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Abstract 
Over the past decade, machine learning has become a popular subject in academia. 
With the emergence of technologies such as cars that can drive themselves, many 
academics and entrepreneurs have become interested in the practical applications of 
these algorithms. Reinforcement learning, a subset of machine learning, has seen 
several prominent breakthroughs. Unlike supervised or unsupervised machine 
learning, reinforcement learning aims to maximize a reward value by taking an action 
based upon a given state. For our research, we looked to apply deep reinforcement 
learning algorithms to the video game StarCraft II using the DeepMind PySC2 Python 
library. The library contains several mini-games that were developed specifically to 
be used as simulation environments for reinforcement learning research. In our case, 
we aimed to create deep reinforcement algorithms to play the mineral collection mini 
game; a game where two marines, which the AI controls, seeks to collect as many 
crystals as possible in an allotted time frame. 
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Overview and Background 

Introduction 

Using reinforcement learning to play video games has rapidly grown in popularity 
due to recent breakthroughs such as AlphaGo. AlphaGo was derived to play the board 
game called Go, and it utilized deep reinforcement learning algorithms to do so. Later 
on, the AI was generalized and renamed AlphaZero. AlphaZero was able to learn how 
to master Atari games and chess with having no initial knowledge of how to play. Deep 
reinforcement learning algorithms are also being developed by companies to control 
self driving vehicles. Deep reinforcement algorithms leverage the power of deep 
neural networks to allow for more complex behavior. Although these algorithms 
sound rather esoteric, the underlying concepts can be readily understood. 

Reinforcement Learning 

What is reinforcement learning? Reinforcement learning falls under the category of 
machine learning and is somewhere in between supervised and unsupervised 
learning. What makes reinforcement learning different from other machine learning 
algorithms is the ability to learn not by example, but through trial and error. Take the 
case of AlphaGo, if researchers were to develop an AI to play Go using a supervised 
machine learning algorithm, the AI would be constrained by the datasets it was 
trained on. In other words, if we trained the AI using data from games of the world’s 
best players, it would only be able to play as good as those players in those specific 
matches. However, a reinforcement learning algorithm could play against itself, and 
potentially become far better than the best humans. 

 

Figure 1: Reinforcement Learning Paradigm [1] 

Reinforcement learning boils down to taking information about an environment and 
then choosing an action for an agent within the environment that yields the highest 
reward. The choices the agent makes is based on the environment and potential 
future reward. At any point, the environment has some state that contains all of the 
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information about said environment. Based upon the state of the environment, the 
agent takes actions and receives a corresponding reward. Figure 1 shows this process 
in action. This reward value can be either positive, negative, or zero. The researcher 
determines the size of the reward an agent receives based on what the researcher 
wants the agent to accomplish. For example, in the game of pong, the agent could 
receive a positive reward for scoring on the opponent, and a negative reward if scored 
on. Since the goal of the agent is to maximize its cumulative reward, it is incentivized 
to score as much as possible while avoiding being scored on. 

Before moving forward, we should define several key components to creating a 
reinforcement learning algorithm. 

Agent - contained within the environment and is what the AI has control over. 
The agent performs actions within the environment. 

Action - possible decisions an agent can make in an environment. For example, 
an agent playing Pong can either move up or down. These actions can either be 
discrete or continuous. 

State - encapsulates all of the information about the environment in a single 
point in time. For example, the state for Pong could be the pixel representation 
of the screen of the game at a given point in time. The screen information for 
pong contains all of the necessary information that is needed for the agent to 
make a decision. It contains the score of each player, the positions of each 
player, and the location of the ball. 

Reward - an integer value that is given to an agent that is dependent on the state, 
and the action the agent takes. It is for the agent to determine whether or not 
the actions that it is taking is accomplishing the goal it was set out to complete. 

Policy - denoted by π, the policy determines the actions for the agent in a given 
state. In other words, the policy controls the agent’s behavior. It does so by 
mapping states to actions and choosing actions that yield the highest reward 
value. 

Discount Factor - denoted by γ, the discount factor is a value between 0 and 1 
that is multiplied by future reward values to reduce the reward given for a given 
action performed. A discount factor value of 0 means that the future rewards 
are not considered whatsoever when the agent decides an action, rendering the 
agent completely shortsighted. With a discount factor of 1, the agent considers 
all future actions as heavily as it does current actions, rendering the agent 
completely far-sighted. Ultimately, the discount factor is used to control how 
influential future reward is currently. 

Return - the discounted cumulative reward value. 

Value Function - calculates the return of a policy in a given state. 
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Q-Value Function - formally known as the action-value function, the Q-value 
function is similar to the value function, but with an additional parameter: an 
action. The Q-value function computes the return of a policy given a state and 
an action. 

Episode - a single run of the agent in an environment. For example, in the game 
of tic-tac-toe, an episode would consist of each player placing their piece on the 
board until a player wins or the board is filled. 

Trajectory - denoted by τ, the trajectory is an array containing all of the state, 
action, and reward values in a given training episode, with each value 
containing a subscript value denoting the time step. 

The decision making process of reinforcement learning can be mathematically 
described by the Markov Decision Process (MDP) [1]. MDPs are mathematical 
representations of reinforcement learning problems for which precise mathematical 
statements can be made [1]. All of the definitions defined above are components of 
MDPs. MDPs seek to attain an optimal policy that produces the optimal value function, 
and aim to produce the optimal action-value function. An important aspect of an 
environment, which must hold true for an MDP to obtain optimal solutions, is the 
Markov property. The Markov property states that at any point, the current state 
must be independent of the past. In other words, the current state must encapsulate 
all relevant information for the agent, and does not depend on what happened in 
previous states. Anything that has occurred in a previous state can be inferred from 
information about the current state for the Markov property to hold. 

Deep Learning 

Deep learning is a subset of machine learning that uses deep neural networks to 
recognize patterns and make predictions. What makes deep neural networks so 
powerful is that they are universal function approximators, and can be used in a wide 
variety of scenarios. Deep neural networks have seen many recent breakthroughs in 
fields such as computer vision, natural language processing, and image recognition. 
What separates deep neural networks from regular neural networks is the inclusion 
of multiple hidden layers. Figure 2 shows the similarities and differences between the 
architectures of a simple neural network and a deep neural network. 

The idea behind deep learning is to extract multiple levels of representation from a 
given data set to allow for more robust and complex approximations [3]. Deep neural 
networks are made up of vertices, called neurons, and are connected by weighted 
edges that take numerical data. The initial layer, known as the input layer, takes in 
data that is then passed to the first hidden layer. At every hidden layer, the data 
coming from the previous layer is multiplied by a weight, and summed. A value known 
as a bias is then added to the sum. The bias helps to shift the activation function to 
better fit the data [4]. Before the layer generates its output, an activation function 
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Figure 2: Architecture of a Deep Learning Network [2] 

is applied. Figure 3 shows the process of taking input and generating output. The 
activation function, along with the bias, help to calculate the optimal approximation. 

Typically, there are two phases for developing a deep neural network: training, and 
evaluation. The training phase involves feeding the neural network data to learn from, 
and then optimizing the neural network periodically. In the case of supervised 
learning, it is during training phase an error value is computed. This error value is 
also known as the loss, and different loss functions can be applied to compute the loss. 
Essentially, the loss value takes the output of the neural network, and subtracts it 
from the expected output. The loss value is typically squared so that the loss is always 
non-negative. After the loss has been computed, backward propagation of the error 
occurs. This is the training process as this is where the learning takes place. To modify 
the model’s weights such that they minimize the amount of computed loss, the model 
must know how the weights need to be adjusted. This is done by taking the gradient 
of the neural network. Figure 4 shows a 3D representation of a gradient vector. The 
value of the weights are then adjusted so that the output of the model is more 
accurate. 

 

Figure 3: Anatomy of a Neural Network Node [5] 

The gradient tells the model what the slope of our loss function is, helping us to adjust 
our parameters in the direction that best minimizes the loss. The size of the 
parameter update is controlled by the learning rate, denoted by α. The value of the 
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learning rate is typically between 0 and 1, and varies based on the rate of convergence 
to the optimal solution. If the learning rate is too high, the weights can be adjusted too 
much and overshoot the correct solution. This could potentially lead to divergence 
and the model never learns the optimal solution that minimizes the loss. Conversely, 
if the learning rate is too low, it could take a long time to converge to the optimal 
solution. The figure 4 represents the gradient of some cost function, J(w,b). The x and 
z axis denotes the values of the parameters w and b. The arrow at the bottom 
corresponds to the values for parameters w and b such that they minimize the amount 
of loss generated the by the model. 

 

Figure 4: Gradient of the Neural Network [6] 

After the model is done training, it is then evaluated on an entirely different data set 
from what it was trained on. The model’s weights are now static, and the results are 
evaluated to see how it handles input that it has not worked with before. 

Convolutional Neural Networks 

Convolutional neural networks work like regular neural networks, but work well with 
extracting features from image data. Convolutional neural networks are capable of 
taking images as input and extracting spatial and temporal dependencies of an image 
[7] . 

Deep Learning with Reinforcement Learning 

There are difficulties reinforcement learning algorithms, though. For example, with 
the Q-learning algorithm, it must maintain a matrix that contains all of the possible 
state-action pair values. In environments with a continuous state space and/or a 
continuous action space, it becomes impossible to track the action-value for all 
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actions in all states. More specifically, this function is called the action-value function 
or Qvalue function. This function can be approximated by using deep neural 
networks. This is how the Deep-Q network (DQN) developed by DeepMind handles 
the issue of arbitrarily large state-action spaces. 

Starcraft II 

StarCraft II is a real-time strategy game (RTS) that is known for its competitive scene 
and steep learning curve. RTS’s are games in which the player manages a vast army 
of units, as opposed to a single unit. In StarCraft II, the player is responsible for 
collecting resources, creating structures, manufacturing units, attacking and 
defending structures, investing in technological advancements, and much more. The 
game is also known for its fast pace; the in-game time is sped up to 1.4 times normal 
time. This means that a minute of game time is only 42 seconds in real time. Because 
of this fast-paced and complex nature, researchers have been interested in developing 
AIs to compete against the best human Starcraft II players. 

Video games serve as fantastic environments for implementing and testing 
reinforcement learning algorithms. They allow for environments in which 
researchers have fine grained control of the environment, and relevant environment 
data is readily available. Starcraft II is no exception, and its environment is excellent 
for AI research. 

PySC2 Library 

The PySC2 library is a set of tools that is used to access the StarCraft II Machine 
Learning API built by Blizzard Entertainment. The original API is based on C++ code 
that is deeply linked within the SC2 engine itself and allows for the access of scripted 
bots, machine-learning based bots, and replay analysis within the SC2 environment. 
The role of PySC2 was to give access to this API, allowing for python based 
reinforcement learning environment. PySC2 enabled allows users to create agents in 
python that can gather observations and perform actions within the game. 

DeepMind StarCraft II Mini-games 

Within the StarCraft II environment is the ability to develop intricate custom maps 
and game modes that players can develop. This allows for the creation of minigames 
within the StarCraft II environment using the large library of units, maps, and 
functions that are provided by the game. 

There are two major benefits to using the PySC2 library: the user can access the 
current state of the Starcraft II environment and the user can choose from a list of 
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pre-built mini-games that can be played by an AI created by the user. The mini-game 
that we chose was the mineral collection game because of its fast pace, and clear goal. 

 

Figure 5: Mineral collection mini-game 

These conditions made it simple to define the reward for our AI. The Agent controls 
actors within the map to collect minerals, and it receives a score based on the number 
of minerals collected within the given time frame of one minute and thirty seconds. 
Figure 5 shows the mini-game being played by the AI during an episode. If the Agent 
collects all twenty of the generated minerals before one minute and thirty seconds 
have passed, the map resets and generates new locations for minerals to be collected. 
The minerals generated by the map are random and will change their positions after 
a reset, even if this reset happens before an episode completes. 

Methodology 

Initial Preparation 

We used the Python programming language to create our model and experiment. We 
also used the Pytorch library to create our convolutional neural networks, and to 
implement our reinforcement learning algorithms. 

Deep Neural Network Setup 

We developed a deep convolutional neural network to approximate our policy 
function. Our neural network has three hidden layers, all of which are convolutional 
layers that are batch normalized. The activation function for each of our hidden layers 
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is the ReLU activation function. The output layer is a softmax layer with 21 output 
neurons. 

REINFORCE Algorithm 

The REINFORCE algorithm is a policy gradient algorithm that increases the 
probabilities of taking actions that lead to a higher return value. Additionally, it 
decreases the probability of taking an action that leads to a lower return value until 
you arrive at the optimal policy. The REINFORCE algorithm is an on-policy algorithm, 
meaning the policy is directly evaluated and improved. This is opposed to calculating 
the optimal Q-value for every given state and then creating a policy based on these 
values. In the latter case, this would be known as off-policy learning. The algorithm 
works by first sampling trajectories by running the policy, and computing the policy 
loss by multiplying the negative log probability of taking each action in the episode 
by the return at each time step. 

System Setup 

The system that was used to run the simulations contained an Intel i7-8700k CPU and 
Nvidia GTX 1080 Ti graphics card. The use of Nvidia CUDA was an important part of 
the system set up for use with our AI. CUDA is a parallel computing library that allows 
a graphics processing unit (GPU) to be used as a general processor. This can be 
beneficial for a program that requires a large amount of algebraic and geometric 
calculations because GPUs excel at performing these types of calculations. Using the 
CUDA library, the AI was ran exclusively on the Nvidia GTX 1080 Ti graphics card, 
allowing our algebra based algorithm to compute efficiently. 

Experimental Setup 

 

Figure 6: What the Agent is ’Seeing’ 

For our experiments, we needed a way to determine how our agents should perform 
actions. To do this, we decided to use a discrete action space for our AI. The standard 
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mineral collection mini-game has 20 minerals placed randomly on the map, and the 
agent’s actions correspond to the Cartesian coordinates of the minerals with respect 
to the marines. The actions are in order from the closest mineral to the furthest 
mineral. Since the mini-game has two marines, we simplified the process by treating 
the two marines as a single unit. To compute the coordinates, we use the average 
distance between the two marines as the the starting point. We then compute the 
euclidean distance from the marines to each mineral so that we can determine the 
order of the actions. We then add an additional action that corresponds to a no 
operation action. This is to give the agent the option to not have to change where it is 
going if it sees no reason to. In all, our agent has in total 21 actions, and the output of 
our convolutional neural network is a tensor with 21 values. The values of the output 
tensor are the probabilities of taking each action. If an agent collects a mineral, that 
action is replaced with a no operation action. No operation actions are sorted at the 
bottom of the list. 

For the input of our neural network, the PySC2 library exposes feature layers to the 
user. The feature layers are preprocessed images of the mini-map and the screen. We 
use three different representations of the screen as the input to our neural network. 
The feature screens we used were the player relative, unit type, and selected screens. 
The player relative feature screen represents the alliances of the units with respect to 
the player. Green represents the player, light blue represents neutral units, and red 
represents enemies. The unit type feature screen represents the types of each unit on 
the screen. The screen selected represents the selected units and the select box the AI 
makes. Figure 6 shows a visual representation of the feature screens. 

Results 
Our results are extensive, yet preliminary. Figure 7 corresponds to the return the 
agent received after each episode. The agent ran in total for 8,000 episodes. The 
agent’s return values oscillated quite frequently. At points the model performed very 
well, but never seemed to play consistently. There are many potential reasons for this. 
First, we simply might not have trained the model enough. In the paper created by 
DeepMind on the PySC2 library, they conducted reinforcement learning experiments, 
and the number of episodes that were completed were far more than we had done. 
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Figure 7: The results of our experiments 

On the x-axis of Figure 8, the values correspond to the number of game steps as 
opposed to the number of episodes. A game step is a single action, and for the mineral 
collection mini-game, each episode has 480 game steps. If we divide the total number 
of game steps by the number of game steps per episode, we get 
episodes. In comparison, we only ran 8,000 episodes. The lack of training time did not 
allow for the model to converge to the optimal solution for the mineral collection 
mini-game. We simply did not have the resources to compute that many episodes in 
a reasonable amount of time. We ran the training session for approximately 72 hours 
to complete 8,000 episodes. Due to hardware limitations, we could not run 10,000+ 
episodes in a reasonable amount of time. 

Another weakness of our model was that it could have been more robust. A more 
robust neural network architecture would involve the use of recurrent neural 
networks (RNN). These neural networks are able to keep track of time, and they work 
well with sequences. In the DeepMind paper, they created Long-Short Term Memory 
(LSTM) recurrent neural networks. LSTM is a popular RNN architecture that is 
typically used with time series data [8]. 
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Figure 8: DeepMind’s test results [8] 

Discussion 

Our Feelings About This Project 

The reinforcement learning research project was both challenging and rewarding. 
There were many theoretical concepts that we had to first comprehend before we 
could even begin. Also, we had to learn how we could go about building an AI. We 
studied the first few chapters of Reinforcement Learning: An Introduction by Sutton 
and Barto [1] to develop a theoretical basis of reinforcement learning concepts before 
constructing our AI. Researching a framework that would work for us was also 
something we struggled with. There was very limited documentation of the PySC2 
library, making it challenging to create our AI. We had to scour through the GitHub 
repository, and dig through the source code to figure out how certain aspects of the 
library worked. Although this project was quite difficult, we are very happy we had 
the opportunity to learn more about how reinforcement learning works, and we are 
pleased to have been able to implement a deep reinforcement learning algorithm. 

Classroom Takeaway - Expansion Into Course 

This project could be modified into a curriculum for a semester long class by splitting 
up the parts of the experiment into milestones that students could reach. In the 
beginning, students could study the theoretical concepts of reinforcement learning 
while starting to develop a notion of what kind of mini-game they would implement. 
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Moving forward, they could be guided into building their first simple neural network. 
This will help to solidify the students understanding about the algorithms by 
implementing them. During this time they could familiarize themselves with the SC2 
map editor program to find out about how the internals of the provided mini-games 
function. 

Once students have established the foundation of what they need to know, they could 
be split into groups that will last for the rest of the semester. After establishing these 
groups, students would then begin to experiment with the PySC2 library. Working 
together, they could complete small assignments, such as creating their own custom 
maps, to help familiarize themselves with the library. Once the students have become 
comfortable working with the library and their groups, they would submit a proposal. 
This proposal would include what they would like their AI agent to do along with 
reasonable milestones to complete along the way. The rest of the semester would be 
a guided learning experience where the students work together in their teams while 
the professor would assist them in any serious roadblocks that they encounter. 

This idea of a guided learning experience through this course will not only help the 
students learn about the foundations of reinforcement learning algorithms, it will also 
help give them a sense of how to conduct research on their own. Naturally, the 
professor will be there to assist them, but they are handed this library to use and 
allowed to decide among themselves what they want their agent to achieve. It is 
extremely important for programmers to be able to discover new things on their own, 
and this is an excellent way to lightly guide the students into these skills. 

Conclusion 

Through employing deep reinforcement learning algorithms, we managed to 
successfully create an deep learning AI agent. Based upon other research on 
reinforcement learning agents [8], it could take thousands of more episodes before 
our AI converges towards maximum efficiency. Our model was able to take screen 
data as input, and convert that into an action. The model’s improvement didn’t 
converge, but there were several occasions where the model performed well. 
Regardless of the results, we are all appreciative of the opportunity to learn about 
deep reinforcement learning throughout the process of creating an AI. 
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