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Abstract 
Airline overbooking, a strategy used to reduce empty seats on flights, sometimes results in 
a flight that has more passengers than seats. When this occurs, airlines compensate 
passengers willing to voluntarily relinquish their seats to avoid incidents of involuntary 
denied boarding. In this work, we use a coevolutionary, multi-objective genetic algorithms to 
evolve strategies for both airlines and passengers for achieving their goals in the event of an 
overbooked flight. Each passenger evolves to decide when to accept an offer based on the 
number of volunteers needed and the current offer amount with the goal of maximizing the 
compensation received. Each airline evolves an effective sequence of offer amounts with 
the goals of eliminating involuntary denied boarding events and minimizing the incentives 
paid to passengers. We demonstrate that our approach results in reasonable strategies for 
both airlines and passengers. 
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1 Introduction 
To airlines, an empty seat represents lost revenue. Even when a flight is sold out, it can 
depart with empty seats. This is because passengers sometimes don’t show up for a flight 
for which they have purchased a ticket. To mitigate this effect, airlines carefully track the 
no-show rates for their flight. They use this information to sell tickets beyond the capacity 
of the airplane used for a flight, a practice known as overbooking. One consequence of 
overbooking is that a flight sometimes has more checked-in passengers than seats. 
When these situations arise, airlines offer compensation to entice a small number of pas- 
sengers to relinquish their seats voluntarily. These offers typically start at approximately 
$200 and increase until a sufficient number of volunteers have been found. Involuntary 
denied boarding occurs when an insufficient number of passengers volunteer to travel on a 
later flight. In these cases, some ticketed passengers are unable to travel on their scheduled 
flight. 
In April 2017, a well-publicized incident on a United Airlines flight shined a harsh light 
on involuntary denied boarding. A passenger who had already boarded flight 3411 from 
Chicago to Louisville, Kentucky, was forcibly removed from the flight and injured in the 
process. Video taken by other passengers showed a very unpleasant scene. The airline 
industry response was rapid. Major American carriers changed policies in an attempt to 
prevent similar incidents. One stated that no passenger would be removed from a flight, 
once boarded, to accommodate another passenger. Others significantly increased the max- 
imum payments gate agents are authorized to offer passengers to volunteer for later travel. 
Delta and United promised amounts of up to $10000, a substantial premium over the pre- 
vious maximum of $1350. 
While both the airline and the passengers want to avoid incidents of denied boarding, some 
of their goals are in opposition. The goals of the airline are to avoid denied boarding 
incidents (that is, to find enough volunteers) and to minimize the total payout. Neither 
goal alone is sufficient for an effective strategy. A passenger’s primary goal is to maximize 
the compensation received for relinquishing their seat. Secondarily, they may also want to 
maximize the probability that when they choose to accept an offer they actually receive that 
offer despite possible competition from other passengers. 
The surest way to avoid involuntary denied boarding is to bound the tickets sold for a flight 
by the number of seats on the aircraft. As mentioned above, no-show passengers mean that 
this would result in flights departing with empty seats and, consequently, lost revenue for 
the airlines. 
Load factor is a measure of the percentage of available seats sold. Seasonally-adjusted load 
factor is scaled to account for variations in the number of days in a month, holiday, and 
other seasonal activities that affect air travel. In January 2000, the seasonally-adjusted load 
factor for US air carrier domestic flights was 69.4%. By May 2018, that figure had risen 
to 84.3% [10]. Given this increase, accurate booking models are increasingly important. 
Thus, much research has been done on modeling airline overbooking to allow accurate 
prediction of the number of seats that can be sold for any particular flight [8, 12, 11, 13, 14, 
1, 9]. This research spans disciplines including marketing, management, and operations 
research. 
Little research has been done on the effects of denied boarding compensation. Garrow, 
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et al examine the effects of increasing denied boarding compensation [6]. They find that 
compensation is a very small piece of a complex problem, particularly in light of the fact 
that airlines factored financial losses incurred by ill-will resulting from denied boarding 
into their calculations of how much compensation to offer. 
We are unable to find previous research that uses evolutionary computation, or other al- 
gorithmic approaches, to develop the sequence of offers airlines make to passengers in 
overbooking scenarios. Thus, we believe that this work is the first attempt to evolve ef- 
fective airline strategies. Our work has limitations. We do not have access to the highly 
detailed data airlines track on a flight-by-flight basis to inform their decisions. Clearly, such 
information should be included to achieve an accurate model. However, this work serves 
as a proof of concept, demonstrating that an evolutionary approach may well aid airlines in 
determining how best to compensate passengers to avoid denied boarding. 
In addition, we evolve passengers who attempt to maximize their compensation. This pro- 
vides an adversarial but adaptive population for the airlines, helping to ensure that the 
airline strategies are not unduly influenced by assumptions about passenger behavior. 
To that end, we use a co-evolutionary, multi-objective genetic algorithm to evolve strate- 
gies for both airlines and passengers for achieving their goals in the event of an overbooked 
flight. The passengers evolve to decide when to accept an offer based on the number of 
volunteers needed and the current offer amount. The airline evolves an effective sequence 
of offer amounts to avoid involuntary denied boardings and minimize the amount of com- 
pensation paid. 

 
2 An Overview of Genetic Algorithms 
Optimization problems require minimizing or maximizing one or more quantities to solve 
a problem. Examples include visiting some number of destinations while traveling a mini- 
mum distance (the well-known traveling salesman problem) and filling a truck with as many 
packages as possible while obeying a weight constraint. Because many such problems are 
computationally intractable, the best algorithms we have provide approximate, rather than 
optimal, solutions. Such algorithms are known as approximation algorithms. Genetic algo- 
rithms (GAs) are approximation algorithms that use the principles of Darwinian evolution. 
A GA begins with a population of initially random solutions to the problem and evolves 
them through some number of generations. Let n represent the number of members in  
the population. While there are many variations, the general template for a generation in  
a GA is this: The population produces n children, new solutions obtained by combining 
and mutating existing solutions. The children are evaluated and combined with the parents 
resulting in a population of size 2n. The “best” n of the 2n members are selected to survive 
and the remaining members are discarded. Over a number of generations, this results in 
iterative improvement of the solutions. 
Each member of the population is represented by a genome, an encoding of the solution. 
The information stored in the chromosome is entirely domain-dependent. For example, in 
the traveling salesman problem referenced above, a commonly used genome is an ordered 
list of the destinations. In a game theoretic problem such as the iterated prisoner’s dilemma, 
it might be a bit string representing the decisions for a player to make in each of some 
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number of game states. 
Evolution occurs through some combination of three genetic operators, each with many 
variations. These are crossover, which is analogous to reproduction; mutation, which is 
much the same as in biological evolution; and selection, which corresponds to survival of 
the fittest. In crossover, is a randomize process in which two parents are recombined to 
create two children. Each child receives some of its genome from each parent. Random 
mutations are applied to introduce additional variation in the gene pool. Selection typically 
involves choosing the best members of the population to survive into the next generation. 
Choosing the best members requires a method for ranking individuals. This is done via a 
fitness function. In its simplest form, a fitness function consists of the value of the quantity 
being maximized or minimized. Considering once again the traveling salesman problem, 
this is the path length. Individuals with shorter paths are considered more fit than those 
with longer paths. It is worth noting that due to local minima this is not always the case. 
In many problems, there are multiple optimization objectives. In such cases, fitness is a 
more complex concept. Consider the problem of navigating an environment that includes 
obstacles. The goal is to move from a starting location to a destination, minimizing the 
distance traveled and the number of obstacles struck. We know that the shortest distance is 
the straight line from source to destination, however, that path is likely to strike obstacles. 
To decrease the number of obstacles struck, we must necessarily increase the distance trav- 
eled. Thus, we cannot minimize both objectives simultaneously, making it difficult to rank 
the individuals. 
One way to handle this is known as Pareto optimization, named for Italian economist Vil- 
fredo Pareto. It is based on domination, the idea that some solutions are objectively better 
than others. Let O be the set of optimization objectives. One candidate solution X dom- 
inates another candidate solution Y  if   o   O, X[o]    Y [o]    o s.t. X[o] < Y [o] 
[?]. A solution that cannot be dominated is known as Pareto optimal. The set of all Pareto 
optimal solutions defines the Pareto front. Since it is likely that the algorithm will not find 
a Pareto optimal solution, each candidate solution is assigned to one of some number of 
domination fronts in which each candidate in front i is dominated by at least one candidate 
in front i 1. Thus, the fronts impose a partial order on the candidates. Front 0 contains all 
non-dominated candidates. In a search for an optimal solution, front 0 constitutes the best 
found approximation of the Pareto front. 
Central to making a GA effective is finding a genome that encodes a solution and allows 
for efficient evolution. There are two aspects to a representation: the information being 
stored in the genome and the encoding used to store it. The information encoded in the 
chromosome is highly dependent on the problem domain. As we explain in Section 3, our 
passengers and airlines have very different genomes because the results needed for each 
are quite distinct. Choosing an encoding involves multiple factors including the problem 
domain and the way in which the values need to evolve. For example, when using binary 
encodings, mutations often involve flipping bits. However, flipping a high order bit can 
cause a very large change in the value of the quantity represented by the bit string. In some 
domains, this is not desirable. 
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3 Our Algorithm 

Figure 1: Figure Caption. 

 

The problem we address in this work includes two populations: passengers and airlines. 
Coevolutionary genetic algorithms, first described in seminal work by Hillis [7], maintain 
multiple populations that are evolved in parallel. In a cooperative coevolutionary algo- 
rithm, multiple populations work together to solve a problem. In such a case, individuals 
are rewarded for working well with member of the other population. In this work, we 
implement a competitive coevolutionary algorithm. In this model, members in each popu- 
lation evolve at the expense of members in the other population. A gain for one is a loss for 
the other. In our problem, the passengers attempt to maximize the incentive received while 
airlines attempt to minimize payments made. Thus, each population is working against a 
moving target. The amounts of offers made to the passengers change from one generation 
to the next as do the behaviors of the passengers. 

 
3.1 Airlines and Passengers 
The passenger population is evolved using a single fitness objective: maximizing the incen- 
tives received. The genome consists of 256 bits. Each bit represents a decision: 0 indicates 
that the passenger will not accept an offer while 1 indicates that the will attempt to accept 
the offer (they may be unsuccessful as the number of offers is limited). The bit used to 
make a decision is determined by an index constructed from the offer amount and the num- 
ber of offers being made (the number of volunteers needed by the airline). We use 5 bits to 
represent the offer amount, representing 32 buckets each with a range of $200. A further 
3 bits represent the number of offers, representing decimal values from 0 to 7. Appending 
these two bit strings results in 8 bits. Converted to decimal, this gives indices from 0 to 
255. 
Two-point crossover is used for the passenger population. This method randomly chooses 
two indices, i, j in the parent genomes. Child 1 consists of genes 0..i    1 and j..255 from 
parent 1 and i..j 1 from parent 2. Child2 is the symmetric case. Figure 1 illustrates 
this method. The mutation operator flips each bit in the genome with probability 1 for 
an expectation of two bits flipped per genome. Because passengers are evaluated using a 
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single objective, selection simply chooses the passengers with the highest average incentive 
received. 
The airline population has two fitness criteria: the payments made and the number of invol- 
untary denied boardings. Both are minimized. Mirroring reality, denied boardings occur 
when the number of volunteering passengers is less than the number of seats needed by the 
airline. The airline genome consists of a sequence of 8 real-valued numbers. It represents 
the sequence of offers the airline will make to entice passengers to volunteer. Offers begin 
with the amount in gene 0 and progress through gene 7, as needed, to fund sufficient vol- 
unteers. Each gene value is limited to a predefined range. The ranges are shown in Table 1. 
The values were chosen with large overlap in the ranges for each round to allow airlines 
flexibility in evolution. 

 
Gene Min Value Max Value 

0 200 1200 
1 400 1600 
2 600 2400 
3 1000 3000 
4 1600 4000 
5 2400 4800 
6 3600 5400 
7 4400 6400 

 
Table 1: Allowable ranges for genes in the airline genome. Each gene represents an offer 
the airline will make. 

The airline is evolved using simulated binary crossover [2]. This provides a search power 
when using a real-valued genome similar to that of one-point crossover when using a bi- 
nary genome. The crossover operator is bounded to respect the ranges for each gene in 
the genome. Parameter η and the gene values of the parents determine each gene value for 
a child, within the defined ranges.  Mutation is bounded polynomial in which each gene  
is altered by an amount proportional to the size of the range divided by parameter η [3]. 
Because the airlines use two optimization objectives, selection is via a form of Pareto opti- 
mization (see Section 2) due to Deb, et al and their seminal NSGA-II algorithm [4]. 

 
3.2 A Generation 
The algorithm runs for a predetermined number of generations m. Each generation begins 
with a population of na airlines and np passengers. To create children, individuals within 
a population are paired and the crossover operator is applied with probability xo pa for 
the airlines and xo pp for the passengers. When a pair undergoes crossover, two children 
are produced. If crossover does not occur for a pair, each member is copied and the copies 
added to the children. After crossover, each child undergoes mutation as described above 
for both populations. The children are then combined with the parents to create airline and 
passenger populations with size 2na and 2np, respectively. 
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Figure 2: Depiction of the two-point crossover operator used for the passenger population. 
 
With the extended populations, the algorithm simulates the overbooking procedure. This 
is done for each airline against the population of passengers. For each flight, the degree of 
overbooking is between two and seven seats, determined uniformly at random. To increase 
the opportunities of each passenger to accept an offer, the passenger population is divided 
into disjoint subsets with discrete sizes in [10, 20, 50, 100]. A flight is simulated for each 
subset of passengers. 
During a simulated flight, the order of the passenger subset is randomized. Then each pas- 
senger is given an opportunity to accept an offer until all offers are accepted. As described 
in Section 3.1, a passenger’s decision is determined by indexing into its genome using the 
current offer amount and the number of offers remaining. To introduce a degree of noise, 
or variability, a passenger will decline an offer with probability 0.05 even when its genome 
indicates accept. Within a generation, each passenger participates in k flights against each 
airline. 
After all flights are complete, the populations are evaluated according to their respective 
optimization objectives based only on flights during the current generation. This ensures 
that individuals are evaluated according to their current state rather than continuing to con- 
sider the performance of their less evolved selves. With only one objective, the passenger 
population is sorted in decreasing order. The airline population is sorted using the non- 
dominated sorting algorithm outlined in Section 2. The top na airlines and top np passen- 
gers are retained and constitute the parents in the next generation. The remaining members 
are discarded. The algorithm is depicted in Figure 2. 
Our algorithm is implemented in Python using the Distributed Evolutionary Algorithm   
in Python (DEAP) library [5]. DEAP includes implementations of common crossover, 
mutation, and selection operators. 

 
4 Experimental Design 
One of the hallmarks of genetic algorithms is the large number of parameters. Table 2 
shows the parameters in this work and the values used. We include results for eight runs. 
Each run uses one of the two values for number of generations with one of the four values 
for the crossover and mutation parameter η. Runs 0, 2, 4, 6 evolve for 50 generations while 
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runs 1, 3, 5, 7 evolve for 100 generations. For runs 0 and 1, η = 7; for runs 2 and 3, η = 3; 
for runs 4 and 5, η = 10; and for runs 6 and 7, η = 5. 
Each run consists of 18 trials using the same parameter values. During a trial, evolution 
occurs for a number of generations, determined by the parameter value, to train the popu- 
lations followed by a testing phase that consists of 2500 flights. The populations are then 
evaluated and sorted. 

 
Parameter Values 
Airline crossover prob 0.9 
Airline crossover η [3, 5, 7, 10] 
Passenger crossover prob 0.9 
Airline mutation η [3, 5, 7, 10] 
Passenger mutation prob   2.0  

genome size 
Passenger random reject prob 0.05 
Airline population size 50 
Passenger population size 50 
Passenger random subpopulation size [10, 20, 50, 100] 
Flights per generation 100 
Generations [50, 100] 

 
Table 2: Parameter values used in our experiments. 

 
 
5 Results 
The baseline for evolved passengers is a population that evolved against a single, static 
airline strategy. That strategy consists of this sequence of payments: [200, 400, 750, 1200, 
2000, 3000, 4800, 6400]. Not surprisingly, passenger results when evolved against this 
fixes strategy are better than those achieved against an evolving airline population. This is 
due to the passengers’ ability to develop strategies while the airlines are unable to counter 
those strategies through their own evolution. Figure 3 illustrates the effect of this advantage. 
Allowing the airlines to “fight back,” so to speak, makes a significant difference. 
We do not have an analogous baseline for airlines. The reason is that while it is relatively 
straightforward to devise a reasonable static airline strategy, it is much more difficult to 
create such a strategy for a passenger against which to evolve the airlines. Thus, airlines 
are evolved only in competition with a population of evolving passengers. 
We find that more generations during evolution favors the airlines. This is likely due to 
the significantly smaller airline genome. Recall that the airline genome consists of 8 real- 
valued numbers, each representing an incentive value, while the passenger genome consists 
of 256 bits, each representing a decision of accept or decline. We believe that with only 8 
genes, airlines are able to more quickly converge on good genome values. 
Figure 4 shows passenger and airline incentive values for all runs. Within a run, data for 
the 18 trials are averaged. While there is little difference between Run 0 (50 generations) 
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Figure 3: Results for passenger-only evolution against a fixed airline strategy vs coevolu- 
tion. Each bar represents the mean of 18 trials. The 8 coevolutionary runs represent the 
various parameter settings described in Section 4. 

 
and Run 1 (100 generations), the other three pairs of runs show significant benefit for the 
airlines in the 100 generation cases. We also note that the mean and median values are quite 
similar, suggesting that the effects of outliers is small. In addition, it appears that there is 
not a clear best value for η. The largest values, 7 and 10, appear best for 50 generations 
but 5 is best for 100 generations. We can conclude only that this value is not of primary 
importance. 
Figures 5 and 6 show all 18 trials for passengers and airlines, respectively, for Run 4. All 
trials within a run are performed with the same parameter values. Of course, higher values 
are better for the passengers while lower values benefit the airlines. Run 4 was chosen 
arbitrarily as representative of all runs, as space does not allow showing all runs. 
The range constraints placed on values in the airline genome are broad and overlapping. 
Despite this we find that airlines evolve sequences of offers that are sensible in nearly all 
cases. That is, the values are monotonically increasing. It makes little sense for incentive 
offers to decrease during the process of finding volunteers. Though our constraints do  
not enforce this condition, evolution selects out members that perform poorly, as non- 
increasing sequences would. We note that most instances of decreasing values occur near 
the end of the genome. This is due to the fact that most offers are accepted in earlier rounds. 
Thus, values later in the sequence have less impact on the fitness of an individual because 
they are not often used – any penalty incurred from their use is not incurred frequently. 
Table 3 show a selection of evolved genomes from one trial. They include the best and 
worst performing airlines. 

 
6 Conclusions and Future Work 
In this work, we use genetic algorithms to evolve strategies for passengers and airlines for 
the problem of using incentives to avoid involuntary denied boarding due to overbooking. 
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Figure 4: Passenger and airline results for all coevolutionary runs. In most cases, we see 
benefit for the airlines when evolution occurs for 100 generations (runs 1, 3, 5, 7) vs for 50 
generations (runs 0, 2, 4, 6). 

 
 
 
 
 
 
 
 
 

 

Figure 5: Passenger results for one coevolutionary run consisting of 18 trials. 
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Figure 6: Airline results for one coevolutionary run consisting of 18 trials. 
 

Avg Incentive Genome 
366.26 [200, 410, 717, 1039, 2516, 3178, 3993, 5192] 
384.13 [200, 402, 1044, 1208, 2761, 4422, 3672, 5259] 
391.90 [200, 532, 873, 1061, 2012, 3652, 4478, 5343] 
424.44 [200, 685, 944, 1301, 1658, 4564, 5239, 5207] 
499.36 [200, 400, 1554, 2521, 2678, 4361, 3617, 5227] 

 
Table 3: A mix of airline genomes from one trial. 

 
Our algorithms use competitive coevolution, in which each population evolves against the 
other. This work is a proof of concept, in which we demonstrate that it is possible to evolve 
such strategies. However, to be truly useful would require additional domain-specific data, 
such as typical degree of overbooking, number of resultant denied boarding events, and 
average incentives paid by the airlines. Ideally, this information would be used on a per- 
flight basis to develop strategies specific to each flight, including factors such as day of the 
week and time of year. Unfortunately, this information is difficult to find, at best. Airlines 
are required to report some information to the Department of Transportation but not all that 
is needed. 
There is considerable opportunity for continued experimentation. There are many param- 
eters that might be further tuned. For example, we experimented with several values for η 
but within a small range. Perhaps larger values would produce different results. In addition, 
it might be beneficial to create a different representation for the airline genome. A larger 
number of genes might help ensure greater diversity in the population, thus helping avoid 
early convergence. 
It is also worth noting that our experiments are predicated on the model commonly used by 
airlines for handling overbooking: incentive offers made to passengers in real-time. Per- 
haps an entirely different model would be better for one or both populations. For example, 
passengers could place bids in advance of their flight, possibly even at the time of booking. 
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Their bid would represent the incentive they would be willing to accept in the event that 
volunteers are needed. Some airlines currently use a similar system for upgrades. At the 
time of booking, passengers can place a bid – the price they are willing to pay – to up- 
grade to a higher class of service. This can be mutually beneficial. It allows passengers the 
chance of getting an inexpensive upgrade and it helps the airline avoid unclaimed upgrade 
opportunities that occur when insufficiently many passengers are willing to pay the fixed 
upgrade fee. 
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