

Web Browser Rendering and Interaction in
Custom OpenGL Applications

Trevor Tracy

Computer Engineering
University of St. Thomas

St. Paul, MN 55105
trac7268@stthomas.edu

Thomas Marrinan
Computer and Information Sciences

University of St. Thomas
St. Paul, MN 55105

tmarrinan@stthomas.edu

Abstract

Web browsers have become a ubiquitous tool for accessing, manipulating, and interacting
with data. This project aimed to create an embeddable web renderer that can easily be
integrated into custom 2D and 3D applications using OpenGL. The success of this work
would allow application developers to incorporate web content for a portion of their
application while using custom techniques for other graphical elements without much
effort. While embedded web content is already possible with existing solutions, there are
many complexities that make this task non-trivial, especially for cross-platform
compatibility. In this paper, we present our solution that abstracts away many of the
complexities as well as providing three examples of how custom applications could use
our embedded web renderer.

1

1 Introduction

Web technologies have been increasing in power and use. Modern browsers have the
capability to leverage high-bandwidth networks [1], perform parallel computation [2],
and render 3D scenes with hardware-accelerated graphics [3]. Due to their wide adoption
and power, we aimed to create a simple web browser that can easily be embedded as a
part of another application. This would allow application developers to render web
content for a portion of their application, while using custom techniques for other
graphical elements.

The Chromium Embedded Framework (CEF) was designed to accomplish such a goal
[4]. However, there are numerous complexities that make it non-trivial to integrate into
another application. For example, dropdown menus are rendered completely separately
from the main page, and JavaScript dialogs and right-click menus are not rendered at all.
Therefore, we abstracted on top of CEF to create a single unified web renderer that could
easily be embedded into OpenGL applications. Our web renderer produces a single
unified bitmap that incorporates dropdown menus, JavaScript dialogs, and right click
menus. This solution makes it easy to use web content in a custom application by simply
binding the resulting bitmap to an OpenGL texture.

The remainder of this paper will cover existing work surrounding integrating web
technologies into custom applications, our methodology for overcoming the challenges
that are present in current solutions, and sample use cases for integrating our web
renderer. Finally, we will wrap up and share future directions for the use of our web
renderer.

2 Related Work

A number of modern desktop applications leverage web technologies for some or all of
its user interface. Visual Studio Code, Slack, and Skype all use Electron, a framework
based on CEF for creating native applications with JavaScript, HTML, and CSS [5].
While these applications successfully integrate web rendering into custom applications,
Electron is an all-JavaScript environment that uses Node.js [6], which makes it difficult
for use in custom OpenGL applications.

A few existing applications have leveraged CEF for more performant rendering and data
processing that incorporate web technologies. Eskilson [7], leveraged CEF for user
interface design in the astrovisualization software OpenSpace [8]. Their goal was to
enable easy cross-platform development for user interfaces. Similarly, S. Kumar et al.
utilize CEF for a cross-platform user interface for the Molecular Evolutionary Genetics
Analysis (MEGA) software [9]. MEGA was originally designed as an MS-DOS
application and continued to be developed as a Windows application. The authors present
their work to make MEGA cross-platform, terming their version MEGA X. In order to
avoid the Operating System complexities for user interface design, the paper highlights
the use of CEF for enabling their user interface to be designed using HTML, CSS, and

2

JavaScript. Both Eskilson and S. Kumar et al. use web technologies for custom user
interfaces. Therefore, they only needed to address the keyboard input translation from the
window management tool to CEF. JavaScript dialogs, dropdown menus, and right-click
menus were not necessary for this work.

Additionally, C. Kumar et al. researched methods for integrating different input
modalities into a web browser [10]. They demonstrate their concept through the use of
eye-gaze navigation. The authors create a custom browser experience tailored to eye-gaze
interaction by using CEF to extract various HTML elements and modifying their layout.
They also implement click emulation and zooming on areas of interest. While this work
represents an interesting and novel use of web technologies, it represents a specific use
case rather than a general-purpose web renderer.

One example of a general-purpose embedded web renderer is from LiveCode, a cross-
platform rapid application development runtime environment [11]. They allow
developers to use web content as media within a custom application, and enable users to
interact with the web page [12]. LiveCode is a commercial product that integrates web
rendering as part of their wide array of libraries for building apps. This however, limits
which applications can leverage their work.

3 Methods

At first glance, embedding web browser rendering and interaction into custom
applications may appear straightforward. However, there are many intricate details that
are fundamental to the application that are individually challenging. At the top of this list
is user interaction. Without user interaction, the custom application is only a web page
viewer rather than an interactive system. Also, some web content is not rendered in the
normal HTML flow. Dropdown menus, JavaScript dialogs, and right-click menus are all
implemented via the browser using native Operating System graphical elements. Finally,
at the end of this section, we address how to incorporate multiple tabs/windows into one
application and some additional features that we intend to develop as the project matures.

3.1 User Interaction

One of the challenges in creating an easily embedded web browser for OpenGL
applications, was adding user interaction. When the user presses a key or moves the
mouse, we can determine which button is pressed in addition to key modifiers (such as
shift, alt, ctrl) thanks to OpenGL libraries. However, these key identifiers do not match
CEF definitions for keys and therefore must be changed to values specific to CEF before
relaying user input to the application. This process is Operating System dependent, which
added an additional layer of complexity since we wanted our browser to be cross-
platform.

As a result of the platform dependencies for keystrokes, two separate key definition sets
had to be created and filtered upon. For example, if we detected the system as being a

3

Windows machine, we would ignore the Linux keystroke definitions and use the
Windows set. On the other hand, mouse movement and clicks were not platform
dependent which allowed for easier mouse navigation implementation.

3.2 Dropdown Menus

For the dropdown menus, we had to calculate the proper position, and instruct OpenGL to
render the menu items on top of the main web content.

Figure 1: Dropdown menu example showing instances where the menu can drop below
the selection box, and where it must pop above the selection box that is displayed as part

of the main web content.

Figure 1 shows an example of the same web page where the dropdown menu must be
drawn in two different ways. As you can see, depending upon the sizing of the web page
and location of the selection box, the dropdown menu is positioned differently. In the left
image, there is adequate room above and below so, by default, the menu is drawn below
the selection box. In the right image however, there is a lack of room below for the
dropdown menu, thus it is placed above the selection item.

3.3 JavaScript Dialogs and Right-click Menus

As mentioned earlier, JavaScript dialogs and right-click menus are not rendered at all
using CEF. For JavaScript Dialogs, CEF simply provides a callback notifying the
application what type of dialog is present (alert, confirm, or prompt) and what the text
should be. For right-clicks, CEF provides a callback with an array of menu items.
Therefore, we created custom OpenGL renderings to display the dialogs and menus in a
manner similar to a typical web browser. Once rendered, these drawings, just like the
dropdown menus, are overlaid on top of the main web content and rendered to a single
unified texture that can be accessed by the end-developer’s OpenGL application. Figure 2
illustrates this functionality.

4

Figure 2. Custom user interfaces for non-HTML content. The top image shows the
JavaScript dialog for a ‘confirm’ event. The bottom image shows a right-click menu for

selecting a link.

3.4 Multiple Browsers in Single Application

After developing the easily embedded web browser, we created a sample application that
can view multiple web content windows together. This gives the user a desktop-like
environment within the application that allows for embedded browser windows to be
repositioned and resized inside the OpenGL application. Embedded web content
windows stack on top of each other when one browser window gets moved in front of the

5

other. User interaction, such as mouse clicks and key presses also are directed to the
appropriate browser window.

For resizing, we created a small extension of the bottom right corner of each browser
window that the user can click on to change the window size. The benefit to this
approach is that resizing is more universal between touch screen devices and mouse
pointer interactions. Rather than developing two different solutions based on the user
input method, we can have one approach that covers all inputs.

Figure 3 shows an example of three different web pages all active within our custom
sample application. In the top-left, there is a web page with a YouTube video. This
highlights our embedded web renderer’s performance when dealing with rapid animation.
On the top-right, there is a web page that opens a JavaScript ‘confirm’ dialog. This
showcases our custom interface for dealing with web content that is outside of the normal
HTML flow. Finally, in the bottom window, we have a web page on fluid simulation that
contains dropdown menus.

Figure 3: Sample application rendering three separate web content pages simultaneously.

3.5 Features to Develop

We have successfully created a unified web renderer that can easily be integrated into
custom OpenGL applications. However, there are some limitations to our work. For
example, the right-click menu is currently only visual. Nothing will actually happen if an
item is selected. This is due to the fact that the desired response for many items would be
applications dependent. For example, what a given application would want to do if the
user right-clicked a link and selected ‘open in new tab’ could vary. Therefore, we intend

6

to build in hooks for application developers to get callbacks when such items are
selected. This way application developers maintain their customizability for such actions.

We also hope to develop a distributed rendering framework so that web content can be
leveraged for ultra-high-resolution data visualization on multi-monitor or even tiled
display systems. This will also help with performance when rendering several
tabs/windows since each node in a cluster would only be responsible for rendering a
subset of all tabs/windows.

Finally, developing multiple user input functionality is of great interest. We intend to
provide hooks for external devices to send messages over a network that will be
transformed into key, mouse, and touch events on the embedded web page. This will
greatly extend the use of standard browsers that can only allow set of input devices to
interact at a time.

4 Results

One of the most interesting aspects of this project has been thinking about all the possible
use cases this web renderer could apply to. In general, our web renderer could be used in
the following ways: for 2D browser windows, as a 2D graphical user interface (GUI)
overlay, and as a texture on a 3D object. With future development and the addition of
features, such as distributed rendering, the use cases could continue to expand.

Our embedded web renderer gives developers the possibility to create 2D browser
window(s) in their custom application. We have created a sample application that
accomplishes this, as was highlighted in Figure 3. Creating a custom browser is
especially useful for developers wishing to extend the input modalities offered by
standard browsers. This need has already been highlighted in the Related Work section
with for integrating eye-gaze input. Also, we have particular interest in enabling multiple
users to interact with web content using their own personal devices.

Another use for embedding web content is to design cross-platform user interfaces that
can overlay custom content. In this instance, a developer could write their graphical user
interface in HTML, CSS, and JavaScript, then render it with a transparent background
using our web renderer. The resulting texture would be transparent wherever GUI
elements are not drawn, and therefore could be rendered on top of custom graphics. We
show an example in Figure 4 of a simple application that renders a spinning cube, with a
GUI added to control the camera distance, spin velocity, and a play/pause button for
starting and stopping the animation.

7

Figure 4. OpenGL application with web rendered GUI.

Finally, embedding web content is useful for applying a web page as a texture on a 3D
object in a custom OpenGL application. This would enable developers to create an
immersive environment for viewing web content. For example, a video game may have a
character sit at a computer desk and browse the web. Figure 5 shows a web page rendered
as a 3D texture that is drawn as the screen on a model of a computer monitor.

Figure 5: ACM Twitter page drawn using our web renderer embedded in 3D scene using
“Desk with Computer 3D Model” [13].

8

5 Conclusion

Overall, web technologies are growing in both their power and use. As a result of this
expanding technology, we aimed to create a simple web renderer that is universal and
malleable in its structure. This way the web renderer could be easily embedded as part of
custom applications in order for a variety of projects and developers to use and modify to
fit their needs.

At its core, our web renderer leverages the Chromium Embedded Framework. This open-
source framework gave us a foundation for our web renderer, but also contained
numerous complexities. Our work creates a single unified texture for all content on a web
page. We overcame challenges to correctly handle things such as user interaction,
dropdown menus, and JavaScript dialogs / right-click menus. This greatly improves the
ease in which developers can integrate web content into their custom OpenGL
applications.

Finally, we highlighted three major use cases that benefit from the work we’ve done thus
far. The web renderer can be used for 2D browser windows, a 2D GUI overlay, and as a
texture on a 3D object. As this project continues to be developed and fine-tuned, it is
possible that newer, more intriguing use cases emerge as well. Nevertheless, web
applications are continuing to grow and show no signs of slowing down. This is very
promising and exciting for any projects using and expanding upon the current web
technologies.

References

[1] “The WebSockets API,” 2019. Available: https://www.w3.org/TR/2009/WD-
websockets-20091222/

[2] “Web Workers,” 2019. Available: https://www.w3.org/TR/workers/
[3] “WebGL Overview,” 2019. Available: https://www.khronos.org/webgl/
[4] “Chromium Embedded Framework,” 2019. Available:

https://bitbucket.org/chromiumembedded/cef
[5] “Electron,” 2019. Available: https://electronjs.org/
[6] “Node.js,” 2019. Available: https://nodejs.org/en
[7] Klas Eskilson. 2017. “Creating User Interfaces Using Web-based Technologies to

Support Rapid Prototyping in a Desktop Astrovisualization Software.” In Thesis at
Linköping University.

[8] Alexander Bock, Emil Axelsson, Karl Bladin, Jonathas Costa, Gene Payne, Matthew
Territo, Joakim Kilby, Masha Kuznetsova, Carter Emmart, Anders Ynnerman. 2017.
“OpenSpace: An Open-source Astrovisualization Framework.” In The Journal of
Open Source Software.

[9] Sudhir Kumar, Glen Stecher, Michael Li, Christina Knyaz, and Koichiro Tamura.
2018. “MEGA X: Molecular Evolutionary Genetics Analysis across Computing

9

Platforms.” In Molecular Biology and Evolution, volume 35, issue 6, June 2018, pp
1547–1549.

[10] Chandan Kumar, Raphael Menges, Daniel Müller, and Steffen Staab. 2017.
“Chromium based Framework to Include Gaze Interaction in Web Browser.” In
Proceedings of the 26th International Conference on World Wide Web Companion
(WWW '17 Companion).

[11] “LiveCode,” 2019. Available: https://livecode.com/
[12] “How to Add a Web Browser to Your App,” 2019. Available:

https://livecode.com/how-to-add-a-web-browser-to-your-app/
[13] “Desk with Computer 3D Model,” 2019. https://www.turbosquid.com/3d-

models/desk-computer-table-monitor-3d-model-1269951

