
1 
 

 
 

Evaluating the Impact of Time Delays and Start Sequence 
for Effective Congestion Control Using TCP Reno, 

Westwood and Vegas 
 
 

Sumin Yi and Rahul Gomes 
Department of Mathematics and Computer Science 

Minot State University 
Minot, ND 58701 

sumin.yi@ndus.edu and rahul.gomes@ndus.edu  
 
 

Abstract 

Transmission Control Protocol (TCP) provides stable data delivery among applications by 
allocating bandwidth [1]. When congestion occurs on a network, transmission delays and 
packet loss can happen. Therefore, TCP ensures a stable network by controlling the 
congestion [8]. Since each TCP variant uses different methods to measure the congestion, 
it is important to figure out how it cooperate and without affecting the performance of the 
other TCP variants. 

This paper compares three TCP variants that use congestion control algorithms. It 
emphasizes on the time intervals when running multiple TCP protocol transmissions. 
Experiments are conducted by varying start times of each source node as well as the order 
of precedence for the protocols. Simulations were conducted on the NS2 Platform installed 
on Ubuntu 14.04.  

Experiments reveal the greedy nature of Reno [3] when it starts well ahead of other TCP 
algorithms. However, when Vegas and Westwood start well ahead of Reno in our 
experiments, the network appears optimized, and the impact of Reno is reduced.  
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1 Introduction 

The Transmission Control Protocol (TCP) is a connection-oriented protocol in the 
Transport layer [3]. The transport layer is in charge of establishing communication between 
applications and delivering data. There are many services that are provided by TCP in the 
transport layer. These include ensuring the end-to-end connection between the source and 
the destination, and handling error corrections in order to provide a solid connection [8]. It 
can provide reliable transport layer to many protocols on the Internet as integrity is 
enforced in TCP. TCP uses congestion control algorithms to reduce delay and data loss due 
to network congestion. It puts flow control and congestion control into use to manage both 
sender and receiver which in turn controls the data that flows through the network. 

Congestion control uses many methods to solve the bottleneck on the network. TCP Reno 
utilized packet loss, its main congestion detection method [9] while TCP Vegas uses 
increased Round Trip Time (RTT) to detect the congestion before packet loss actually 
occurs [5]. On the other hand, TCP Westwood uses both packet loss and RTT estimation 
to estimate the packet rate as it calculates the congestion window [2] [3]. There are many 
ways to measure and respond to congestion. However, the most important thing is to find 
the optimum way to utilize each attribute of TCP variant when using multiple variants 
together. 

TCP Reno, TCP Vegas, and TCP Westwood are used to test the importance of having time 
intervals between TCP protocol transmissions. The essential part of the experiments is to 
set various time intervals between the source nodes in addition to having different 
arrangements of the protocols. The experiments were tested on NS2 simulations and 
GNUPLOT was used to visually describe the results. The start time of each experiment 
was adjusted by 0.4 sec, 1 sec and 2 secs. The duplicated process was done by changing 
the arrangement of the protocol to validate the prominence of greediness. 

The rest of the paper is organized as follows. Section 2 explains the three TCP variants that 
were used in these experiments. Previous researches conducted on the comparison of TCP 
congestion control algorithms are in section 3 for a better understanding of this paper. 
Details of the experiments including the method used are given in section 4. The results 
and demonstrations are listed in Section 5. Section 6 has a summary of the results. 

 

2 Background 

TCP Reno, Vegas, and Westwood are subjects of this research because of their correlations. 
TCP Reno and Westwood share similar congestion control algorithms: as Westwood is a 
modified version of Reno, being sender-side only [3]. They both use fast recovery to reset 
the slow start threshold (ssthresh) and congestion window (cwnd) after loss happens [10]. 
TCP Vegas has its own congestion control algorithms distinct from Reno but it shares 
similarities with TCP Westwood by to use RTT measuring method to estimate the 
bandwidth. Having this set of three makes it easier to compare the different congestion 
control algorithms used in the experiments.     
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2.1 TCP Reno 

TCP Reno resembles TCP Tahoe which being that both of them are the earliest model of 
congestion avoidance algorithms used. TCP Reno uses slow start until it hits the threshold 
and runs additive increase methods same as TCP Tahoe [3]. Additive increase means 
increasing congestion window by 1 when there are no losses in the past transmission. 
However, the difference between TCP Reno and Tahoe occurs when they receive triple 
duplicate acknowledgments (ACK). TCP Tahoe will cut its cwnd size to 1 and enter slow 
start [3]. TCP Reno will perform fast recovery meaning it will set the ssthresh into the half 
the size of cwnd and wait for an ACK of transmit window before going into congestion 
avoidance [9]. If TCP Reno faces time-out instead of triple duplicate ACKs, slow start will 
begin from 1 just like TCP Tahoe. TCP Reno employs passive congestion indication which 
can make the congestion worse on the network. Packet loss detects the network congestion 
of TCP Reno.  

2.2 TCP Vegas 

TCP Vegas uses precise RTT calculation to detect the available bandwidth. It calculates 
the difference between expected flows and actual flows. It measures the minimum RTT to 
estimate the RTT of a network without congestion, if the network is not congested, the 
difference should be close to zero [9]. Packet delay determines the rate of sending packets 
instead of packet loss which means it detects the congestion before packet loss because of 
increased RTT. In cases that packet loss does occur, the packet sending rate gets lowered 
linearly as well. TCP Vegas gets compared to TCP Reno many times as they represent 
contrasting congestion control method [5] [9]. Vegas encounters fairness problems when 
it collides with Reno due to its main congestion avoidance mechanism. TCP Vegas tries to 
maintain the small queue size whereas TCP Reno would fill up the queue since its packet 
loss happens due to overflowing buffer. Therefore, Reno is deemed aggressive as it does 
not give space for other connections to take the bandwidth. Once TCP Reno takes up the 
buffer, Vegas will perceive it as congestion and will drop the cwnd of its own. 

2.3 TCP Westwood 

TCP Westwood uses end-to-end bandwidth estimation which updates ssthresh and cwin 
when packet loss emerges [6]. It scans the ACK stream to have a better slow start. Agile 
probing helps to converge the bandwidth faster to a more appropriate ssthresh. Persistent 
Non-Congestion Detection identifies unused bandwidth and invokes agile probing. TCP 
Westwood is the refinement of TCP Reno and keeps the loss based congestion avoidance 
mechanism by dropping cwnd size when queue capacity is less than transit capacity [3]. 
Unlike TCP Reno that just decreases its cwnd to half, TCP Westwood is able to choose the 
ssthresh and cwnd based on the congestion it is experiencing at the time. TCP Westwood 
also uses the RTT estimation method from TCP Vegas as it is very efficient when handling 
high bandwidth connections. While TCP Vegas estimates its bandwidth by cwnd/RTT, 
TCP Westwood goes further and uses bandwidth estimation to reduce cwnd based on the 
network present network traffic [3]. Although it implanted TCP Reno’s mechanism, it is 
not as aggressive as Reno as it also has a feature to estimate bandwidth [7]. 
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3 Previous Work 

Work on TCP congestion control was done earlier in [4]. The authors evaluate 13 TCP 
variants and examine how TCP variants are compatible with each other. Each TCP variant 
uses miscellaneous congestion control algorithms and it makes a huge change to how 
network traffic conveys. The authors of this research measured how congestion control 
algorithms fight for network resources. Congestion window changes as the congestion 
condition changes in the network – it gets smaller when the network is having heavy traffic 
and gets bigger when the traffic is less to prevent a TCP connection to overwhelm the 
network. They also found out that some of the TCP variants can cooperate with other TCP 
variants whereas some took too much bandwidth and overwhelmed the other TCP variants. 
They mention TCP Vegas as the algorithm which gives up bandwidth the most easily hence 
the most sensitive to network congestion. On the other end, some algorithms did not share 
the bandwidth even when competing against similar types and some did share the 
bandwidth only among the similar types. One of the factors that some of the congestion 
control algorithms did not share the bandwidth is because they were meant for high-speed 
networks with large RTTs. 

Similar TCP variants were used in [7] to evaluate and compare three control algorithms: 
Westwood+, New Reno and Vegas. NS2 simulations and live internet measurements were 
the methods for the simulations and scenarios were set to examine goodput, fairness, and 
friendliness of each algorithm. The research demonstrates how Westwood+ TCP is friendly 
toward New Reno and adjust better in bandwidth allocation while Vegas is impartial but 
has problems grabbing its bandwidth share when operated with Reno or reverse traffic as 
its RTT-based congestion detection mechanism. When dealing with wireless links that are 
affected by losses not dues to congestion, Westwood+ did the best on utilizing the network. 
Westwood+ provides well-improved utilization of loss links. Apart from that, Westwood+ 
also showed better goodput compared to New Reno when the pipe size is larger than a few 
segments in real life measurements. 

4 Experimental Setup  

 
Figure 1: nam set up in NS2 simulator 
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Figure 2: Visualizing congestion and packet drop (red) 

Experiments were conducted in the Linux system Ubuntu 14.04 using the ns2 simulator. 
The nam set up file is visualized in figure 1. Two sender nodes and two receiver nodes 
were connected with one connection and new sender node was added after existing sender 
nodes started sending the packets. Original two sender nodes were set to have the same 
type of TCP congestion control algorithm and the extra node was altered among three TCP 
variants to spot the differences. Each TCP variant was tested against other two TCP 
variants and also itself. The first source node starts at 0 seconds and the next node with the 
same TCP variant starts after a set time interval. The last node starts after the same time 
interval which could be possibly another type of TCP variant. The time intervals were 0.4 
seconds, 1 second and 2 seconds. 

The same experiments were repeated with a set of TCP variants with the change in time 
intervals. The result of the 3 test runs is summarized in the tables in the next section. The 
time intervals were varied to test how it could influence the sharing of bandwidth. The 
order of protocols was changed to test analyze how precedence of protocols affect the 
greediness. The procedures and conditions of the experiments were identical except for the 
set of TCP congestion control algorithms and time interval. 

5 Test and Results  

This section discusses the output of the tests conducted with different time intervals and 
order of precedence of the TCP algorithms. We show the influence of these factors on 
Reno, Vegas, and Westwood. Graphs are shown for time intervals 0.4 s and 2 s only to 
stress the differences. However, the tables show the results for all the time intervals.  
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5.1 Reno 

 

Figure 3: Reno based experiments 

  

0.4 second 2 seconds 

  

a. Reno Reno Reno 

  

b. Reno Reno Vegas 

  

c. Reno Reno Westwood 
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Interval 
 

TCP 
0.4s 1.0s 2.0s 

Reno 11.51 10.99 11.99 

Reno 11.43 11.62 11.00 

Reno 11.21 11.59 11.13 

a. Reno Reno and Reno 

Reno 13.10 12.74 13.96 

Reno 12.68 12.66 11.32 

Vegas 12.25 12.20 11.99 

b. Reno Reno and Vegas 

Reno 12.44 12.46 13.22 

Reno 12.73 13.23 12.86 

Westwood 8.47 8.22 7.84 

c. Reno Reno and Westwood 

Table 1: Average window size on Reno based experiments 

Figure 3 illustrates the graphs when TCP Reno is used to making two of the sender nodes 
connections. Each graph shows that when there is a distinct time interval, it takes a little 
time for the later nodes to adjust to the traffic and balance the throughput. However, once 
the later nodes get adapted to the system, they show the fixed pattern of graphs in Figure 
3.a and Figure 3.c. It is displayed in Figure 3.a that Reno is compatible with itself. Both of 
the graphs from time interval 0.4 second and 2 seconds represent the steady graphs from 
all three nodes. Table 1.a shows equal distribution of window sizes among each node. It 
explains that the congestion control algorithm of TCP Reno does not apply when the other 
connection is using the same algorithm. Figure 3.b shows that TCP Reno and Vegas are 
crisscrossed throughout the transit. As appeared in the graphs, the time interval did not 
make much difference. TCP Reno does not take up the majority of the bandwidth and 
coexisted with Vegas, the average in Table 1.b proves that contrary to the expectation of 
Reno overtaking the bandwidth due to its greedy nature, they coexisted. Figure3.c. 
demonstrates that TCP Reno and Westwood have stable graphs. Time interval did not make 
any distinctions except for the very beginning of the graphs, which was caused by the 
adaptation of the last node.  According to Table 1.c, TCP Reno took up approximately 1.5 
times or more bandwidth compared to Westwood. It is because TCP Westwood estimates 
the bandwidth and lower the cwnd while Reno was overflowing the buffer. 
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5.2 Vegas 

 

 

Figure 4: Vegas based experiments 

 

0.4 second 2 seconds 

  

a. Vegas Vegas Vegas 

  

b. Vegas Vegas Reno 

  

c. Vegas Vegas Westwood 
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Interval 
 

TCP 
0.4s 1.0s 2.0s 

Vegas 14.24 10.71 14.30 

Vegas 12.46 18.70 12.43 

Vegas 14.22 11.67 13.22 

a. Vegas Vegas and Vegas 

Vegas 3. 26 12.71 13.94 

Vegas 11.23 14.18 11.96 

Reno 23.09 13.20 14.66 

b. Vegas Vegas and Reno 

Vegas 11.84 13.82 13.15 

Vegas 12.31 12.68 12.04 

Westwood 16.18 13.32 15.34 

c. Vegas Vegas and Westwood 

Table 2: Average window size on Vegas based experiments 

Figure 4 presents the graphs of TCP Vegas being the dominant congestion control 
algorithm in the experiments. All three comparison in Figure 4 well describes the 
characteristics of each TCP congestion control algorithm. Figure 4.a shows that TCP Vegas 
can coexist with the connections of its own algorithms. The time interval, in this case, did 
not affect how the bandwidth is distributed. Table 2.a also displays the fair distribution of 
average cwnd except for the 1 second time interval. Yet, as the other two intervals do not 
carry the same result, it is assumed that fluctuation of the TCP Vegas caused the difference. 
Figure 4.b exhibits symbolic differences between the time interval. With smaller time 
interval, TCP Vega’s graphs are noticeably lower than TCP Reno’s graph. However, with 
the bigger time gap, three nodes seem to balance the window size. Especially, TCP Reno 
is within the range of two TCP Vegas’s graphs. TCP Reno clearly shows greedy nature at 
first, but as the time intervals got greater the window size balances out. Table 2.b shows 
the significant number of differences from 0.4-second interval and 1-second interval. 
Figure 4.c showcases no influence of the time interval. Two graphs have a similar pattern 
and window sizes. Table 2.c also shows that overall, TCP Westwood takes a little more 
window size compared to TCP Vegas despite the late start. It is not assumed to be 
meaningful in this research as it does not show the sequence of the effects of the time 
interval. 

 



10 
 

5.3 Westwood 

 

 

Figure 5: Westwood based experiments 

  

0.4 second 2 seconds 

  

a. Westwood Westwood Westwood 

  

b. Westwood Westwood Reno 

  

c. Westwood Westwood Vegas 
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Interval 
 

TCP 
0.4s 1.0s 2.0s 

Westwood 11.05 9.68 11.99 

Westwood 11.43 10.29 10.43 

Westwood 9.33 12.53 9.76 

Westwood Westwood and Westwood 

Westwood 9.29 9.98 9.28 

Westwood 9.22 9.29 10.11 

Reno 14.03 13.61 13.56 

Westwood Westwood and Reno 

Westwood 11.33 11.98 14.91 

Westwood 14.54 14.01 11.30 

Vegas 11.39 10.94 11.12 

Westwood Westwood and Vegas 

Table 3: Average window size on Westwood based experiments 

Figure 5 portrays the TCP Westwood based experiments and how the graphs are formed 
with Westwood being the original TCP congestion control algorithm. Figure 5 shows the 
least influence of time intervals among the three experiments based figures. Other than the 
beginning of each graph, the patterns between the small time interval and large time 
interval simulate. Figure 5.a illustrates the graphs of three TCP Westwood connections. 
Comparing two different graphs does not provide a piece of extra information on how time 
interval has affected the graphs. They depict the typical graph of TCP Westwood and shows 
that it can cooperate with itself. Table 3.a also shows roughly the same allocation on 
window size. Figure 5.b does show that TCP Reno takes more bandwidth than TCP 
Westwood albeit it started late. However, Table 3.b elaborates on precise average window 
size and it shows consistent reduce on TCP Reno’s window size. Although the differences 
are small, it is yet meaningful result in a way that it shows the same pattern of decrease. 
Figure 5.c demonstrates well-balanced graphs in bandwidth take wise which means TCP 
Westwood and TCP Vegas can coexist. Two graphs look like they do not have order and 
spontaneous. However, Table 3.c shows equal distribution of the window size and no 
pattern. 
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6 Conclusion 

In this paper, we attempted to see the impact of time intervals and order of precedence on 
TCP congestion control. We found that there are three main results made after the tests. 
First of all, having a noticeable time interval helps to stabilize the window size. As TCP 
Reno has greedy behavior, it tends to take a lot more window size when executed with 
multiple congestion control mechanisms. However, starting TCP Vegas and Westwood 
well ahead from Reno improves the intake of window size. Secondly, the order of TCP 
variants precedence has an impact on consumption of window size. Even though same time 
intervals were used, running TCP Reno before Vegas or Westwood did not balance the 
window size. Lastly, taking time interval and order of precedence into measure can be a 
good solution to establish a fair TCP connection. Providing a time delay for Reno could be 
beneficial to tackle this greedy nature and ensures TCP fairness across multiple protocols. 
Further research in this field would be examining the optimal time interval between the 
different TCP transmissions.  

  



13 
 

References 

[1] Allman, M., Paxson, V., & Blanton, E. (2009). TCP congestion control (No. RFC 
5681). 

[2] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP 
Westwood: end-to-end congestion control for wired/wireless networks. Wireless 
Networks, 8(5), 467-479. 

[3] Dordal, P. (2017). An introduction to computer networks. 

[4] Esterhuizen, A., & Krzesinski, A. E. (2012). TCP Congestion Control 
Comparison. SATNAC, September. 

[5] Feng, W. C., & Vanichpun, S. (2003, January). Enabling compatibility between TCP 
Reno and TCP Vegas. In 2003 Symposium on Applications and the Internet, 2003. 
Proceedings. (pp. 301-308). IEEE. 

[6] Gerla, M., Sanadidi, M. Y., Wang, R., Zanella, A., Casetti, C., & Mascolo, S. (2001). 
TCP Westwood: Congestion window control using bandwidth estimation. 
In GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No. 
01CH37270) (Vol. 3, pp. 1698-1702). IEEE. 

[7] Grieco, L. A., & Mascolo, S. (2004). Performance evaluation and comparison of 
Westwood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Computer 
Communication Review, 34(2), 25-38. 

[8] Kurose, J. F., & Ross, K. W. (2011). Computer networking: a top-down approach (pp. 
607967-5). Addison Wesley. 

[9] Mo, J., La, R. J., Anantharam, V., & Walrand, J. (1999, March). Analysis and 
comparison of TCP Reno and Vegas. In IEEE INFOCOM'99. Conference on Computer 
Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer 
and Communications Societies. The Future is Now (Cat. No. 99CH36320) (Vol. 3, pp. 
1556-1563). IEEE. 

[10] Stevens, W. R. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast 
recovery algorithms.  

[11] Wang, R., Valla, M., Sanadidi, M. Y., Ng, B. K., & Gerla, M. (2002). 
Efficiency/friendliness tradeoffs in TCP Westwood. In Proceedings ISCC 2002 Seventh 
International Symposium on Computers and Communications (pp. 304-311). IEEE. 


