the intention of the user. For a
programmer, programming tools are specifically to aid and advance their coding processes.
A software engineering environment extends a unique suite of productivity to the
programmer enhancing his activity efficiency; the environment aids the entire development
process in varying settings. The environment is defined by the sort of tools they include
and is also distinguished by the relativity between the tools, their integrated functions of
the development, and the nature of the task at stake. This paper will highlight more on the
specific tools, integrated tool environments including the associated architectures,
databases, and parallel and distributed processing issues.

1. Introduction

In the case of computer programming and software product, a development environment
is a set of programming processing tools which are been used in the creation of
programming software. The term does usually refer to the physical environment as well.
An integrated development environment is a development environment that coordinates
process and tools to aid the developer with an orderly idea and convenience in the view of
writing, testing and reassembling code. An example of most used IDE software is
Microsoft Visual studios. The tightly interconnected suite of applications shared between
each other on a common database and user interface thereby enhancing programming
productivity. A software designing condition stretches out this to programming tools and
the entire programming improvement process.

Software tools and situations are intended to improve efficiency. Numerous tools do this
legitimately via robotizing or easing some task. Others do it by implication, either by
encouraging more dominant programming languages, architectures, or systems or by
making the software development task more enjoyable. Still, others attempt to enhance
productivity by providing the user with information that might be needed for the task at
hand.

2. Integrating Tools in the Environment

Software tools can be merged together as a series of integrated techniques, to link tools that
address different aspects of the development process. To state out examples, different tools
do support architectural design test case generation. Hence integrating tools has been made
to produce a complete environment that bears the entire software development process.
Prior environments were either insecure confederation of their tools called single system
environment that merge all relevant tools together. Single system environment has its
advantages and disadvantages that come with it, one of its advantages is allowing its tools
to be tightly coupled to enable the programmer to be alert of the environment and not
separate tools. And one of its disadvantages is that they are tightly closed systems which
make it difficult to integrate new tools or the use of multiple languages and libraries.

There are approaches that have been used to integrate a single system environment, they
include ways for tools to be shared as well as interfaces.

Data integration includes consolidating information living in various sources and providing
the user with a bound together perspective on them. This procedure ends up a variety of
situations, which incorporate both businesses, (for example, when two comparative
organizations need to blend their databases) and logical (joining research results from
various bioinformatics storehouses, for instance) domain. “This typically involves the
development of a database or repository to hold the information that needs to be shared
among the tools. This has the potential to allow a high degree of integration and to simplify
the various tools by having them share the work.” [10]. There are few flaws that attach this
integration, its that its database does require a huge database structure mandatory to make
the environment work. Four most commonly used data integrations are Data Consolidation,
Data Propagation, Data Visualization, Data Federation and Data Warehousing.

Another approach to integration is the use of control integration, that comprises of passing
messages between tools, information is been shared whenever it needed to be shared or
whenever a command is been invoked from another tool. Instead of end-to-end transmitting
of information, a central message server is been used as an intermediate means for sharing
information. According to [9] “Each of the tools tells the message server what messages it
is interested in.” it enables an accessibility to multiple tools as if they are one system, with
examples like the use of editor to implore other tools or allow the display of a common
focus in repose to the action of the user.

As well as platform integration, the fundamental issue for an integrated solution is that the
various tools must be inter-operable. In the past, this requirement implied that all software
run on the same machine with the same operating system. Now, though, distributed
processing makes it possible to use network-based file systems and network
communication to convert and transmit files from one execution environment to another.

3. Software Tools

A lot of software tools have been made from the past years until now. Software tools like
visual studios, Notepads and many more have been those that are been used during the
programming process. It all deals with the writing of new codes and the edit-debug assistant
that aid you in debugging your code to figure out where major and minor errors are situated
in your code. They comprise of:

Compilers: It’s a special program that converts codes writing in a certain coding language
into machine language. During execution the compiler first parses all the languages
statement and conditions one after another, all the way through each successive stage,
builds the output code, ensuring that every statement and conditions links correcting to end
resulting code.

Linkers and Loaders: These unite compiled files with all its libraries into executable files.
The Linker is the tool that merges the object file s produced during separate compilation
while the Loader is the part of the operating that bring an executable from its residing
memory and get it running.

Program Editors: It is basically designed for the purpose of editing of source code or
computer programs. Text editors are made with language knowledge that provides them
the ability to automatically find or highlight, parenthesis checking and even simple crossing
checking. It does ease excess typing buy giving hint one objects and properties you might
want to make us off.

Debugging Aids: It is a tool that gives you run-time to be able to find bugs with running
programming beyond the time offered by the programming language. We could also define
debugging to be the finding and reducing of bugs in a computer program, debugging goes
way beyond compile in search to find legal constructs that would be likely potential errors.

Source-Level Debuggers: The user has every control over all execution of the program by
setting a breakpoint on any line of the code also makes it possible to step through execution
a line at a time and set source-level breakpoints. “These have been augmented with visual
displays of program values, allowing the programmer to see the application’s data
structures in their conceptual form.” [9].

System Builders: A model of the system that shows a system that should be built or rebuilt.
The tools are able to build the original program system and also update a system
incrementally based on a set of its source file in respect to changes.

Version Manager: This tool allows more than a single version of a source file to exist at
the same time. It grants permission for parallel system development which gives multiple
programmers the chance to cooperate without boundaries even with the older released
version of the system to be maintained while a newer version is been developed. The
version managers do manage different versions of languages and environment. Which lets
you install any version and switch between version at any time

Code Generators: These are high-level languages that give a programmer an edge to
interactively specify a large portion of a system without having to put it into code. They
are used to define user interfaces and interaction of the program with a database system.

Testing Aids: These are tools that help in the process of executing a system with the intent
determining if it succeeded or failed and reporting the result. They extend from test case
generators that break down source code or determinations to produce a suite of
experiments.

Design Editor: It gives the user the ability to design a system using a different type of
graphical design. “Many of these tools generate at least a code framework based on the
design. If enough information is provided with the design, some of these tools can simulate
aspects of the system, allowing the developer to test the design at a high level.” [9].

Requiremen
ts
planning
process
activities

Small project: 5 features

Large Project: 80 features

 Without tool With tool Without tool With tool
 Unit

effort
Exec
ution
s

Total
effort

Unit
effort

execut
ions

Total
effort

Unit
effort

Exec
ution
s

Total
effort

Unit
effort

executi
ons

Total
effort

Capture raw
requirement
s

53 12 636 13.5 12 162 248 12 2976 36 12 432

Resolve raw
requirement
s

6.8 23 156 13.2 23 303 6.8 5141 34958 13.2 5141 67861

Resolve
features

97.4 5 487 37.7 5 188 97.4 80 7792 37.7 80 3016

Develop
release plan

90 2 180 34 2 68 1440 2 2880 544 2 1088

Total effort 1579 757 56411 74688
Productivity 7.6 15.8 3.4 2.6
Productivity
Impact

+107.9% -23.5%

Table 1: Requirements planning process activities [4]

4. The Impact of a Tool on Productivity of Projects Using the
Advanced Process

*measured in the number of features that can be processed in one 5-day week (2,400
minutes):

Productivity = Number of features in project X 2,400 Minutes
 The total effort in minutes

Tools can greatly improve software development processes by facilitating activities not
practiced before. For example, a testing tool can help p introduce new testing activities
such as branch-coverage analysis. Tools can also help increase productivity by supporting
software development activities that are usually carried out with little or no tool support
[7]. A tool’s impact is not regulated only by its inherent features, but also by the inherited
traits of the preceding projects. From the above table, the project executes with tools shows
a comparative advantage in the productivity parameter compared to those done without
tools.

5. Conclusion

The challenges and realities in applying effective software development tools into project
processes are difficult, integrating the tool into the environment to develop a project also
poses a major challenge due to the cost of the tools. However, there is a comparative
advantage in developing projects with tools, as our study above has shown. Tools advance
the development process by increasing your efforts on specific activities or introduces new
activities into the process, such as generating and maintaining new data. The effective
project development process will succeed by integrating tools to aid the personnel.

References

[1] A. Sulistio, C. S. Yeo and. Buyya, A taxonomy of computer-based simulations and
its mapping to parallel and distributed systems simulation tools, Grid Computing
and Distributed Systems (GRIDS) Laboratory, Department of Computer Science
and Software Engineering, University of Melbourne, Carlton, VIC 3053, Australia.

[2] S. Bendahan, G.Camponovo, and Y.Pigneur, “Multi-issue actor analysis: tools
and models for assessing technology environments”. University of Lausanne HEC
(BFSH1) - CH-1015 Lausanne.

[3] S. E. Lander, S. M. Staley and D. D. Corkill, “Designing Integrated Engineering
Environments: Blackboard-Based Integration of Design and Analysis Tools”,
Blackboard Technology Group Inc, 401 Main Street, Amhert, MA 01002.

[4] T. Bruckhaus, N. H. Madhavji, I. Janssen, J. Henshaw. The Impact of Tools on
Software Productivity. September 1998.

[5] D. W. McIntyret and E. P. Glinert, “Visual Tools for Generating Iconic
Programming Environments”, Department of Computer Science Rensselaer
Polytechnic Institute Troy, New York 12180.

[6] W. Feng and P. Balaji, “TOOLS AND ENVIRONMENTS FOR MULTICORE
AND MANY-CORE ARCHITECTURES”, Virginia Tech, Argonne National
Laboratory.

[7] J. A. Edmans, J. Gladman, M. Walker, A. Sunderland, A. Porter and D. Stanton
Fraser, “Mixed reality environments in stroke rehabilitation: development as
rehabilitation tools”, Division of Rehabilitation and Ageing, Queens Medical
Centre, University of Nottingham, Nottingham, UK, School of Psychology,
University of Nottingham, Nottingham, UK, School of Psychology, University of
Bath, Bath, UK.

[8] J. Grundy , W. Mugridge and J. Hosking, “Constructing Component-based
Software Engineering Environments: Issues and Experiences”, Department of
Computer Science, University of Waikato, Private Bag 3105, Hamilton, New
Zealand, Ph: +64-7-838-4452, Fax: +64-7-838-4155, jgrundy@cs.waikato.ac.nz 2
Department of Computer Science, University of Auckland, Private Bag, Auckland,
New Zealand, Ph: +64 9 3737599, Fax: +64 9 3737453,
{john,rick}@cs.auckland.ac.nz.

[9] S. P. Reiss, “Software Tools and Environments”, Brown University, Providence,
Rhode Island (spr@cs.brown.edu).

[10] A. I. Wasserman, “Tool Integration in Software Engineering Environments”,
Interactive Development Environments, Inc. (IDE) 595 Market Street San
Francisco CA 94105 USA.

