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 Abstract 
 
Evolutionary Computation is an approach to artificial intelligence inspired by biological 
evolution. In biological evolution, the organisms that are better suited for the environment have a 
higher chance of surviving and thus making more children. In evolutionary computation, instead 
of living organisms, we have computer programs, called individuals. These computer programs 
are implemented with language known as Push, which is a stack-based language designed for 
evolutionary computation. This is part of a system known as PushGP, which utilizes the Push 
language to evolve programs.  Individuals are tested against the problem and are given an error 
value. A larger error would imply that the current program performed poorly on the tests. 
Individuals with lower error values are more likely to be selected as parents for the next 
generation. The process of evolving populations of individuals over time is called an 
evolutionary run. In each run, the goal is to evolve a program that solves a specific problem. A 
run succeeds if an individual is found that can solve the problem, i.e., the individual passes all of 
the tests and the total error is 0.  
 
The purpose of our research is to identify the impact of random initial populations on the 
behavior of evolution on different problems. In our research, we created an initial population of 
1,000 individuals and used it as the starting point for multiple evolutionary runs on three 
different problems. We generated a random initial population and used it multiple times on the 
targeted problem. The data that was gathered from the runs was in the form of evolutionary trees 
and was uploaded into a graph database for analysis. Preliminary results suggest the initial 
population can have a substantial impact on some runs, with some initial populations having a 
substantially higher probability of success than other initial populations. Results also suggest that 
the trajectory of these evolutionary runs is contingent, i.e., different runs with the same starting 
point can have very different outcomes. 
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1 Introduction  
 
Evolutionary Computation is an approach to artificial intelligence inspired by biological 
evolution. In biological evolution, the organisms that are better suited for the environment have a 
higher chance of surviving and thus making more children. In evolutionary computation, instead 
of living organisms, we have computer programs, called individuals. Individuals are then tested 
against a problem and given an error value. A larger error value would imply that the individual 
performed poorly on the tests. Individuals with a lower error values are more likely to be 
selected as parents for the next generation. The process of evolving populations of individuals 
over time is called an evolutionary run. In each run, the goal is to evolve a program that solves a 
specific problem. A run succeeds if an individual is found that can solve the problem, i.e., the 
individual passes all of the tests and the total error is 0.  
 
Every evolutionary run has an initial population which is a first generation of randomly 
generated programs. The goal of our research was to identify the impact of random initial 
population on the behaviour of evolutionary runs. This paper presents our methods which we 
used for identifying the impact and results of our research. 
 
The paper proceeds as following: Section 2 introduces Genetic Programming (GP) and various 
tools/applications used for our research, Section 3 discusses our methods used for our 
experiment, Section 4 presents our results and findings from our experiment and Section 5 will 
conclude this paper.  
 
2 Background 
 
In this section we will briefly cover several concepts central to our research. These include the 
idea of genetic programming and evolving programs, how individuals (programs) are represented 
and manipulated in the evolutionary process, and how we select individuals to be parents during 
evolution. 

 
2.1 Genetic Programming  

 
Genetic Programming (GP) is the type of Evolutionary Computation (EC) that was used in this 
research. The general goal of EC systems is to stochastically transform solutions into hopefully 
better versions through generations. This process is inspired by natural evolution and it tries to 
find the solution by using random mutation, crossover, fitness functions and selection 
mechanisms.  
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In GP, the solutions being evolved are computer programs, typically represented in some form 
designed for evolutionary manipulation. In what are arguably “simpler” systems like Genetic 
Algorithms (GAs), where individuals are represented as fixed-length bit strings, genetic 
operations like mutation are reasonably straightforward: One can flip one or a handful of bits, 
usually without worry that the resulting bit string will in some way be “illegal” or fail to 
interpretable as a solution. With computer programs, however, small changes often lead to 
serious problems, especially in typically programming languages designed for human 
programmers. Removal or substitution of a single punctuation mark in most traditional 
programming languages will often completely break the system. This makes them poorly suited 
for evolutionary purposes.  
 
Thus GP systems typically use special representations or languages designed specifically for 
evolution. These representations allow for mutation and recombination of programs with little or 
no risk of such changes leading to a program that can’t be run. Much GP work has focused on a 
parse tree representation, where mutation and recombination involve replacing and swapping 
parts of those trees. Other systems have used circuit-like representations, grammars to generate 
programs, or register-based Assembly-like languages. In our work we used the Push language, 
designed specifically for evolutionary computation work; this is described in the next section. 

 
2.2 Push 
  
The Push language was introduced Spector and Robinson in 2002 [1] and has been extended and 
developed in numerous ways since then.1 Push is a stack-based language that uses separate 
stacks for each data type. Push programs can have nested loops and complex control structures 
like programs written in other languages. To aid in evolution, Push programs can be represented 
as linear sequences of genes called Plush Genomes. Each gene represents either an instruction 
(like integer-add or string-length) or some constant (like 7 or “Hello”). Any such linear sequence 
of genes can then be translated into a working Push program, which makes this representation 
very robust to evolutionary change. The simple syntax and structure of Plush genomes and Push 
programs make it easier to apply mutation and recombination operators that are used for 
generating and manipulating programs. 
 
Besides having separate stacks for each data type, there is also an execute stack that controls the 
execution of a Push program. The execute stack initially contains the Push program to be 
executed. If the top element in the execute stack is a constant, like an integer value or a string, 
the system pops that value from the execute stack and pushes it onto the appropriately typed 
stack. Thus if the top value on the execute stack was the integer 7, for example, then that 7 
would be popped from the execute stack and pushed onto the integer stack [2].  

                                                
1 See http://pushlanguage.org for additional information and resources. 

http://pushlanguage.org/
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If the top element on the execute stack is an instruction like integer-add, the system then checks 
to see if the necessary arguments are available on the appropriate stacks; if they are the 
instruction is performed, but if they are not, then the instruction is simply popped off the execute 
stack and ignored. As an example, the string-length instruction takes a single string from the 
string stack and pushes its length onto the integer stack. If, however, the string stack is empty, 
then this instruction would be skipped. Similarly, the integer-add instruction acts on the integer 
stack. If the integer stack has at least 2 integers then it will pop these two elements and push 
their sum back on the integer stack. However if the integer stack has less than 2 elements, then 
the integer-add instruction will be ignored and there will be no change to the integer stack. 
 
Here is a simple example of how such a program is executed: 

 
Figure 1: Stack execution 

 
Initially the execute stack contains two integer constants (1 and 2) and one instruction (integer-
add). The system will pop the top element from the execute stack and will push it into integer 
stack as shown in picture 2 of Figure 1. The same process will happen to the next top element of 
the execute stack (picture 3). After the two integer constants have been moved, the only element 
left on the execute stack is the integer-add instruction (picture 3). This instruction will simply 
look at the integer stack, and if there are two integers it will add them (picture 4). 
 
The ability to simply ignore instructions that don’t have appropriate arguments is a key part of 
Push’s evolutionary flexibility. These instructions don’t fail in some catastrophic way, or attempt 
to “fix” the problem by the use of some repair mechanism, but are instead simply ignored during 
execution. They remain in the genome, however, which means that through mutation and 
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recombination they could later be evaluated in circumstances where they do in fact perform their 
action. 
 
2.3 Errors, test cases, and Lexicase selection 

 
A key step in any evolutionary computation system is the selection of “parent” programs that are 
modified or combined to create “child” programs in the next generation.  
 
In most EC systems there are one or more test cases that the evolved solution is tested against. In 
our runs, for example, we use software synthesis benchmark problems that have hundreds of test 
cases, each of which generate an error value. 
 
There are a numerous EC selection mechanisms, many of which aggregate these individual test 
cases into something like a total error. This often favors “mediocre generalist” programs over 
“specialist” ones that are very good at parts of the problem, but quite bad at others. If there are 
10 test cases, for example, a program that is perfect on 9 of the cases (error 0) and has an error of 
100 on the tenth will have a total error of 100. A program that has an error of 5 on all 10 test 
cases will have a total error of 50, and is much more likely to be selected in most systems using 
aggregate error. Successful evolutionary runs often benefit from being able to build on or 
combine information from specialists, which requires that such specialists can be selected, even 
if they’re quite weak on some of the test cases. 
 
The selection mechanism we that is used for finding suitable “parent” programs is called lexicase 
selection [3]. This selection mechanism does not aggregate the error outputs from each test case 
into one single value. Instead, each time a selection is performed, it randomly orders the test 
cases and selects programs that have a best performance on the first test case. Then the algorithm 
will remove the first test case, and repeat the same process with the next case. This will continue 
until there is only one individual left or all the test cases are processed. 

Here is the pseudocode for lexicase selection: 
 

1. Initialization: 
a. Set entire population of a current generation to be the list of candidates. 
b. Set all test cases to be the list of cases in a random order. 

2. Loop 
a. Based on the first test case from the list of cases select all candidates that have 

best performance compared to any other program in the list of candidates. 
b. If the list of candidates contains only one individual, then return it. 
c. If the list of cases contains only one test case, then randomly choose an individual 

from list of candidates and return it. 
d. Otherwise remove the first test case from the list of cases and repeat the loop 
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2.4 Genetic Operators 

 
Mutation is a type of genetic operator that only involves using one “parent” program. When 
mutation is happening, the system randomly chooses parts of the program and alters them 
thereby creating a new mutated program. Another type of genetic operator is called the 
crossover. During the crossover randomly selected parts from two “parent” programs are used 
for creating a new program for the new generation. 
 
One could mutate a Plush genome, for example, replacing a gene with a new, randomly 
generated gene, e.g., replacing the string constant “Hello” with the instruction integer-multiply. 
Similarly one could remove a few randomly selected genes, or insert a few randomly generated 
genes at randomly chosen locations. 

 
 
2.5 PushGP and Clojush 
 
PushGP is a rather generic term for a whole family of evolutionary systems built around the Push 
programming language. There are PushGP systems written in a variety of programming 
languages, including PyshGP in Python2 and propel in Clojure.3 The work presented here used 
the Clojush “reference” implementation,4 a PushGP system in Clojure programming language, 
utilizing Clojure’s facilities for multi-core concurrency. It is really important that Clojure is 
suited for parallel execution, since typically hundreds of programs need to be tested at the same 
time. 
 
Clojush also has support for a wide variety of types and instructions, numerous genetic operators, 
and selection mechanisms such as lexicase selection.  
 
 
2.6 Individuals 
 
All individuals or programs are generated by using Clojush implementation. Before we could 
start our evolutionary runs, we needed to create the initial population. Programs in the population 
are randomly generated and have a really small chance of solving the targeted problem. 
Individuals will also have all needed constants for the test problem. For example if the problem 
involves counting vowels in the given string, then individuals will have the vowels as constants. 

                                                
2 http://erp12.github.io/pyshgp/ 
3 https://github.com/thelmuth/propel 
4 https://github.com/lspector/Clojush 
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After the initial population is created, all individuals will be evaluated on each of the test cases. 
Then the selection algorithm will choose a set of parents from the initial generation for creating 
the new generation. 
 

3 Methods 
 
We generated the initial random population, and did twenty independent runs each with the same 
target problem. For our target problem we used the Syllables problem from Helmuth and Spector 
[4]. For this problem the input is a string that might contain letters, spaces and digits. The goal is 
to count the occurrences of vowels (defined to be ‘a’,’e’,’i’,’o’,’u’,or ’y’) in the string and print 
out the number as X in the “The number of syllables is x”. When individuals are being generated 
for the initial population, they all receive constants that are required for the target problem. In 
our case these constants were vowels, the string “The number of syllables is” and string 
“aeiouy”5. 
 
There were 200 test cases for this problem, and each individual is tested on each of these test 
cases. If program returns the same value as expected by an particular test case it means that error 
value is 0. Otherwise the error value depends on how different the program’s output is from the 
expected value. The total error is simply the sum of the error values from each test case. If an 
individual perfectly solves all 200 cases then all the error values are zeroes, so the total error is 
also 0.   
 
There are some parameters that need to be set before starting an evolutionary run: population 
size, maximum number of generations, selection operator and genetic operator. 
 
The maximum number of generations for each run was decided to be 300. If run reaches the 
generation 300 and no individual that can solve the target problem is found, then the run stops. 
These runs are considered as fail runs. The population size is 1000 individuals per generation.  
For the selection operator “Lexicase selection” algorithm was used. A new operator called 
UMAD [5] was used as genetic operator. UMAD operator only involves mutation of the an 
individual, that is why each individual only has one ancestor. 
 
4 Results 
  
Three of the twenty runs succeeded, where the other 17 failed to find a solution in the given 
amount of time. The Figure 2 shows the change of the total error over 300 generations for 6 out 
of 20 evolutionary runs that we did. Three of these runs have successfully found the solution for 
the target problem. Other three were randomly selected out of 17 failed runs.  

                                                
5 https://github.com/lspector/Clojush/blob/master/src/clojush/problems/software/syllables.clj 
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Since we used UMAD as the genetic operator, we were able to get total errors for all ancestors of 
the winner individual. For failed runs, since there were no winner, we selected the individual 
with the smallest total error in the last generation.  
 
We have noticed that all runs have similar total error over the majority of 300 generations. 
However each run still has its own unique behaviour. An example for that can be run 5 (blue line 
in Figure 2). The total error for this run sometimes becomes very high, but this individual was 
still selected by the Lexicase selection. Another run which is represented by the red line has a 
weird behaviour at the end, that happened due to the fact that there were multiple individuals 
with the same total error. 
 
Here are the final forms of programs that were able to solve the targeted problem: 
Run 2:  
("The number of syllables is " print_string \e \y \u exec_s (\o in1 \i) (in1 \a s 
tring_occurrencesofchar string_occurrencesofchar) (exec_dup (in1 integer_add string_occurr 
encesofchar integer_add)) print_integer) 
 
Run 6: 
(string_empty integer_empty \y "The number of syllables is " integer_empty \e int 
eger_empty \a \o \i \u print_string exec_dup (exec_do*while (integer_add in1 
string_occurrencesofchar)) integer_add print_integer) 
 
Run 3: 
(\o boolean_empty char_iswhitespace \e exec_empty char_stackdepth exec_empty \u 
boolean_stackdepth boolean_flush "The number of syllables is " \i \o char_dup_items \o char_dup \a 
print_string boolean_empty char_isdigit \i \y \o in1 char_dup exec_rot (exec_dup (char_dup \i 
boolean_stackdepth \o char_yankdup char_dup char_stackdepth boolean_yank \y exec_dup 
(exec_do*count (integer_mult \a string_replacefirstchar)) \e \a string_frominteger boolean_flush 
char_rot string_concat)) string_reverse (exec_yankdup string_nth) string_occurrencesofchar 
print_integer) 
 
Solutions from run 6 and 2 are way simpler than the solution from run 3. Even with the same 
initial population, the forms of the final solutions differ. That shows how trajectories of runs are 
contingent. 
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Figure 2: Plot of total error change over time for six runs. 

 
 

 
 
 
5 Conclusion 
 
Results of all runs showed that even with the same initial population the chances of finding the 
solution are still random. Only 15% of runs successfully found the solution and each had a 
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different initial ancestor. However these are results that are based on our evolutionary run 
parameters. There are other selective mechanisms and genetic operators that can also be used. 
Different set of parameters might provide results that suggest that there is an impact of initial 
population on the behaviour of the run. 
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