
Using SIMD and Parallelization

to Compute Graph Colorings

Jeron Lau, Erik Ayavaca-Tirado, Eduardo Flores Bautista, Aleksandr

Lukanen

Computer Science Department

Augsburg University

Minneapolis, MN 55454

Scott Kerlin <kerlin@augsburg.edu>

Abstract

Graph coloring is the process of using different colors to represent data on each edge in a

graph. Using graph colorings has many beneficial applications in mathematical

calculations. Using graph colorings, we are able to calculate Ramsey numbers. The brute

force algorithm using graph coloring to generate the graphs needed to detect Ramsey

numbers operates at O(cn²), some constant raised to the number of edges squared. It

requires the generation of all of the different colorings of complete graphs of size n.

SIMD assembly instructions, or single instruction multiple data, are assembly instructions

that can perform an operation on multiple registers at once; This is designed to take the

same amount of time as is does to perform a single operation on a single register. This

paper explores a highly parallelized graph coloring algorithm that uses SIMD assembly

instructions to reduce the constant in the run time of calculating Ramsey numbers.

SIMD instructions are extremely useful in computing. Because SIMD instructions

perform many operations in the time it usually takes to perform a single operation, time

to compute is reduced. Software for multimedia processing, such as video editing, makes

use of these instructions to make their software run more efficiently. Making the usage of

SIMD instructions is quite advantageous.

Reducing the time it takes to calculate Ramsey numbers is not a simple task. Calculating

Ramsey numbers is a NP-complete problem. In addition to this, the only known

algorithm to calculate Ramsey numbers is a brute force algorithm. This is why using

SIMD instructions to help calculate Ramsey numbers is worth examining. Compounding

the reduction of computation time at the assembly code level can lead to reductions in

overall computation time. NP-complete problems like the Ramsey numbers need

complex solutions in order to reduce calculation time.

1

1 Graph Theory Background

In Graph Theory, a graph is a representation of a number of vertices and their edges or

lack thereof. On a computer, we can represent the relation between two vertices with one

bit (1 if there is an edge, or 0 if there is no edge between the two vertices). A complete

graph is a graph where all vertices are connected by edges to all of the other vertices.

1.1 Colorings

In a graph, we often wish to attach data to each edge. The convention is to assign a color

to each edge of the graph. If there are two colors, we can represent each color as a bit. In

our specific case, we will assign each edge either the color red (1) or the color blue (0).

The colors are what we use to visually distinguish between the two variants of edges in

the graphs. An edge coloring is a specific way in which a graph is colored. For two

colors, we have 2n edge colorings, for a graph with n vertices.

Since a general graph and an edge coloring of two colors on a complete graph both use a

binary representation they are represented identically. An edge coloring of a complete

graph can represent any other graph with the same number of vertices. So for two colors,

we don’t need a different specialized data structure; We can just use a graph data

structure to represent an edge coloring of a complete graph.

1.2 Subgraphs and Cliques

A subgraph is a graph that is derived from another graph by removing zero or more

vertices from that graph. In a graph, a clique is a subgraph that is itself a complete graph.

1.3 Ramsey’s Theorem

In a complete graph, all vertices are connected to each other through an edge, and each

edge is assigned a color (red or blue). In such a graph, a monochromatic clique is a clique

in which all of the edges are the same color. The Ramsey number R(r, s) is a number that

represents the minimum number of vertices of a complete graph that is needed to ensure

that there will be a monochromatic clique of at least size r or size s. Ramsey numbers

have symmetry, so R(r, s) = R(s, r).

R(r, s) s=1 2 3 4 5 6 7 8

r=1 1 1 1 1 1 1 1 1

2 x 2 3 4 5 6 7 8

3 x x 6 9 14 18 23 28

4 x x x 18 25 ? ? ?

5 x x x x ? ? ? ?

2

Table 1: Table of currently known Ramsey Numbers [1]. There is symmetry across the

diagonal, so those entries are denoted with an x.

Very few Ramsey numbers are actually known due it’s runtime complexity. Certain

Ramsey numbers are trivial to calculate. For instance, R(1, x) = 1, and R(2, x) = x. The

equations for R(3, x) and up are unknown, so R(3, 10) is currently unknown [1].

2 Potential Avenues for Single-Core Optimization

For our particular use case we chose to store the graph as a list of edge colorings in a bit

string. Each edge is stored as a bit. Since a graph and a complete graph with two colors

can always be mapped to each other by a function that is both one-to-one and onto, we

will represent our two-color complete graph with a one-color graph. If the bit is 1 there is

an edge (red) between the two vertices, and the bit is 0 if there is not an edge (blue). So

each bit is 1 for red edges (an edge in the one-color graph), or 0 for blue edges (lack of an

edge in the one-color graph).

We chose to pack the edge information into 64-bit registers, which we read as 256-bit

registers with SIMD. This allows us to do operations on a register that is 4 times larger,

so theoretically our calculations could be four times faster.

2.1 SIMD

SIMD stands for Single Instruction Multiple Data. These are a set of instructions that are

provided by specific extensions to X86 Assembly (sse, avx extensions). Architectures

other than X86 also have instructions that work similarly to SIMD. For instance, ARM

and MIPS have similar vector instructions. The original purpose of these instructions

was to make multimedia processing faster, but they have also been found to be useful for

other types of algorithms.

These instructions take multiple data types and pack them into a large register. For

example, there might be 8 signed 16 bit integers packed into a 128 bit register. The SIMD

instructions act on these registers so that you may apply the same operation, say addition,

onto the 8 integers at the same time, rather than use a for loop. This theoretically

optimizes the algorithm by a factor of 8; now the addition inside of the for loop is

+reduced to one assembly instruction.

2.2 Leaving Out Unneeded Edge Colorings

Not all edge colorings need to be checked for getting greater values of R(r, s). If the

graph is all red and r is the current size of the graph, we know that we have a clique. This

is because we know that we will have exactly one monochromatic clique with number of

vertices r, for a graph with number of vertices v that is a monochromatic graph.

3

Additionally, there are duplicate edge colorings. For a K4 graph coloring represented by

the bit string 100101, we don’t need to check 011010, the bitwise complement of the bit

string because then we’re just swapping red and blue. Additionally, the graph represented

by the bit string 100000 is isomorphic to the graphs represented by the bit strings 010000,

001000, 000100, 000010, 000001. This means we only have to check one of these graphs

because they have the same number of cliques on the same colors [5].

2.3 Other Optimizations

Besides possibly using SIMD and leaving out specific edge colorings, it’s been shown

that in the structure of the Ramsey numbers, there are substructures that can be used to

find them in less computation time [2]. Additionally, there are ways to split up the

algorithm into less computationally expensive algorithms, which was used to discover

R(4, 5) [6].

3 Using SIMD To Solve The Clique Problem

Finding a clique of size K, in a graph G is NP-complete. If K is a constant, the algorithm

can be brought down to polynomial time, but we can’t do that because we’re trying to

search for the two biggest cliques of each of the two colors in our graph.

3.1 Algorithm

The algorithm in SIMD to determine the Ramsey number based on the r and s values

begins with generating all different graphs possible starting with the minimum of the two

r and s values. For example, with R(3,3), one would start to generate complete graphs

starting with 3 vertices, which is the minimum of r and s.

After identifying the minimum possible Ramsey number, the algorithm iterates through

all of the different edge colorings for the current size complete graph. For each coloring,

we create a bit string, which is called gc (graph coloring).

Next, the algorithm will generate all variations of the cliques of size r or s within the

current graph. All the potential cliques of size of r or s in the graph will be represented

through a list of bit strings. For each iteration, the potential clique is called pc (possible

clique).

After identifying values for pc, a bitwise AND is utilized to compare each pc with the

current gc of the current graph. This output is called c, the mask of pc onto gc. In order to

understand the output we will classify them based on three different cases:

Case 1: If c = pc, it indicates that the current graph has a red clique on the edges specified

by bit string pc.

4

Case 2: If c = 0, it indicates that the current graph has a blue clique on the edges specified

by bit string pc.

Case 3: If neither case 1 or case 2 is true, then there is no red clique of size r or blue

clique of size s in the current graph coloring.

If case 3 does occur, then an additional vertex will be added and the algorithm repeats

itself until all edge colorings of the graph pass either case 1 or case 2. Once all edge

coloring pass case 1 or case 2, the algorithm returns the number of vertices in the graph.

3.2 Theoretically Testing Of Algorithm With R(3,3)

The algorithm begins with identifying all the possible cliques created using 3 vertices.

Next, the different cliques are searched for on the current graph coloring for the graph

with 3 vertices. This is done for all variations. Eventually we come to the example below:

Figure 1: K3 graph coloring without a 3 vertex clique.

After establishing that a K3 graph does not satisfy either case 1 or case 2, we move on

and add an additional vertex. Now we are looking at graphs of size 4. We then generate

the possible cliques with 3 vertices within the graph of 4 vertices. Eventually we come to

the example below:

Figure 2: K4 graph coloring without a 3 vertex clique.

After not meeting either case 1 or case 2, we can conclude R(3,3) does not equal 4, so

move on to add another vertex.

5

Now on to the example of 5 vertices. Most graph colorings for a K5 have a 3 vertex

clique, except for the coloring shown below.

Figure 3: K5 graph coloring without a 3 vertex clique.

Initially, in the algorithm we would start by giving each vertex a label, Figure 4

illustrates this in it’s vertices which are labeled starting from the the top and going

clockwise the vertices are labeled as A, B, C, D, E as shown below:

Figure 4: Vertex-labeled K5 graph coloring without a 3 vertex clique.

Next, we create a table detailing all possible edge combinations; if in the current graph

there exists an edge between the vertices then we put a 1, and if there is not an edge then

we put a 0.

BA CA CB DA DB DC EA EB EC ED

1 0 1 0 0 1 1 0 0 1

Table 2: An example mapping of a bit string to the edges in a K5 graph.

The above table contains the bit string representation of the current graph coloring. For

this algorithm, we would call this gc.

Next, we calculate all of the cliques with r vertices; In our case, we look for all of the

different cliques with 3 vertices within a 5 vertex complete graph. The number of

6

possible cliques is n choose k, where k is the number of vertices and n is the clique size.

So in the case of a graph with 5 vertices and finding cliques of size 3, we would have 10

possible combinations due to 5 choose 3 = 10.

ABC ABE AED EDC DCB EBC EBD ABD EAC ACD

Table 3: All of the possible cliques in K5

Next we decide to represent each possible clique as a bit string. This is what we call our

possible cliques or pc.

 BA CA CB DA DB DC EA EB EC ED

ABC 1 1 1 0 0 0 0 0 0 0

ABE 1 0 0 0 0 0 1 1 0 0

AED 0 0 0 1 0 0 1 0 0 1

……. ……. …... ……. …… …… …… …… …… …… ……

Table 4: Bit strings for each possible clique in K5

Once we have found both our gc and pc bit strings, we are able to use the bitwise AND

operation to compare the bit strings. The output of the bitwise AND is the variable c.

We don’t get either case 1 or case 2 for any of the possible cliques in this graph coloring,

so we have proven that the graph of 5 vertices is not the solution for R(3,3), we move on

in the process and add an additional vertex.

The complete graph using 6 vertices pictured below:

7

Figure 5: Vertex labeled K6 graph coloring with multiple 3 vertex cliques.

Using this example and all other colorings of a K6, we find that all edge colorings of K6

have a 3 vertex clique.

4 Distributing The Work to Multiple Processors

The algorithm for calculating Ramsey Numbers scales well to multiple processors. In

order to actually calculate the numbers, the computer needs to form a proof that there are

no graphs that have red and blue cliques with the number of vertices more than r or s for

that value of v in equation R(r, s) = v.

For calculating Ramsey Numbers, all known algorithms are some variation of a brute

force approach. In the brute force approach, all possible colorings of the graph are

checked for the sizes of their respective cliques. To split up the work, the graphs can be

sent to their own thread and count the cliques. Once this is completed, the main thread

can compare it with the current minimum for r and s, and increment the minimum if

needed. For example, R(3, 3) ≠ 5 can be proved by showing a K5 graph

without either a red clique with 3 vertices or a blue clique with 3 vertices. For R(3, 3) = 6,

you can prove by calculating that all of the possible combinations of edges in a K6 have

either a red clique of size 3 or a blue clique of size 3.

When the value of R(r, s) gets proved to not be a certain number of vertices, the other

threads can be interrupted and the variable for v can be incremented and work distributed

to the other processors again. The proof can then be recorded in a file, so that the work

doesn’t have to be repeated on the next run of the code.

4.1 Distributing to Multiple Computers With a Message Passing

Interface

Parallel computation on a single computer allows you to perform multiple separate

checks at the same time, but this still limits the algorithm to the number of cores on the

computer. To improve the speed of finding Ramsey numbers we can simply use more

8

computers to search for cliques. It would be helpful to use some software such as MPI.

With MPI all computers are connected to each other on the same network and are able to

communicate with one another. Using MPI, we would pass unique graphs to each

instance of our algorithm running on each of the networked computers. Alternatively,

Dask Distributed could be used to parallelize our computation [4]. The advantage of

using Dask Distributed is that we could easily setup a cluster of computers instead of

having to create a dedicated cluster of computers running MPI.

We would write a program in python that uses MPI for Python to interface with MPI [3].

For example, the rust program would be running on each of these computers and accept

bit strings from the head node where each bit string represents a graph. If any one of the

the bit strings does not form a graph with a clique then it would pass a message back to

the head node telling the head node to stop all other processes from computing any other

bit strings of that length. Then the head node would start passing out the next set of bit

strings of one length longer than the previous. If all bit strings form cliques then we have

found the Ramsey number for that combination cliques and value for v. The python

program would then continue on to increment v and the get the next combination of

possible cliques and repeat this process.

5 Results And Future Work

For our benchmarking, we used Criterion.rs. Criterion.rs is a Rust library typically used

for doing benchmarking. It does statistically significant tests for the algorithm, and

generates graphs to help visualize the results. For an example that doesn’t take to much

CPU time, we are using R(2, 3) to test the improvements in the algorithm.

9

Figure 10: Probability density function generated by Criterion.rs for a SIMD-disabled run

on an i3-6100U laptop.

Figure 11: Probability density function generated by Criterion.rs for a SIMD-enabled run

on an i3-6100U laptop.

Figure 12: The two probability density functions generated by Criterion.rs for a SIMD-

enabled run against a SIMD-disabled run on an i3-6100U laptop.

We found that without SIMD we get 88.774 us, with SIMD we get 93.843 us. This

shows that running with SIMD enabled is actually slightly slower. Even though it is

slower, the difference is not statistically significant. Since it’s slower, this might not be a

good case for using SIMD. That being said, the idea of using SIMD lead us to represent

graphs as a bit string of edges which is different from the conventional way of storing

10

graphs with pointers or as a matrix. Using bits allowed us to use bitwise AND and XOR

to more quickly determine whether or not a graph has a red or blue clique of a specific

size.

5.1 Comparing a Slow Example

A slow example with our algorithm is R(2, 8). We’re benchmarking against this because

R(3, 4) would take about 10 days to calculate on our i3-6100U computer without SIMD,

and all other examples take a small amount of time. R(2, x) is always x, so it would be

trivial to optimize, but we’re using the example to show how big problems like R(3, 4)

would scale with SIMD.

Running without SIMD on a single thread, calculating R(2, 8)=8 took 45 minutes and

42.461 seconds. With SIMD, calculating R(2, 8)=8 took 47 minutes and 33.573s

seconds.

5.2 Future Work

Our algorithm could possibly be improved by packing our smaller graph colorings into an

256-bit register instead of having each graph coloring taking up a whole 8 256-bit values.

For graph sizes with less than or equal to 128 edges, we can pack 2 graph colorings into

one register. For graph sizes with less than or equal to 64 edges, we can pack 4, less than

or equal to 32 packs 8, and less than or equal to 16 packs 16. For this last one, we could

do 16 tests in the same amount of time it currently takes us to do one test.

Additionally, we could examine the assembly code output for our SIMD algorithm and

possibly find something that the Rust compiler put in to link the code together which is

not optimal. In this case, we could write and link in assembly rather than calling the

intrinsics from Rust. This could allow us to do more optimizations.

Another thing we could try is to see if loading and storing into SIMD registers takes a

while, then we could put the AND and XOR operations in the same function called right

after each other. The idea is that this would result in less assembly instructions total in

the inner loop.

We might also try optimizing generating the possible cliques with SIMD which uses a

greater number assembly instructions that take more clock cycles. Our uses of AND and

XOR are faster instructions than addition, which is used a lot for generating the possible

cliques.

5.3 Conclusion

Even though our use of SIMD didn’t show us an improvement in speed, there are other

algorithms that are faster with SIMD. Finding that this algorithm doesn’t optimize well

with SIMD has helped us understand for which algorithms it might. Additionally, there

11

may still be parts of the code for generating Ramsey numbers where SIMD usage would

be beneficial.

In

References

[1] The OEIS Foundation Inc. A212954 - OEIS, https://oeis.org/A212954, March 2019.

[2] Helsinki University of Technology Laboratory for Theoretical Computer Science.

COMPUTATIONAL METHODS FOR RAMSEY NUMBERS,

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.5547&rep=rep1&type=pdf,

2000.

[3] Lisandro Dalcin. MPI for Python, https://mpi4py.readthedocs.io/en/stable/, Feb 15,

2019.

[4] Anaconda, Inc. Dask.distributed, http://distributed.dask.org/en/latest/, 2016.

[5] Pascal Schweitzer. Problems of Unknown Complexity, https://people.mpi-

inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf, April 2012.

[6] Brendan D. McKay. R(4,5) = 25, http://users.cecs.anu.edu.au/~bdm/papers/r45.pdf,

1995.

https://oeis.org/A212954
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.3.5547&rep=rep1&type=pdf
https://mpi4py.readthedocs.io/en/stable/
http://distributed.dask.org/en/latest/
https://people.mpi-inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf
https://people.mpi-inf.mpg.de/~pascal/docs/thesis_pascal_schweitzer.pdf
http://users.cecs.anu.edu.au/~bdm/papers/r45.pdf

