
1

Evaluating the Impact of Time Delays and Start Sequence
for Effective Congestion Control Using TCP Reno,

Westwood and Vegas

Sumin Yi and Rahul Gomes
Department of Mathematics and Computer Science

Minot State University
Minot, ND 58701

sumin.yi@ndus.edu and rahul.gomes@ndus.edu

Abstract

Transmission Control Protocol (TCP) provides stable data delivery among applications by
allocating bandwidth [1]. When congestion occurs on a network, transmission delays and
packet loss can happen. Therefore, TCP ensures a stable network by controlling the
congestion [8]. Since each TCP variant uses different methods to measure the congestion,
it is important to figure out how it cooperate and without affecting the performance of the
other TCP variants.

This paper compares three TCP variants that use congestion control algorithms. It
emphasizes on the time intervals when running multiple TCP protocol transmissions.
Experiments are conducted by varying start times of each source node as well as the order
of precedence for the protocols. Simulations were conducted on the NS2 Platform installed
on Ubuntu 14.04.

Experiments reveal the greedy nature of Reno [3] when it starts well ahead of other TCP
algorithms. However, when Vegas and Westwood start well ahead of Reno in our
experiments, the network appears optimized, and the impact of Reno is reduced.

2

1 Introduction

The Transmission Control Protocol (TCP) is a connection-oriented protocol in the
Transport layer [3]. The transport layer is in charge of establishing communication between
applications and delivering data. There are many services that are provided by TCP in the
transport layer. These include ensuring the end-to-end connection between the source and
the destination, and handling error corrections in order to provide a solid connection [8]. It
can provide reliable transport layer to many protocols on the Internet as integrity is
enforced in TCP. TCP uses congestion control algorithms to reduce delay and data loss due
to network congestion. It puts flow control and congestion control into use to manage both
sender and receiver which in turn controls the data that flows through the network.

Congestion control uses many methods to solve the bottleneck on the network. TCP Reno
utilized packet loss, its main congestion detection method [9] while TCP Vegas uses
increased Round Trip Time (RTT) to detect the congestion before packet loss actually
occurs [5]. On the other hand, TCP Westwood uses both packet loss and RTT estimation
to estimate the packet rate as it calculates the congestion window [2] [3]. There are many
ways to measure and respond to congestion. However, the most important thing is to find
the optimum way to utilize each attribute of TCP variant when using multiple variants
together.

TCP Reno, TCP Vegas, and TCP Westwood are used to test the importance of having time
intervals between TCP protocol transmissions. The essential part of the experiments is to
set various time intervals between the source nodes in addition to having different
arrangements of the protocols. The experiments were tested on NS2 simulations and
GNUPLOT was used to visually describe the results. The start time of each experiment
was adjusted by 0.4 sec, 1 sec and 2 secs. The duplicated process was done by changing
the arrangement of the protocol to validate the prominence of greediness.

The rest of the paper is organized as follows. Section 2 explains the three TCP variants that
were used in these experiments. Previous researches conducted on the comparison of TCP
congestion control algorithms are in section 3 for a better understanding of this paper.
Details of the experiments including the method used are given in section 4. The results
and demonstrations are listed in Section 5. Section 6 has a summary of the results.

2 Background

TCP Reno, Vegas, and Westwood are subjects of this research because of their correlations.
TCP Reno and Westwood share similar congestion control algorithms: as Westwood is a
modified version of Reno, being sender-side only [3]. They both use fast recovery to reset
the slow start threshold (ssthresh) and congestion window (cwnd) after loss happens [10].
TCP Vegas has its own congestion control algorithms distinct from Reno but it shares
similarities with TCP Westwood by to use RTT measuring method to estimate the
bandwidth. Having this set of three makes it easier to compare the different congestion
control algorithms used in the experiments.

3

2.1 TCP Reno

TCP Reno resembles TCP Tahoe which being that both of them are the earliest model of
congestion avoidance algorithms used. TCP Reno uses slow start until it hits the threshold
and runs additive increase methods same as TCP Tahoe [3]. Additive increase means
increasing congestion window by 1 when there are no losses in the past transmission.
However, the difference between TCP Reno and Tahoe occurs when they receive triple
duplicate acknowledgments (ACK). TCP Tahoe will cut its cwnd size to 1 and enter slow
start [3]. TCP Reno will perform fast recovery meaning it will set the ssthresh into the half
the size of cwnd and wait for an ACK of transmit window before going into congestion
avoidance [9]. If TCP Reno faces time-out instead of triple duplicate ACKs, slow start will
begin from 1 just like TCP Tahoe. TCP Reno employs passive congestion indication which
can make the congestion worse on the network. Packet loss detects the network congestion
of TCP Reno.

2.2 TCP Vegas

TCP Vegas uses precise RTT calculation to detect the available bandwidth. It calculates
the difference between expected flows and actual flows. It measures the minimum RTT to
estimate the RTT of a network without congestion, if the network is not congested, the
difference should be close to zero [9]. Packet delay determines the rate of sending packets
instead of packet loss which means it detects the congestion before packet loss because of
increased RTT. In cases that packet loss does occur, the packet sending rate gets lowered
linearly as well. TCP Vegas gets compared to TCP Reno many times as they represent
contrasting congestion control method [5] [9]. Vegas encounters fairness problems when
it collides with Reno due to its main congestion avoidance mechanism. TCP Vegas tries to
maintain the small queue size whereas TCP Reno would fill up the queue since its packet
loss happens due to overflowing buffer. Therefore, Reno is deemed aggressive as it does
not give space for other connections to take the bandwidth. Once TCP Reno takes up the
buffer, Vegas will perceive it as congestion and will drop the cwnd of its own.

2.3 TCP Westwood

TCP Westwood uses end-to-end bandwidth estimation which updates ssthresh and cwin
when packet loss emerges [6]. It scans the ACK stream to have a better slow start. Agile
probing helps to converge the bandwidth faster to a more appropriate ssthresh. Persistent
Non-Congestion Detection identifies unused bandwidth and invokes agile probing. TCP
Westwood is the refinement of TCP Reno and keeps the loss based congestion avoidance
mechanism by dropping cwnd size when queue capacity is less than transit capacity [3].
Unlike TCP Reno that just decreases its cwnd to half, TCP Westwood is able to choose the
ssthresh and cwnd based on the congestion it is experiencing at the time. TCP Westwood
also uses the RTT estimation method from TCP Vegas as it is very efficient when handling
high bandwidth connections. While TCP Vegas estimates its bandwidth by cwnd/RTT,
TCP Westwood goes further and uses bandwidth estimation to reduce cwnd based on the
network present network traffic [3]. Although it implanted TCP Reno’s mechanism, it is
not as aggressive as Reno as it also has a feature to estimate bandwidth [7].

4

3 Previous Work

Work on TCP congestion control was done earlier in [4]. The authors evaluate 13 TCP
variants and examine how TCP variants are compatible with each other. Each TCP variant
uses miscellaneous congestion control algorithms and it makes a huge change to how
network traffic conveys. The authors of this research measured how congestion control
algorithms fight for network resources. Congestion window changes as the congestion
condition changes in the network – it gets smaller when the network is having heavy traffic
and gets bigger when the traffic is less to prevent a TCP connection to overwhelm the
network. They also found out that some of the TCP variants can cooperate with other TCP
variants whereas some took too much bandwidth and overwhelmed the other TCP variants.
They mention TCP Vegas as the algorithm which gives up bandwidth the most easily hence
the most sensitive to network congestion. On the other end, some algorithms did not share
the bandwidth even when competing against similar types and some did share the
bandwidth only among the similar types. One of the factors that some of the congestion
control algorithms did not share the bandwidth is because they were meant for high-speed
networks with large RTTs.

Similar TCP variants were used in [7] to evaluate and compare three control algorithms:
Westwood+, New Reno and Vegas. NS2 simulations and live internet measurements were
the methods for the simulations and scenarios were set to examine goodput, fairness, and
friendliness of each algorithm. The research demonstrates how Westwood+ TCP is friendly
toward New Reno and adjust better in bandwidth allocation while Vegas is impartial but
has problems grabbing its bandwidth share when operated with Reno or reverse traffic as
its RTT-based congestion detection mechanism. When dealing with wireless links that are
affected by losses not dues to congestion, Westwood+ did the best on utilizing the network.
Westwood+ provides well-improved utilization of loss links. Apart from that, Westwood+
also showed better goodput compared to New Reno when the pipe size is larger than a few
segments in real life measurements.

4 Experimental Setup

Figure 1: nam set up in NS2 simulator

5

Figure 2: Visualizing congestion and packet drop (red)

Experiments were conducted in the Linux system Ubuntu 14.04 using the ns2 simulator.
The nam set up file is visualized in figure 1. Two sender nodes and two receiver nodes
were connected with one connection and new sender node was added after existing sender
nodes started sending the packets. Original two sender nodes were set to have the same
type of TCP congestion control algorithm and the extra node was altered among three TCP
variants to spot the differences. Each TCP variant was tested against other two TCP
variants and also itself. The first source node starts at 0 seconds and the next node with the
same TCP variant starts after a set time interval. The last node starts after the same time
interval which could be possibly another type of TCP variant. The time intervals were 0.4
seconds, 1 second and 2 seconds.

The same experiments were repeated with a set of TCP variants with the change in time
intervals. The result of the 3 test runs is summarized in the tables in the next section. The
time intervals were varied to test how it could influence the sharing of bandwidth. The
order of protocols was changed to test analyze how precedence of protocols affect the
greediness. The procedures and conditions of the experiments were identical except for the
set of TCP congestion control algorithms and time interval.

5 Test and Results

This section discusses the output of the tests conducted with different time intervals and
order of precedence of the TCP algorithms. We show the influence of these factors on
Reno, Vegas, and Westwood. Graphs are shown for time intervals 0.4 s and 2 s only to
stress the differences. However, the tables show the results for all the time intervals.

6

5.1 Reno

Figure 3: Reno based experiments

0.4 second 2 seconds

a. Reno Reno Reno

b. Reno Reno Vegas

c. Reno Reno Westwood

7

Interval

TCP
0.4s 1.0s 2.0s

Reno 11.51 10.99 11.99

Reno 11.43 11.62 11.00

Reno 11.21 11.59 11.13

a. Reno Reno and Reno

Reno 13.10 12.74 13.96

Reno 12.68 12.66 11.32

Vegas 12.25 12.20 11.99

b. Reno Reno and Vegas

Reno 12.44 12.46 13.22

Reno 12.73 13.23 12.86

Westwood 8.47 8.22 7.84

c. Reno Reno and Westwood

Table 1: Average window size on Reno based experiments

Figure 3 illustrates the graphs when TCP Reno is used to making two of the sender nodes
connections. Each graph shows that when there is a distinct time interval, it takes a little
time for the later nodes to adjust to the traffic and balance the throughput. However, once
the later nodes get adapted to the system, they show the fixed pattern of graphs in Figure
3.a and Figure 3.c. It is displayed in Figure 3.a that Reno is compatible with itself. Both of
the graphs from time interval 0.4 second and 2 seconds represent the steady graphs from
all three nodes. Table 1.a shows equal distribution of window sizes among each node. It
explains that the congestion control algorithm of TCP Reno does not apply when the other
connection is using the same algorithm. Figure 3.b shows that TCP Reno and Vegas are
crisscrossed throughout the transit. As appeared in the graphs, the time interval did not
make much difference. TCP Reno does not take up the majority of the bandwidth and
coexisted with Vegas, the average in Table 1.b proves that contrary to the expectation of
Reno overtaking the bandwidth due to its greedy nature, they coexisted. Figure3.c.
demonstrates that TCP Reno and Westwood have stable graphs. Time interval did not make
any distinctions except for the very beginning of the graphs, which was caused by the
adaptation of the last node. According to Table 1.c, TCP Reno took up approximately 1.5
times or more bandwidth compared to Westwood. It is because TCP Westwood estimates
the bandwidth and lower the cwnd while Reno was overflowing the buffer.

8

5.2 Vegas

Figure 4: Vegas based experiments

0.4 second 2 seconds

a. Vegas Vegas Vegas

b. Vegas Vegas Reno

c. Vegas Vegas Westwood

9

Interval

TCP
0.4s 1.0s 2.0s

Vegas 14.24 10.71 14.30

Vegas 12.46 18.70 12.43

Vegas 14.22 11.67 13.22

a. Vegas Vegas and Vegas

Vegas 3. 26 12.71 13.94

Vegas 11.23 14.18 11.96

Reno 23.09 13.20 14.66

b. Vegas Vegas and Reno

Vegas 11.84 13.82 13.15

Vegas 12.31 12.68 12.04

Westwood 16.18 13.32 15.34

c. Vegas Vegas and Westwood

Table 2: Average window size on Vegas based experiments

Figure 4 presents the graphs of TCP Vegas being the dominant congestion control
algorithm in the experiments. All three comparison in Figure 4 well describes the
characteristics of each TCP congestion control algorithm. Figure 4.a shows that TCP Vegas
can coexist with the connections of its own algorithms. The time interval, in this case, did
not affect how the bandwidth is distributed. Table 2.a also displays the fair distribution of
average cwnd except for the 1 second time interval. Yet, as the other two intervals do not
carry the same result, it is assumed that fluctuation of the TCP Vegas caused the difference.
Figure 4.b exhibits symbolic differences between the time interval. With smaller time
interval, TCP Vega’s graphs are noticeably lower than TCP Reno’s graph. However, with
the bigger time gap, three nodes seem to balance the window size. Especially, TCP Reno
is within the range of two TCP Vegas’s graphs. TCP Reno clearly shows greedy nature at
first, but as the time intervals got greater the window size balances out. Table 2.b shows
the significant number of differences from 0.4-second interval and 1-second interval.
Figure 4.c showcases no influence of the time interval. Two graphs have a similar pattern
and window sizes. Table 2.c also shows that overall, TCP Westwood takes a little more
window size compared to TCP Vegas despite the late start. It is not assumed to be
meaningful in this research as it does not show the sequence of the effects of the time
interval.

10

5.3 Westwood

Figure 5: Westwood based experiments

0.4 second 2 seconds

a. Westwood Westwood Westwood

b. Westwood Westwood Reno

c. Westwood Westwood Vegas

11

Interval

TCP
0.4s 1.0s 2.0s

Westwood 11.05 9.68 11.99

Westwood 11.43 10.29 10.43

Westwood 9.33 12.53 9.76

Westwood Westwood and Westwood

Westwood 9.29 9.98 9.28

Westwood 9.22 9.29 10.11

Reno 14.03 13.61 13.56

Westwood Westwood and Reno

Westwood 11.33 11.98 14.91

Westwood 14.54 14.01 11.30

Vegas 11.39 10.94 11.12

Westwood Westwood and Vegas

Table 3: Average window size on Westwood based experiments

Figure 5 portrays the TCP Westwood based experiments and how the graphs are formed
with Westwood being the original TCP congestion control algorithm. Figure 5 shows the
least influence of time intervals among the three experiments based figures. Other than the
beginning of each graph, the patterns between the small time interval and large time
interval simulate. Figure 5.a illustrates the graphs of three TCP Westwood connections.
Comparing two different graphs does not provide a piece of extra information on how time
interval has affected the graphs. They depict the typical graph of TCP Westwood and shows
that it can cooperate with itself. Table 3.a also shows roughly the same allocation on
window size. Figure 5.b does show that TCP Reno takes more bandwidth than TCP
Westwood albeit it started late. However, Table 3.b elaborates on precise average window
size and it shows consistent reduce on TCP Reno’s window size. Although the differences
are small, it is yet meaningful result in a way that it shows the same pattern of decrease.
Figure 5.c demonstrates well-balanced graphs in bandwidth take wise which means TCP
Westwood and TCP Vegas can coexist. Two graphs look like they do not have order and
spontaneous. However, Table 3.c shows equal distribution of the window size and no
pattern.

12

6 Conclusion

In this paper, we attempted to see the impact of time intervals and order of precedence on
TCP congestion control. We found that there are three main results made after the tests.
First of all, having a noticeable time interval helps to stabilize the window size. As TCP
Reno has greedy behavior, it tends to take a lot more window size when executed with
multiple congestion control mechanisms. However, starting TCP Vegas and Westwood
well ahead from Reno improves the intake of window size. Secondly, the order of TCP
variants precedence has an impact on consumption of window size. Even though same time
intervals were used, running TCP Reno before Vegas or Westwood did not balance the
window size. Lastly, taking time interval and order of precedence into measure can be a
good solution to establish a fair TCP connection. Providing a time delay for Reno could be
beneficial to tackle this greedy nature and ensures TCP fairness across multiple protocols.
Further research in this field would be examining the optimal time interval between the
different TCP transmissions.

13

References

[1] Allman, M., Paxson, V., & Blanton, E. (2009). TCP congestion control (No. RFC
5681).

[2] Casetti, C., Gerla, M., Mascolo, S., Sanadidi, M. Y., & Wang, R. (2002). TCP
Westwood: end-to-end congestion control for wired/wireless networks. Wireless
Networks, 8(5), 467-479.

[3] Dordal, P. (2017). An introduction to computer networks.

[4] Esterhuizen, A., & Krzesinski, A. E. (2012). TCP Congestion Control
Comparison. SATNAC, September.

[5] Feng, W. C., & Vanichpun, S. (2003, January). Enabling compatibility between TCP
Reno and TCP Vegas. In 2003 Symposium on Applications and the Internet, 2003.
Proceedings. (pp. 301-308). IEEE.

[6] Gerla, M., Sanadidi, M. Y., Wang, R., Zanella, A., Casetti, C., & Mascolo, S. (2001).
TCP Westwood: Congestion window control using bandwidth estimation.
In GLOBECOM'01. IEEE Global Telecommunications Conference (Cat. No.
01CH37270) (Vol. 3, pp. 1698-1702). IEEE.

[7] Grieco, L. A., & Mascolo, S. (2004). Performance evaluation and comparison of
Westwood+, New Reno, and Vegas TCP congestion control. ACM SIGCOMM Computer
Communication Review, 34(2), 25-38.

[8] Kurose, J. F., & Ross, K. W. (2011). Computer networking: a top-down approach (pp.
607967-5). Addison Wesley.

[9] Mo, J., La, R. J., Anantharam, V., & Walrand, J. (1999, March). Analysis and
comparison of TCP Reno and Vegas. In IEEE INFOCOM'99. Conference on Computer
Communications. Proceedings. Eighteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. The Future is Now (Cat. No. 99CH36320) (Vol. 3, pp.
1556-1563). IEEE.

[10] Stevens, W. R. (1997). TCP slow start, congestion avoidance, fast retransmit, and fast
recovery algorithms.

[11] Wang, R., Valla, M., Sanadidi, M. Y., Ng, B. K., & Gerla, M. (2002).
Efficiency/friendliness tradeoffs in TCP Westwood. In Proceedings ISCC 2002 Seventh
International Symposium on Computers and Communications (pp. 304-311). IEEE.

