

Deep Reinforcement Learning in Starcraft II

Brandon Ly, Nghia Huynh, Maxwell Herron, Matthew Muller,
Erik Stienmetz, Scott Kerlin

Computer Science Department
Augsburg University

2211 Riverside Ave, Minneapolis, MN, 55454 lyb@augsburg.edu,
huynhn@augsburg.edu, herronm@augsburg.edu,

mullermm@augsburg.edu, steinmee@augsburg.edu,
kerlin@augsburg.edu

Abstract
Over the past decade, machine learning has become a popular subject in academia.
With the emergence of technologies such as cars that can drive themselves, many
academics and entrepreneurs have become interested in the practical applications of
these algorithms. Reinforcement learning, a subset of machine learning, has seen
several prominent breakthroughs. Unlike supervised or unsupervised machine
learning, reinforcement learning aims to maximize a reward value by taking an action
based upon a given state. For our research, we looked to apply deep reinforcement
learning algorithms to the video game StarCraft II using the DeepMind PySC2 Python
library. The library contains several mini-games that were developed specifically to
be used as simulation environments for reinforcement learning research. In our case,
we aimed to create deep reinforcement algorithms to play the mineral collection mini
game; a game where two marines, which the AI controls, seeks to collect as many
crystals as possible in an allotted time frame.

1

Overview and Background

Introduction

Using reinforcement learning to play video games has rapidly grown in popularity
due to recent breakthroughs such as AlphaGo. AlphaGo was derived to play the board
game called Go, and it utilized deep reinforcement learning algorithms to do so. Later
on, the AI was generalized and renamed AlphaZero. AlphaZero was able to learn how
to master Atari games and chess with having no initial knowledge of how to play. Deep
reinforcement learning algorithms are also being developed by companies to control
self driving vehicles. Deep reinforcement algorithms leverage the power of deep
neural networks to allow for more complex behavior. Although these algorithms
sound rather esoteric, the underlying concepts can be readily understood.

Reinforcement Learning

What is reinforcement learning? Reinforcement learning falls under the category of
machine learning and is somewhere in between supervised and unsupervised
learning. What makes reinforcement learning different from other machine learning
algorithms is the ability to learn not by example, but through trial and error. Take the
case of AlphaGo, if researchers were to develop an AI to play Go using a supervised
machine learning algorithm, the AI would be constrained by the datasets it was
trained on. In other words, if we trained the AI using data from games of the world’s
best players, it would only be able to play as good as those players in those specific
matches. However, a reinforcement learning algorithm could play against itself, and
potentially become far better than the best humans.

Figure 1: Reinforcement Learning Paradigm [1]

Reinforcement learning boils down to taking information about an environment and
then choosing an action for an agent within the environment that yields the highest
reward. The choices the agent makes is based on the environment and potential
future reward. At any point, the environment has some state that contains all of the

2

information about said environment. Based upon the state of the environment, the
agent takes actions and receives a corresponding reward. Figure 1 shows this process
in action. This reward value can be either positive, negative, or zero. The researcher
determines the size of the reward an agent receives based on what the researcher
wants the agent to accomplish. For example, in the game of pong, the agent could
receive a positive reward for scoring on the opponent, and a negative reward if scored
on. Since the goal of the agent is to maximize its cumulative reward, it is incentivized
to score as much as possible while avoiding being scored on.

Before moving forward, we should define several key components to creating a
reinforcement learning algorithm.

Agent - contained within the environment and is what the AI has control over.
The agent performs actions within the environment.

Action - possible decisions an agent can make in an environment. For example,
an agent playing Pong can either move up or down. These actions can either be
discrete or continuous.

State - encapsulates all of the information about the environment in a single
point in time. For example, the state for Pong could be the pixel representation
of the screen of the game at a given point in time. The screen information for
pong contains all of the necessary information that is needed for the agent to
make a decision. It contains the score of each player, the positions of each
player, and the location of the ball.

Reward - an integer value that is given to an agent that is dependent on the state,
and the action the agent takes. It is for the agent to determine whether or not
the actions that it is taking is accomplishing the goal it was set out to complete.

Policy - denoted by π, the policy determines the actions for the agent in a given
state. In other words, the policy controls the agent’s behavior. It does so by
mapping states to actions and choosing actions that yield the highest reward
value.

Discount Factor - denoted by γ, the discount factor is a value between 0 and 1
that is multiplied by future reward values to reduce the reward given for a given
action performed. A discount factor value of 0 means that the future rewards
are not considered whatsoever when the agent decides an action, rendering the
agent completely shortsighted. With a discount factor of 1, the agent considers
all future actions as heavily as it does current actions, rendering the agent
completely far-sighted. Ultimately, the discount factor is used to control how
influential future reward is currently.

Return - the discounted cumulative reward value.

Value Function - calculates the return of a policy in a given state.

3

Q-Value Function - formally known as the action-value function, the Q-value
function is similar to the value function, but with an additional parameter: an
action. The Q-value function computes the return of a policy given a state and
an action.

Episode - a single run of the agent in an environment. For example, in the game
of tic-tac-toe, an episode would consist of each player placing their piece on the
board until a player wins or the board is filled.

Trajectory - denoted by τ, the trajectory is an array containing all of the state,
action, and reward values in a given training episode, with each value
containing a subscript value denoting the time step.

The decision making process of reinforcement learning can be mathematically
described by the Markov Decision Process (MDP) [1]. MDPs are mathematical
representations of reinforcement learning problems for which precise mathematical
statements can be made [1]. All of the definitions defined above are components of
MDPs. MDPs seek to attain an optimal policy that produces the optimal value function,
and aim to produce the optimal action-value function. An important aspect of an
environment, which must hold true for an MDP to obtain optimal solutions, is the
Markov property. The Markov property states that at any point, the current state
must be independent of the past. In other words, the current state must encapsulate
all relevant information for the agent, and does not depend on what happened in
previous states. Anything that has occurred in a previous state can be inferred from
information about the current state for the Markov property to hold.

Deep Learning

Deep learning is a subset of machine learning that uses deep neural networks to
recognize patterns and make predictions. What makes deep neural networks so
powerful is that they are universal function approximators, and can be used in a wide
variety of scenarios. Deep neural networks have seen many recent breakthroughs in
fields such as computer vision, natural language processing, and image recognition.
What separates deep neural networks from regular neural networks is the inclusion
of multiple hidden layers. Figure 2 shows the similarities and differences between the
architectures of a simple neural network and a deep neural network.

The idea behind deep learning is to extract multiple levels of representation from a
given data set to allow for more robust and complex approximations [3]. Deep neural
networks are made up of vertices, called neurons, and are connected by weighted
edges that take numerical data. The initial layer, known as the input layer, takes in
data that is then passed to the first hidden layer. At every hidden layer, the data
coming from the previous layer is multiplied by a weight, and summed. A value known
as a bias is then added to the sum. The bias helps to shift the activation function to
better fit the data [4]. Before the layer generates its output, an activation function

4

Figure 2: Architecture of a Deep Learning Network [2]

is applied. Figure 3 shows the process of taking input and generating output. The
activation function, along with the bias, help to calculate the optimal approximation.

Typically, there are two phases for developing a deep neural network: training, and
evaluation. The training phase involves feeding the neural network data to learn from,
and then optimizing the neural network periodically. In the case of supervised
learning, it is during training phase an error value is computed. This error value is
also known as the loss, and different loss functions can be applied to compute the loss.
Essentially, the loss value takes the output of the neural network, and subtracts it
from the expected output. The loss value is typically squared so that the loss is always
non-negative. After the loss has been computed, backward propagation of the error
occurs. This is the training process as this is where the learning takes place. To modify
the model’s weights such that they minimize the amount of computed loss, the model
must know how the weights need to be adjusted. This is done by taking the gradient
of the neural network. Figure 4 shows a 3D representation of a gradient vector. The
value of the weights are then adjusted so that the output of the model is more
accurate.

Figure 3: Anatomy of a Neural Network Node [5]

The gradient tells the model what the slope of our loss function is, helping us to adjust
our parameters in the direction that best minimizes the loss. The size of the
parameter update is controlled by the learning rate, denoted by α. The value of the

5

learning rate is typically between 0 and 1, and varies based on the rate of convergence
to the optimal solution. If the learning rate is too high, the weights can be adjusted too
much and overshoot the correct solution. This could potentially lead to divergence
and the model never learns the optimal solution that minimizes the loss. Conversely,
if the learning rate is too low, it could take a long time to converge to the optimal
solution. The figure 4 represents the gradient of some cost function, J(w,b). The x and
z axis denotes the values of the parameters w and b. The arrow at the bottom
corresponds to the values for parameters w and b such that they minimize the amount
of loss generated the by the model.

Figure 4: Gradient of the Neural Network [6]

After the model is done training, it is then evaluated on an entirely different data set
from what it was trained on. The model’s weights are now static, and the results are
evaluated to see how it handles input that it has not worked with before.

Convolutional Neural Networks

Convolutional neural networks work like regular neural networks, but work well with
extracting features from image data. Convolutional neural networks are capable of
taking images as input and extracting spatial and temporal dependencies of an image
[7] .

Deep Learning with Reinforcement Learning

There are difficulties reinforcement learning algorithms, though. For example, with
the Q-learning algorithm, it must maintain a matrix that contains all of the possible
state-action pair values. In environments with a continuous state space and/or a
continuous action space, it becomes impossible to track the action-value for all

6

actions in all states. More specifically, this function is called the action-value function
or Qvalue function. This function can be approximated by using deep neural
networks. This is how the Deep-Q network (DQN) developed by DeepMind handles
the issue of arbitrarily large state-action spaces.

Starcraft II

StarCraft II is a real-time strategy game (RTS) that is known for its competitive scene
and steep learning curve. RTS’s are games in which the player manages a vast army
of units, as opposed to a single unit. In StarCraft II, the player is responsible for
collecting resources, creating structures, manufacturing units, attacking and
defending structures, investing in technological advancements, and much more. The
game is also known for its fast pace; the in-game time is sped up to 1.4 times normal
time. This means that a minute of game time is only 42 seconds in real time. Because
of this fast-paced and complex nature, researchers have been interested in developing
AIs to compete against the best human Starcraft II players.

Video games serve as fantastic environments for implementing and testing
reinforcement learning algorithms. They allow for environments in which
researchers have fine grained control of the environment, and relevant environment
data is readily available. Starcraft II is no exception, and its environment is excellent
for AI research.

PySC2 Library

The PySC2 library is a set of tools that is used to access the StarCraft II Machine
Learning API built by Blizzard Entertainment. The original API is based on C++ code
that is deeply linked within the SC2 engine itself and allows for the access of scripted
bots, machine-learning based bots, and replay analysis within the SC2 environment.
The role of PySC2 was to give access to this API, allowing for python based
reinforcement learning environment. PySC2 enabled allows users to create agents in
python that can gather observations and perform actions within the game.

DeepMind StarCraft II Mini-games

Within the StarCraft II environment is the ability to develop intricate custom maps
and game modes that players can develop. This allows for the creation of minigames
within the StarCraft II environment using the large library of units, maps, and
functions that are provided by the game.

There are two major benefits to using the PySC2 library: the user can access the
current state of the Starcraft II environment and the user can choose from a list of

7

pre-built mini-games that can be played by an AI created by the user. The mini-game
that we chose was the mineral collection game because of its fast pace, and clear goal.

Figure 5: Mineral collection mini-game

These conditions made it simple to define the reward for our AI. The Agent controls
actors within the map to collect minerals, and it receives a score based on the number
of minerals collected within the given time frame of one minute and thirty seconds.
Figure 5 shows the mini-game being played by the AI during an episode. If the Agent
collects all twenty of the generated minerals before one minute and thirty seconds
have passed, the map resets and generates new locations for minerals to be collected.
The minerals generated by the map are random and will change their positions after
a reset, even if this reset happens before an episode completes.

Methodology

Initial Preparation

We used the Python programming language to create our model and experiment. We
also used the Pytorch library to create our convolutional neural networks, and to
implement our reinforcement learning algorithms.

Deep Neural Network Setup

We developed a deep convolutional neural network to approximate our policy
function. Our neural network has three hidden layers, all of which are convolutional
layers that are batch normalized. The activation function for each of our hidden layers

8

is the ReLU activation function. The output layer is a softmax layer with 21 output
neurons.

REINFORCE Algorithm

The REINFORCE algorithm is a policy gradient algorithm that increases the
probabilities of taking actions that lead to a higher return value. Additionally, it
decreases the probability of taking an action that leads to a lower return value until
you arrive at the optimal policy. The REINFORCE algorithm is an on-policy algorithm,
meaning the policy is directly evaluated and improved. This is opposed to calculating
the optimal Q-value for every given state and then creating a policy based on these
values. In the latter case, this would be known as off-policy learning. The algorithm
works by first sampling trajectories by running the policy, and computing the policy
loss by multiplying the negative log probability of taking each action in the episode
by the return at each time step.

System Setup

The system that was used to run the simulations contained an Intel i7-8700k CPU and
Nvidia GTX 1080 Ti graphics card. The use of Nvidia CUDA was an important part of
the system set up for use with our AI. CUDA is a parallel computing library that allows
a graphics processing unit (GPU) to be used as a general processor. This can be
beneficial for a program that requires a large amount of algebraic and geometric
calculations because GPUs excel at performing these types of calculations. Using the
CUDA library, the AI was ran exclusively on the Nvidia GTX 1080 Ti graphics card,
allowing our algebra based algorithm to compute efficiently.

Experimental Setup

Figure 6: What the Agent is ’Seeing’

For our experiments, we needed a way to determine how our agents should perform
actions. To do this, we decided to use a discrete action space for our AI. The standard

9

mineral collection mini-game has 20 minerals placed randomly on the map, and the
agent’s actions correspond to the Cartesian coordinates of the minerals with respect
to the marines. The actions are in order from the closest mineral to the furthest
mineral. Since the mini-game has two marines, we simplified the process by treating
the two marines as a single unit. To compute the coordinates, we use the average
distance between the two marines as the the starting point. We then compute the
euclidean distance from the marines to each mineral so that we can determine the
order of the actions. We then add an additional action that corresponds to a no
operation action. This is to give the agent the option to not have to change where it is
going if it sees no reason to. In all, our agent has in total 21 actions, and the output of
our convolutional neural network is a tensor with 21 values. The values of the output
tensor are the probabilities of taking each action. If an agent collects a mineral, that
action is replaced with a no operation action. No operation actions are sorted at the
bottom of the list.

For the input of our neural network, the PySC2 library exposes feature layers to the
user. The feature layers are preprocessed images of the mini-map and the screen. We
use three different representations of the screen as the input to our neural network.
The feature screens we used were the player relative, unit type, and selected screens.
The player relative feature screen represents the alliances of the units with respect to
the player. Green represents the player, light blue represents neutral units, and red
represents enemies. The unit type feature screen represents the types of each unit on
the screen. The screen selected represents the selected units and the select box the AI
makes. Figure 6 shows a visual representation of the feature screens.

Results
Our results are extensive, yet preliminary. Figure 7 corresponds to the return the
agent received after each episode. The agent ran in total for 8,000 episodes. The
agent’s return values oscillated quite frequently. At points the model performed very
well, but never seemed to play consistently. There are many potential reasons for this.
First, we simply might not have trained the model enough. In the paper created by
DeepMind on the PySC2 library, they conducted reinforcement learning experiments,
and the number of episodes that were completed were far more than we had done.

10

Figure 7: The results of our experiments

On the x-axis of Figure 8, the values correspond to the number of game steps as
opposed to the number of episodes. A game step is a single action, and for the mineral
collection mini-game, each episode has 480 game steps. If we divide the total number
of game steps by the number of game steps per episode, we get
episodes. In comparison, we only ran 8,000 episodes. The lack of training time did not
allow for the model to converge to the optimal solution for the mineral collection
mini-game. We simply did not have the resources to compute that many episodes in
a reasonable amount of time. We ran the training session for approximately 72 hours
to complete 8,000 episodes. Due to hardware limitations, we could not run 10,000+
episodes in a reasonable amount of time.

Another weakness of our model was that it could have been more robust. A more
robust neural network architecture would involve the use of recurrent neural
networks (RNN). These neural networks are able to keep track of time, and they work
well with sequences. In the DeepMind paper, they created Long-Short Term Memory
(LSTM) recurrent neural networks. LSTM is a popular RNN architecture that is
typically used with time series data [8].

11

Figure 8: DeepMind’s test results [8]

Discussion

Our Feelings About This Project

The reinforcement learning research project was both challenging and rewarding.
There were many theoretical concepts that we had to first comprehend before we
could even begin. Also, we had to learn how we could go about building an AI. We
studied the first few chapters of Reinforcement Learning: An Introduction by Sutton
and Barto [1] to develop a theoretical basis of reinforcement learning concepts before
constructing our AI. Researching a framework that would work for us was also
something we struggled with. There was very limited documentation of the PySC2
library, making it challenging to create our AI. We had to scour through the GitHub
repository, and dig through the source code to figure out how certain aspects of the
library worked. Although this project was quite difficult, we are very happy we had
the opportunity to learn more about how reinforcement learning works, and we are
pleased to have been able to implement a deep reinforcement learning algorithm.

Classroom Takeaway - Expansion Into Course

This project could be modified into a curriculum for a semester long class by splitting
up the parts of the experiment into milestones that students could reach. In the
beginning, students could study the theoretical concepts of reinforcement learning
while starting to develop a notion of what kind of mini-game they would implement.

12

Moving forward, they could be guided into building their first simple neural network.
This will help to solidify the students understanding about the algorithms by
implementing them. During this time they could familiarize themselves with the SC2
map editor program to find out about how the internals of the provided mini-games
function.

Once students have established the foundation of what they need to know, they could
be split into groups that will last for the rest of the semester. After establishing these
groups, students would then begin to experiment with the PySC2 library. Working
together, they could complete small assignments, such as creating their own custom
maps, to help familiarize themselves with the library. Once the students have become
comfortable working with the library and their groups, they would submit a proposal.
This proposal would include what they would like their AI agent to do along with
reasonable milestones to complete along the way. The rest of the semester would be
a guided learning experience where the students work together in their teams while
the professor would assist them in any serious roadblocks that they encounter.

This idea of a guided learning experience through this course will not only help the
students learn about the foundations of reinforcement learning algorithms, it will also
help give them a sense of how to conduct research on their own. Naturally, the
professor will be there to assist them, but they are handed this library to use and
allowed to decide among themselves what they want their agent to achieve. It is
extremely important for programmers to be able to discover new things on their own,
and this is an excellent way to lightly guide the students into these skills.

Conclusion

Through employing deep reinforcement learning algorithms, we managed to
successfully create an deep learning AI agent. Based upon other research on
reinforcement learning agents [8], it could take thousands of more episodes before
our AI converges towards maximum efficiency. Our model was able to take screen
data as input, and convert that into an action. The model’s improvement didn’t
converge, but there were several occasions where the model performed well.
Regardless of the results, we are all appreciative of the opportunity to learn about
deep reinforcement learning throughout the process of creating an AI.

13

References

[1] R. S. Sutton and A. G. Barto, Reinforcement learning: an introduction. The MIT
Press., 2018.

[2] A. M. IESC, “Artificial intelligence, machine learning, and deep learning: Same
context, different concepts,” Apr 2018. [Online]. Available: https://master-iesc-
angers.com/artificial-intelligence-machine-learning-anddeep-learning-same-
context-different-concepts/

[3] Y. Lecun, “Deep learning & convolutional networks,” 2015 IEEE Hot Chips 27
Symposium (HCS), 2015.

[4] J. Collis and J. Collis, “Glossary of deep learning: Bias,” Apr 2017. [Online].
Available: https://medium.com/deeper-learning/glossary-of-deep-learning-
biascf49d9c895e2

[5] “A beginner’s guide to convolutional neural networks (cnns).” [Online]. Available:
https://skymind.ai/wiki/convolutional-network

[6] N. Donges, “Gradient descent in a nutshell,” Mar 2018. [Online]. Available:
https://towardsdatascience.com/gradient-descent-in-a-nutshell-eaf8c18212f0

[7] S. Saha, “A comprehensive guide to convolutional neural networks the eli5 way,”
Dec 2018. [Online]. Available: https://towardsdatascience.com/a-
comprehensiveguide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

[8] O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A.
Makhzani, H. Ku¨ttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen,
K. Simonyan, T. Schaul, H. P. van Hasselt, D. Silver, T. P. Lillicrap, K. Calderone, P.
Keet, A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing, “Starcraft ii: A
new challenge for reinforcement learning,” CoRR, vol.
abs/1708.04782, 2017.

	Abstract
	Overview and Background
	Introduction
	Reinforcement Learning
	Deep Learning
	Convolutional Neural Networks
	Deep Learning with Reinforcement Learning
	Starcraft II
	PySC2 Library
	DeepMind StarCraft II Mini-games

	Methodology
	Initial Preparation
	Deep Neural Network Setup
	REINFORCE Algorithm
	System Setup
	Experimental Setup

	Results
	Discussion
	Our Feelings About This Project
	Classroom Takeaway - Expansion Into Course
	Conclusion

	References

