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Abstract 

 
Graph coloring is the process of using different colors to represent data on each edge in a 

graph. Using graph colorings has many beneficial applications in mathematical 

calculations. Using graph colorings, we are able to calculate Ramsey numbers. The brute 

force algorithm using graph coloring to generate the graphs needed to detect Ramsey 

numbers operates at O(cn²), some constant raised to the number of edges squared. It 

requires the generation of all of the different colorings of complete graphs of size n. 

SIMD assembly instructions, or single instruction multiple data, are assembly instructions 

that can perform an operation on multiple registers at once; This is designed to take the 

same amount of time as is does to perform a single operation on a single register. This 

paper explores a highly parallelized graph coloring algorithm that uses SIMD assembly 

instructions to reduce the constant in the run time of calculating Ramsey numbers. 

 

SIMD instructions are extremely useful in computing. Because SIMD instructions 

perform many operations in the time it usually takes to perform a single operation, time 

to compute is reduced. Software for multimedia processing, such as video editing, makes 

use of these instructions to make their software run more efficiently. Making the usage of 

SIMD instructions is quite advantageous. 

 

Reducing the time it takes to calculate Ramsey numbers is not a simple task. Calculating 

Ramsey numbers is a NP-complete problem. In addition to this, the only known 

algorithm to calculate Ramsey numbers is a brute force algorithm. This is why using 

SIMD instructions to help calculate Ramsey numbers is worth examining. Compounding 

the reduction of computation time at the assembly code level can lead to reductions in 

overall computation time. NP-complete problems like the Ramsey numbers need 

complex solutions in order to reduce calculation time. 
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1 Graph Theory Background 

In Graph Theory, a graph is a representation of a number of vertices and their edges or 

lack thereof.  On a computer, we can represent the relation between two vertices with one 

bit (1 if there is an edge, or 0 if there is no edge between the two vertices).  A complete 

graph is a graph where all vertices are connected by edges to all of the other vertices. 

1.1 Colorings 

In a graph, we often wish to attach data to each edge.  The convention is to assign a color 

to each edge of the graph.  If there are two colors, we can represent each color as a bit.  In 

our specific case, we will assign each edge either the color red (1) or the color blue (0).  

The colors are what we use to visually distinguish between the two variants of edges in 

the graphs.  An edge coloring is a specific way in which a graph is colored.  For two 

colors, we have 2n edge colorings, for a graph with n vertices. 

Since a general graph and an edge coloring of two colors on a complete graph both use a 

binary representation they are represented identically.  An edge coloring of a complete 

graph can represent any other graph with the same number of vertices.  So for two colors, 

we don’t need a different specialized data structure; We can just use a graph data 

structure to represent an edge coloring of a complete graph. 

1.2 Subgraphs and Cliques 

A subgraph is a graph that is derived from another graph by removing zero or more 

vertices from that graph.  In a graph, a clique is a subgraph that is itself a complete graph. 

1.3 Ramsey’s Theorem 

In a complete graph, all vertices are connected to each other through an edge, and each 

edge is assigned a color (red or blue). In such a graph, a monochromatic clique is a clique 

in which all of the edges are the same color. The Ramsey number R(r, s) is a number that 

represents the minimum number of vertices of a complete graph that is needed to ensure 

that there will be a monochromatic clique of at least size r or size s. Ramsey numbers 

have symmetry, so R(r, s) = R(s, r). 

R(r, s) s=1 2 3 4 5 6 7 8 

r=1 1 1 1 1 1 1 1 1 

2 x 2 3  4 5 6 7 8 

3 x x 6 9 14 18 23 28 

4 x x x 18 25 ? ?  ? 

5 x x x x ? ? ? ? 
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Table 1: Table of currently known Ramsey Numbers [1].  There is symmetry across the 

diagonal, so those entries are denoted with an x. 

Very few Ramsey numbers are actually known due it’s runtime complexity.  Certain 

Ramsey numbers are trivial to calculate.  For instance, R(1, x) = 1, and R(2, x) = x.  The 

equations for R(3, x) and up are unknown, so R(3, 10) is currently unknown [1]. 

2 Potential Avenues for Single-Core Optimization 

For our particular use case we chose to store the graph as a list of edge colorings in a bit 

string.  Each edge is stored as a bit.  Since a graph and a complete graph with two colors 

can always be mapped to each other by a function that is both one-to-one and onto, we 

will represent our two-color complete graph with a one-color graph. If the bit is 1 there is 

an edge (red) between the two vertices, and the bit is 0 if there is not an edge (blue).  So 

each bit is 1 for red edges (an edge in the one-color graph), or 0 for blue edges (lack of an 

edge in the one-color graph). 

We chose to pack the edge information into 64-bit registers, which we read as 256-bit 

registers with SIMD.  This allows us to do operations on a register that is 4 times larger, 

so theoretically our calculations could be four times faster. 

2.1 SIMD 

SIMD stands for Single Instruction Multiple Data.  These are a set of instructions that are 

provided by specific extensions to X86 Assembly (sse, avx extensions).  Architectures 

other than X86 also have instructions that work similarly to SIMD.  For instance, ARM 

and MIPS have similar vector instructions.  The original purpose of these instructions 

was to make multimedia processing faster, but they have also been found to be  useful for 

other types of algorithms. 

These instructions take multiple data types and pack them into a large register. For 

example, there might be 8 signed 16 bit integers packed into a 128 bit register. The SIMD 

instructions act on these registers so that you may apply the same operation, say addition, 

onto the 8 integers at the same time, rather than use a for loop. This theoretically 

optimizes the algorithm by a factor of 8; now the addition inside of the for loop is 

+reduced to one assembly instruction. 

2.2 Leaving Out Unneeded Edge Colorings 

Not all edge colorings need to be checked for getting greater values of R(r, s). If the 

graph is all red and r is the current size of the graph, we know that we have a clique. This 

is because we know that we will have exactly one monochromatic clique with number of 

vertices r, for a graph with number of vertices v that is a monochromatic graph. 



 

3 

 

Additionally, there are duplicate edge colorings. For a K4 graph coloring represented by 

the bit string 100101, we don’t need to check 011010, the bitwise complement of the bit 

string because then we’re just swapping red and blue. Additionally, the graph represented 

by the bit string 100000 is isomorphic to the graphs represented by the bit strings 010000, 

001000, 000100, 000010, 000001. This means we only have to check one of these graphs 

because they have the same number of cliques on the same colors [5]. 

2.3 Other Optimizations 

Besides possibly using SIMD and leaving out specific edge colorings, it’s been shown 

that in the structure of the Ramsey numbers, there are substructures that can be used to 

find them in less computation time [2]. Additionally, there are ways to split up the 

algorithm into less computationally expensive algorithms, which was used to discover 

R(4, 5) [6]. 

3 Using SIMD To Solve The Clique Problem 

Finding a clique of size K, in a graph G is NP-complete.  If K is a constant, the algorithm 

can be brought down to polynomial time, but we can’t do that because we’re trying to 

search for the two biggest cliques of each of the two colors in our graph.  

3.1 Algorithm 

The algorithm in SIMD to determine the Ramsey number based on the r and s values 

begins with generating all different graphs possible starting with the minimum of the two 

r and s values. For example, with R(3,3), one would start to generate complete graphs 

starting with 3 vertices, which is the minimum of r and s. 

After identifying the minimum possible Ramsey number, the algorithm iterates through 

all of the different edge colorings for the current size complete graph. For each coloring, 

we create a bit string, which is called gc (graph coloring). 

Next, the algorithm will generate all variations of the cliques of size r or s within the 

current graph. All the potential cliques of size of r or s in the graph will be represented 

through a list of bit strings. For each iteration, the potential clique is called pc (possible 

clique). 

After identifying values for pc, a bitwise AND is utilized to compare each pc with the 

current gc of the current graph. This output is called c, the mask of pc onto gc. In order to 

understand the output we will classify them based on three different cases: 

Case 1: If c = pc, it indicates that the current graph has a red clique on the edges specified 

by bit string pc. 
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Case 2: If c = 0, it indicates that the current graph has a blue clique on the edges specified 

by bit string pc. 

Case 3: If neither case 1 or case 2 is true, then there is no red clique of size r or blue 

clique of size s in the current graph coloring.  

If case 3 does occur, then an additional vertex will be added and the algorithm repeats 

itself until all edge colorings of the graph pass either case 1 or case 2.  Once all edge 

coloring pass case 1 or case 2, the algorithm returns the number of vertices in the graph. 

3.2 Theoretically Testing Of Algorithm With R(3,3) 

The algorithm begins with identifying all the possible cliques created using 3 vertices. 

Next, the different cliques are searched for on the current graph coloring for the graph 

with 3 vertices. This is done for all variations. Eventually we come to the example below: 

 

Figure 1: K3 graph coloring without a 3 vertex clique. 

After establishing that a K3 graph does not satisfy either case 1 or case 2, we move on 

and add an additional vertex. Now we are looking at graphs of size 4. We then generate 

the possible cliques with 3 vertices within the graph of 4 vertices. Eventually we come to 

the example below: 

 

Figure 2:  K4 graph coloring without a 3 vertex clique. 

After not meeting either case 1 or case 2, we can conclude R(3,3) does not equal 4, so 

move on to add another vertex.  
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Now on to the example of 5 vertices. Most graph colorings for a K5 have a 3 vertex 

clique, except for the coloring shown below. 

 

Figure 3: K5 graph coloring without a 3 vertex clique. 

Initially, in the algorithm we would start by giving each vertex a label, Figure 4 

illustrates this in it’s vertices which are labeled starting from the the top and going 

clockwise the vertices are labeled as A, B, C, D, E as shown below: 

 

Figure 4:  Vertex-labeled K5 graph coloring without a 3 vertex clique.  

Next, we create a table detailing all possible edge combinations; if in the current graph 

there exists an edge between the vertices then we put a 1, and if there is not an edge then 

we put a 0.  

BA CA CB DA DB DC EA EB EC  ED 

1 0 1 0 0 1 1 0 0 1 

 

Table 2: An example mapping of a bit string to the edges in a K5 graph.  

The above table contains the bit string representation of the current graph coloring. For 

this algorithm, we would call this gc. 

Next, we calculate all of the cliques with r vertices; In our case, we look for all of the 

different cliques with 3 vertices within a 5 vertex complete graph. The number of 



 

6 

 

possible cliques is n choose k, where k is the number of vertices and n is the clique size. 

So in the case of a graph with 5 vertices and finding cliques of size 3, we would have 10 

possible combinations due to 5 choose 3 = 10. 

 

ABC ABE AED EDC DCB EBC EBD ABD EAC ACD 

 

Table 3: All of the possible cliques in K5 

Next we decide to represent each possible clique as a bit string. This is what we call our 

possible cliques or pc. 

 BA CA CB DA DB DC EA EB EC  ED 

ABC 1 1 1  0 0 0 0 0 0 0 

ABE 1 0 0 0 0 0 1 1 0 0 

AED 0 0 0 1 0 0 1 0 0 1 

……. ……. …... ……. …… …… …… …… …… …… …… 

 

Table 4: Bit strings for each possible clique in K5 

Once we have found both our gc and pc bit strings, we are able to use the bitwise AND 

operation to compare the bit strings. The output of the bitwise AND is the variable c. 

We don’t get either case 1 or case 2 for any of the possible cliques in this graph coloring, 

so we have proven that the graph of 5 vertices is not the solution for R(3,3), we move on 

in the process and add an additional vertex. 

The complete graph using 6 vertices pictured below: 
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Figure 5:  Vertex labeled K6 graph coloring with multiple 3 vertex cliques. 

Using this example and all other colorings of a K6, we find that all edge colorings of K6 

have a 3 vertex clique. 

4 Distributing The Work to Multiple Processors 

The algorithm for calculating Ramsey Numbers scales well to multiple processors. In 

order to actually calculate the numbers, the computer needs to form a proof that there are 

no graphs that have red and blue cliques with the number of vertices more than r or s for 

that value of v in equation R(r, s) = v. 

For calculating Ramsey Numbers, all known algorithms are some variation of a brute 

force approach. In the brute force approach, all possible colorings of the graph are 

checked for the sizes of their respective cliques. To split up the work, the graphs can be 

sent to their own thread and count the cliques. Once this is completed, the main thread 

can compare it with the current minimum for r and s, and increment the minimum if 

needed. For example, R(3, 3) ≠ 5 can be proved by showing a K5 graph 

without either a red clique with 3 vertices or a blue clique with 3 vertices. For R(3, 3) = 6, 

you can prove by calculating that all of the possible combinations of edges in a K6 have 

either a red clique of size 3 or a blue clique of size 3. 

When the value of R(r, s) gets proved to not be a certain number of vertices, the other 

threads can be interrupted and the variable for v can be incremented and work distributed 

to the other processors again. The proof can then be recorded in a file, so that the work 

doesn’t have to be repeated on the next run of the code. 

4.1 Distributing to Multiple Computers With a Message Passing 

Interface 

Parallel computation on a single computer allows you to perform multiple separate 

checks at the same time, but this still limits the algorithm to the number of cores on the 

computer. To improve the speed of finding Ramsey numbers we can simply use more 
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computers to search for cliques. It would be helpful to use some software such as MPI. 

With MPI all computers are connected to each other on the same network and are able to 

communicate with one another. Using MPI, we would pass unique graphs to each 

instance of our algorithm running on each of the networked computers. Alternatively, 

Dask Distributed could be used to parallelize our computation [4]. The advantage of 

using Dask Distributed is that we could easily setup a cluster of computers instead of 

having to create a dedicated cluster of computers running MPI. 

 

We would write a program in python that uses MPI for Python to interface with MPI [3]. 

For example, the rust program would be running on each of these computers and accept 

bit strings from the head node where each bit string represents a graph. If any one of the 

the bit strings does not form a graph with a clique then it would pass a message back to 

the head node telling the head node to stop all other processes from computing any other 

bit strings of that length. Then the head node would start passing out the next set of bit 

strings of one length longer than the previous. If all bit strings form cliques then we have 

found the Ramsey number for that combination cliques and value for v. The python 

program would then continue on to increment v and the get the next combination of 

possible cliques and repeat this process. 

 

5 Results And Future Work 

For our benchmarking, we used Criterion.rs. Criterion.rs is a Rust library typically used 

for doing benchmarking. It does statistically significant tests for the algorithm, and 

generates graphs to help visualize the results.  For an example that doesn’t take to much 

CPU time, we are using R(2, 3) to test the improvements in the algorithm. 
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Figure 10: Probability density function generated by Criterion.rs for a SIMD-disabled run 

on an i3-6100U laptop. 

 

Figure 11: Probability density function generated by Criterion.rs for a SIMD-enabled run 

on an i3-6100U laptop. 

 

Figure 12: The two probability density functions generated by Criterion.rs for a SIMD-

enabled run against a SIMD-disabled run on an i3-6100U laptop. 

We found that without SIMD we get 88.774 us, with SIMD we get 93.843 us.  This 

shows that running with SIMD enabled is actually slightly slower.  Even though it is 

slower, the difference is not statistically significant.  Since it’s slower, this might not be a 

good case for using SIMD.  That being said, the idea of using SIMD lead us to represent 

graphs as a bit string of edges which is different from the conventional way of storing 
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graphs with pointers or as a matrix.  Using bits allowed us to use bitwise AND and XOR 

to more quickly determine whether or not a graph has a red or blue clique of a specific 

size. 

5.1 Comparing a Slow Example 

A slow example with our algorithm is R(2, 8).  We’re benchmarking against this because 

R(3, 4) would take about 10 days to calculate on our i3-6100U computer without SIMD, 

and all other examples take a small amount of time.  R(2, x) is always x, so it would be 

trivial to optimize, but we’re using the example to show how big problems like R(3, 4) 

would scale with SIMD. 

Running without SIMD on a single thread, calculating R(2, 8)=8 took 45 minutes and 

42.461 seconds.  With SIMD, calculating R(2, 8)=8 took 47 minutes and 33.573s 

seconds. 

5.2 Future Work 

Our algorithm could possibly be improved by packing our smaller graph colorings into an 

256-bit register instead of having each graph coloring taking up a whole 8 256-bit values.  

For graph sizes with less than or equal to 128 edges, we can pack 2 graph colorings into 

one register.  For graph sizes with less than or equal to 64 edges, we can pack 4, less than 

or equal to 32 packs 8, and less than or equal to 16 packs 16.  For this last one, we could 

do 16 tests in the same amount of time it currently takes us to do one test. 

Additionally, we could examine the assembly code output for our SIMD algorithm and 

possibly find something that the Rust compiler put in to link the code together which is 

not optimal.  In this case, we could write and link in assembly rather than calling the 

intrinsics from Rust.  This could allow us to do more optimizations. 

Another thing we could try is to see if loading and storing into SIMD registers takes a 

while, then we could put the AND and XOR operations in the same function called right 

after each other.  The idea is that this would result in less assembly instructions total in 

the inner loop. 

We might also try optimizing generating the possible cliques with SIMD which uses a 

greater number assembly instructions that take more clock cycles.  Our uses of AND and 

XOR are faster instructions than addition, which is used a lot for generating the possible 

cliques. 

5.3 Conclusion 

Even though our use of SIMD didn’t show us an improvement in speed, there are other 

algorithms that are faster with SIMD. Finding that this algorithm doesn’t optimize well 

with SIMD has helped us understand for which algorithms it might. Additionally, there 
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may still be parts of the code for generating Ramsey numbers where SIMD usage would 

be beneficial. 

In  
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