

How to Empirically Assess the Quality of Software Source

Code in The Era of Multicore Architecture and
Multithreaded Programming

Quentin Ferguson, Ben Barcaskey, Tyler Goldstein, and Saleh M. Alnaeli*

Mathmatics, Statics and Computer Science Department
University of Wisconsin-Stout
Menomonie, Wisconsin, USA

{fergusonq9852, barcaskeyb2473, goldstein4143}@my.uwstout.edu ,
alnaelis@uwstout.edu*

Abstract

In the general-purpose software computing domain, there are a vast amount of open
source systems (OSS) that are being utilized. What can happen is that the developers of
these software solutions come from varying backgrounds leading to unused proper
coding styles. In this study, presented is four open source systems spanning back to their
older versions in 2014. Included with these systems is a static analysis that includes
statistics such as the amount of lines of code, files, jump statements, and functions with
side effects. Both systems have their C/C++ systems analyzed with over two million
lines of code collectively. The results show there are significant barriers that possess
problematic behavior for the maintainability of source code as well as the expandability.

1. Introduction

Since the popularity of open source projects, we as a community have not only gained
deeper insight in how some of the most popular programs run, but also how they are
designed and maintained. Since open source projects existed, anyone from the community
can edit a copy of the repository and submit changes to the owners. If the owners accept it,
they can implement it into the code like a regular push to the repository. This caused the
birth of many famous and widely used programs such as Linux, Apache, Firefox,
Chromium, jQuery, Python and node. Open source projects also allow us to dissect source
code and examine the quality either with prewritten tools or manual examination.

The quality of source code can be impacted by many causes, some of which include the
amount of dead code, the age of source code, the amount of developers working on the
project at once, the quality of the coders, the quality of design and communication on the
project and many more other factors. This often consequently causes the source code to be
less compatible, harder to manage, more difficult to maintain, more difficult to implement
multithreading, and more difficult to update. The quality of the source code is becoming
increasingly more important with the mass utilization of multicore processers and though
there is no scientific measurement to gauge the quality of a certain piece of source code,
we use factors such as the amount of function side effects, the amount of legacy code
utilized by the program, the amount and complexity of recursion, the amount of goto and
break statements, the amount of for and while loops, and the amount of classes/structures.
This gives us a good idea in observing how source code quality has either improved or
declined throughout time.

The purpose of our study is to examine the trends of the quality of various open source
projects. Though many studies like this have been done, we decided to focus and specify
our work on the certain trends that happen with certain popular repositories of open source
projects throughout 4 to 5 years. This allows us to further study the trends of source code
maintainability and functionality through the various chosen open source projects and
analyze the resources that goes into maintaining source code.

2. Jumps Statement

Jump statements, such as Goto and Break, are typically used to alter the way in which a
program runs. They are simple to implement, both logically and literally, and are also
simple to recognize. Loop statements are the one of the most common types of statements
where Goto and Break statements will be used to bypass lines of code. Loops typically
contain lots of lines of code and operations to execute, so adding jump statements to them
can be viewed as a shortcut for programmers. While these statements are convenient,
they have been marked as being major inhibitors for the parallelization of source code.

Table 1: The Four Open Source General Purpose Systems Used in The Study and

Functions Found in the 4 Systems

Parallelization is a technique in which modern multi-core processors are able to utilize all
of their cores for faster, more efficient computing.

3. Recursive Class (direct and indirect)

Recursion is a programming technique in which a function either directly or indirectly
calls itself during its execution [17,18]. Recursion is an alternative to continuously
performing repetitive task. Often, recursive solutions to problems in programing are
ineffective regarding the amount of time and space consumption versus a non-recursive
solution [17].

4. Methods and Tools

The source code for engineering systems written in C/C++ was collected, then
transformed by a srcML toolkit [16]. The srcML toolkit wraps the statements and
structures of the source code syntax with XML elements, allowing tools, such as Source
Code Quality Analyzer (srcQ) to use an XML application program interface to find
functions that carry recursive calls directly and indirectly, and jump statements (goto and
break). All results have been tabulated and recorded. That is, a count of each recursive
and jump statement4within the system was saved in new results file.

5. Data Collection

This section consists of the results from our handpicked repositores using our tools. This
includes the goto functions, breaks, indirect recursion, direct recursion, lines of code,
number of files, and number of programmer defined functions. Data from the four systems
is represented in table 1. Each repository is available on either an svn repository or a

System Lines of code Files Number of Functions
Scilab 819,361 4,761 16,111
Otter 146,313 558 3,694
Falkon 432,166 2,945 16,793
Ripple 632,193 2,024 19,088
TOTAL 2,030,033 10,288 55,686

GitHub repository for better timeline management and consistency, which is a major
factor in our results.

We collected the data by first downloading four years’ worth of source code from a
particular repository. For each year, we used a self-made program to transcode the source
folder to an xml file. From there we used another self-made program to read the xml file
and write the results onto a text file. This process happens individually for each annual
release and every repository.

6. Results

This section contains the results from the tools previously mentioned. The prioritized
results observed was the amount of functions with side effects, recurrision, and jump
statements (goto and break Statements). Between all four systems, scilab has the largest
ratio of funtions with side effects standing at 69%. The total amount of side effects
between all four systems is a concerning 31,279 with an average of aroud 7820 per
system. All systems except Ripple have seen an increase in the amount of side effects over
the course of four years. Falkon has seen a drastic jump pertaining to the frequency of side
effects within functions with about a 506% increase over four years. Goto statements are
not being used very frequently with an average of 176 due to the large amont of goto used
by scilab. Despite the large amount, there has been a decrease in their usage over their
years with all of the systems.
Based off of figure 1, break statements have been in high usage between all systems. Over
the years of development they have commonly increased except for ripple which has a
decrease. When compared with the size of each system, scilab has the smallest number of
break statements at around .24% and otter having the most at around .98%. Recurision
usage has been moderatly used with otter using a significant amount with about 83% of
the functions having recurision calls within them. Otherwise, all systems have around the
same usage when based off of size.

Table 2: Software Quality Metrics of Studied Systems

System Side
Effects Goto Break Function with Indirect

Recursive Calls
Functions with Direct

Recursive Calls
Scilab 11,108 644 6,273 145 285
Otter 1,937 6 1,434 638 132
Falkon 8,261 15 2,159 16 271
Ripple 9,973 39 1,498 0 0
TOTAL 31,279 704 11364 799 688

7. Conclusion and Future Work

The purpose of this study was to observe the frequency of particular metrics that played a
role in making general purpose open source systems harder to maintain, develop, and
support. The study was conducted by using a system developed by one of the authors that
quantified each metric and then comparing the utilization of different systems. The goal of
this study was to first show the frequency of concerning metrics, and additionally,
examine the shift of said metrics.

Based off our analysis, break statements as well as usage of side effects, have both been
heavily utilized and have been continually increasing with the expansion of the systems.
With the average percentage of functions with side effects being 56% while in 2014, it
was 60%. This improvement is encouraging but shows that today’s practices have changed
very little over the last few years. Systems are continuing to grow and with them, the
negative side effects that come with particular practices currently used in software
development.

The concerns brought up with this research need to be known by those developing any
form of a software system. Failure to do so may result in unnecessary challenges later in
development as well as loss of performance due to circumstances such as parallelization.

Figure 1: The Evolution of The Number of Metrics Over a Four-Year Period.

One potential solution would be to provide training that expressed the difficulties with
using certain statements as well as guidelines that further enforce the training.

More work can be done in the future by analyzing more systems with more broad domains
then showed here. Additionally, a more detailed solution to the problem could be
addressed that would outline a plan.

8. Acknowledgment

The authors are grateful to the University of Wisconsin-Stout and the Office of Research
and Sponsored Programs for their support.

REFERENCES

[1] J.E. Hannay, C. MacLeod, J. Singer, H.P. Langtangen, D. Pfahl and G.Wilson, “How
do scientists develop and use scientific software?”, Software Engineering for
Computational Science and Engineering, 2009, pp 1-8.

[2] S.M. Alnaeli, J.I. Maletic, and M.L. Collard, “An empirical examination of the
prevalence of inhibitors to the parallelizability of open source software systems”,
Empirical software engineering, 2016, vol 21, pp 1272-1301.

[3] M. Young, “The technical writer’s handbook”, Mill Valley, CA: University Science,
1989.

[4] S.M. Alnaeili, M. Sarnowski, C. Meier, M. Hall, “Empirically Identifying the
Challenges in Parallelizing Scientific Software Systems”, 25th International
Conference on Software Engineering and Data Engineering, 2016, pp 1-6.

[5] S.M. Alnaeili, M. Sarnowski, “Examining the Prevalence and the Historical Trends of
Indirect Function Calls in Open Source Systems: A Case Study”. The Midwest
Instruction and Computing Symposium, 2016, pp 1-15.

[6] S.M. Alnaeili, M. Sarnowski, S. Aman, K. Yelamarthi, A. Abdelgawad, H. Jiang,
“On the Evolution of Mobile Computing Software Systems and C/C++ Vulnerable
Code.” Ubiquitous Computing, Electronics & Mobile Communication Conference,
2016, pp 1-7.

[7] S.M. Alnaeli, M. Sarnowski, “Historical Trends of the Multicore Adaptability and
Parallelizability of Scientific Software Systems”.

[8] V. Starkiovicius, R. Ciegis, A.Bugajev “On efficiency analysis of the OpenFOAM-
Based Parallel Solver for Simulation of Heat Transfer in and Around the Electric
Power Cables “Informatica. 2016, vol. 27, issue 1, p161-178. 18p.

[9] W.A. Bhat, S.M.K. Quadri, “Open Source Code Doesn’t Always Help Case of File
 System Development”, Trends in Information Management, 2011, vol. 7, issue 2,
pp 135-144.

[10] A. Khandelwal and A. K. Mohaparta, “An insight into the security issues and
their solutions for Android phones.” Computing for Sustainable Global Development
(INDIACOM), 2015 2nd International Conference, 2015, pp. 106-109

[11] E.Erturk, “A case study in open source software security and privacy; Andriod
adware.” Internet Security (wroldCIS), 2012 World Congress, 2012, pp. 189-191.

[12] J. Viega, J.T. Bloch, Y. Kohno and G. McGraw, “ITS4: a static vulnerability
scanner for C and C++ code.” Computer Security Applications, 200. ACSAC ’00.
16th Annual Conference, 2000, pp.257-267.

[13] B. Barney. (2012) Introduction to Parallel Computing. Available:
https://computing.llnl.gov/tutorials/parallel_comp/#Models

[14] D.A.P.J.L. Hennessy “Computing Architecture: A Quantitative Approach.”
Morgan Kaufman Publishers, San Francisco, 2006.

[15] Y. Joonseok, R. Duskan, and B. Jongmoon, “improving vulnerability prediction
accuracy with Secure Coding Standard violation measures.” 2016 International
Conference on Big Data and Smart Computing (BigComp), 2016, pp. 115-122.

[16] M.L. Collard, M.J. Decker, and J.I. Maletic, “Lightweight Transformation and
Fact Extraction with the srcML Toolkit.” Presented at the Proceedings of the 2011
IEEE 11th International Working Conference on Source Code Analysis and
Manipulation, 2011.

[17] Michael T. Goodrich and Roberto Tamassia, Data Structures and Algorithms in
Java, Book, WILEY, ISBN: 9781118771334, 2015.

[18] Nell Dale Daniel T. Joyce Chip Weems, Object-Oriented Data Structures Using
Java: Edition 4, Book, Jones & Bartlett Learning, ISBN: 9781284125818, 2016.

	1. Introduction
	2. Jumps Statement
	3. Recursive Class (direct and indirect)
	4. Methods and Tools
	5. Data Collection
	6. Results
	7. Conclusion and Future Work
	8. Acknowledgment
	References

