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Abstract 
 

Although long used for positioning mobile devices, GPS has limitations in indoor environments due to 
blocked high-frequency signals and attenuation effects. This can lead to false readings. In this study, a low-
cost, GPS-independent model of a neural network-assisted visual tracking system is proposed. The ArUco 
code is used to provide reference coordinates for the system and a neural network is used to optimize the 
location detection rate. To produce smooth tracking results, an inertial measurement unit (IMU) and vision-
based position estimation are integrated. The proposed system significantly improves the accuracy, 
interference immunity, and real-time performance of the indoor tracking system. The instantiation of this 
system on a smartphone platform will likely enable a new cost-effective approach to indoor tracking. In the 
test phase, the proposed system obtained a tracking accuracy of 0.5 m without any help from expensive depth 
cameras or 3D LIDAR. 
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1. INTRODUCTION 
 

To cope with the deviation of GPS readings for indoor positioning, a range of smart terminal-based indoor 
positioning technologies such as Wi-Fi, Bluetooth, Radio Frequency Identification (RFID) and Ultra-Wide 
Wave (UWB) technologies have emerged. wi-fi positioning systems (WPS) use the characteristics of nearby 
Wi-Fi hotspots and other wireless access points to discover the location of devices [1] [2]. 

 

Existing indoor localization and tracking systems either require prior knowledge of the environment, such 
as building floor plans, locations of Wi-Fi access points, Bluetooth beacons, and pre-established RF 
fingerprint databases, or expensive on-board equipment, such as 3D LiDAR, depth cameras, or 
omnidirectional cameras [3]. For example, Google Indoor Maps [4] can triangulate the approximate location 
of a user in an indoor mall (where the user is standing) using nearby WIFI points, user device Bluetooth, 
and the user device's built-in GPS. However, in practice, it is challenging to obtain comprehensive 
infrastructure information without infringing on the private rights of the user. Moreover, for existing 
computer vision techniques, the vision-only localization approach has extensive image processing, resulting 
in poor real-time performance [5] [6]. This approach cannot work in relatively poor lighting conditions. To 
address the problems of traditional visual localization algorithms such as poor anti-interference capability 
and limited real-time performance, we propose a deep learning-based visual localization method, leading to 
the design of an indoor localization system based on neural networks and sensor fusion. We improve the 
accuracy of visual localization by using neural network-based object detection and make the system efficient 
with real-time feedback results. 

 

Vision-based indoor localization is used to extract information about the three-dimensional (3D) world from 
the two-dimensional (2D) images captured by a camera [7]. Discovering the correspondence between 3D 
points in the real-world environment and their 2D image projections is the most critical and complex step in 
this process. In our project, we use the ArUco code to help in the localization. The advantage of this marker 
is that a single marker provides enough correspondence information to calculate the camera pose. In addition, 
the internal binary encoding of the ArUco code allows the marker to maintain specific stability in terms of 
checks and corrections. We use neural networks to improve the accuracy of detecting markers under complex 
conditions such as fast motion and light changes. 

 

In the process of detecting markers, we may encounter situations where the marker cannot be captured due 
to the limited view of the camera. The cell phone sensor has a relatively high acquisition frequency, and it 
can be used to fill this gap. On top of this, we also introduce Kalman filtering to correct the accumulation of 
sensor errors. The whole localization process starts by detecting the markers that appear in each frame of 
the video and the information obtained is the ID of the marker and the 2D coordinates of each of its corners. 
The 3D coordinates of the camera are obtained by solving the PnP (Perspective-n-Point) problem. At the 
same time, the sensors are working. The fusion of the accelerometer and gyroscope also allows for obtaining 
the current position. Therefore, this result will be used to fill the gaps where no markers are detected. Finally, 
based on the computed 3D coordinates of the device, the trajectory of the device can be plotted and compared 
with other systems. 
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2. METHODOLOGY 
 
    2.1. Overview 

 
The goal of this project is to locate and track a mobile device and plot the 3D trajectory of the mobile device. 
The inputs to the system are video frames taken by the mobile device, measurements from inertial sensors, 
gyroscopes and magnetometers, and the outputs are its 3D motion trajectory. To accomplish the goal of this 
project, we divided the system into five modules. The whole process of this system is shown in Figure 1. 
The whole system is divided into six modules. The first module is the camera calibration. The results 
obtained from this module are the intrinsic and extrinsic parameters of the camera. This result will be used 
as input for the second module. The second module is the detection of the marker using YOLO. The result 
of the detection is the two-dimensional coordinates of the four corners of the marker and its unique ID. when 
the system does not detect the marker, it goes to the third module, which is the IMU-based localization. This 
module takes the values obtained from the IMU and fuses them to calculate the displacement of the device. 
The results obtained from this step are used as input to the Kalman filter in the fourth module to correct the 
results of the sensor fusion calculation. When the system clearly detects the marker, it proceeds to the fifth 
module, which uses the PnP algorithm to estimate the pose of the device. The main task of the last module 
is to present the results of the previous calculations and to plot the trajectory for comparison. 

 
Fig. 1. The entire process of the system 

2.2. Camera Calibration 
 

The first module is the camera calibration. In machine vision applications, a geometric model of camera 
imaging is required to determine the 3D geometric position of a point on the surface of a spatial object and 
its corresponding point in the image. These geometric model parameters are the camera parameters. In most 
conditions, these parameters must be obtained through experiments and calculations, and this process of 
solving the parameters (intrinsic, extrinsic, and distortion parameters) is called camera calibration [8]. 
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The first step in camera calibration requires converting the world coordinate system to the camera coordinate 
system. The world coordinate system (XW,YW,ZW), also known as the measurement coordinate system, is a 
three-dimensional right-angle coordinate system in which the spatial position of the camera and the object 
to be measured can be described. The position of the world coordinate system can be freely determined 
according to the actual situation. The camera coordinate system (XC,YC,ZC), also a three-dimensional right-
angle coordinate system, the origin is located at the optical center of the lens, x and y axes are parallel to the 
two sides of the phase plane, the z-axis for the lens optical axis, and perpendicular to the image plane. The 
conversion process is shown in Equation (1). 

 

             (1) 

 

where R is a 3×3 rotation matrix, t is a 3×1 translation vector, 
(XC,YC,ZC)T and (XW,YW,ZW)T are the homogeneous coordinates of the camera coordinate system and world 
coordinate system, respectively. 

 
Fig. 2. Pixel coordinate and image coordinate 

The next step is the conversion of pixel coordinates and image coordinates. As shown in Figure 2, the pixel 
coordinate system uov is a two-dimensional right-angle coordinate system that reflects pixel arrangement in 
the camera chip. The origin o is in the upper left corner of the image, and the u and v axes are parallel to the 
two sides of the image plane, respectively. The units of the axes in the pixel coordinate system are pixels. 
The pixel coordinate system is not conducive to coordinate transformation, so it is necessary to establish the 
image coordinate system XOY. The unit of its coordinate axis is usually millimeters (mm). The origin is the 
intersection of the camera's optical axis and the phase plane (called the principal point), which is the center 
of the image. X-axis and Y-axis are parallel to the u-axis and v-axis, respectively. Therefore, the two 
coordinate systems are translational, i.e., they can be obtained by translation. This conversion can be done 
by Equation (2). 

 

         (2) 

where, dX, dY are the physical dimensions of the pixel in the X and Y-axis directions, respectively. u0 and 
v0 are the coordinates of the principal point. 
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              Fig. 3. Pinhole imaging principle 

Figure 3 illustrates the relationship between any point P in space and its image point p. The line between P 
and the camera optical center o is oP, and the intersection of oP and the image plane p is the projection of 
the point P in space on the image plane. This process is perspective projection, as represented by the 
following matrix: 
 

                                                                         (3) 
where s is the scale factor (s is not zero), and f is the effective focal length (the distance from the optical 
center to the image plane). (x, y, z,1)T is the homogeneous coordinates of the spatial point P in the camera 
coordinate system xoy, and (X, Y,1)T is the homogeneous coordinates of the image point p in the image 
coordinate system XOY. Combining Equations (1) to (3) we can get the intrinsic and extrinsic parameters of 
the camera. 
  

                    (4) 

where, ax = f/dX, ay = f/dY, are called the scale factors of the u and v axes. M1 and M2 are the intrinsic and 
extrinsic parameters of the camera, respectively. 

 

 

2.3. YOLO Detection 
 

The second module uses YOLO to detect markers. As we mentioned earlier, YOLO is a single-stage detector, 
which is fast and ideal for applications in real-time systems. The following will describe how YOLOV3 is 
applied to this project. 
 
When a frame is passed into YOLOV3, this image is first resized to 416x416 grids, and a gray bar is added 
around the image to prevent distortion. YOLOV3 then splits the images into 13x13, 26x26, and 52x52 grids, 
which are used to detect large, medium, and small objects, respectively. Each grid point is responsible for 
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detecting its lower right corner area, and if the object’s center point falls in a grid, then the object’s position 
will be determined by that grid point. In the example given in Figure 4, an image containing the object to be 
detected, i.e., the ArUco marker, is input into the YOLOV3 neural network and then surrounded by gray 
bars. In this image, the ArUco belongs to a large object, so a 13×13 grid image will detect the result. For the 
training part of YOLO, we choose to train on Google Colab.  
 
 

2.4. Camera Pose Estimation 
 

2.4.1. Principle&Conditions 
 

The two-dimensional coordinates obtained from the detection of the markers will be used for the estimation 
of the camera pose. The camera poses estimation is mainly based on the PnP (Perspective-n-point) algorithm. 
General conditions for the PnP problem [9]: 

• Coordinates of the n 3D reference points in the world coordinate system. 
• Corresponding to these n 3D points, the coordinates of the 2D reference point are projected on the image. 
• The intrinsic parameters of the Camera are denoted by M1. 

Based on our experimental results (for details, see Section IV), the EPnP algorithm is of the highest accuracy 
among the existing PnP algorithms. 
 
Most non-iterative PnP algorithms will first solve for the depth of the feature point to obtain its 3D 
coordinates of it in the camera coordinate system. The EPnP algorithm, on the other hand, represents the 3D 
coordinates in the world coordinate system as a weighted sum of a set of virtual control points. For the 
general case, the EPnP algorithm requires the number of control points to be four, and these four control 
points cannot be coplanar. Because the camera’s extrinsic parameters are unknown, the coordinates of these 
four control points under the camera reference coordinate system are unknown. Furthermore, if we can solve 
the coordinates of these four control points under the camera reference coordinate system, we can calculate 
the camera’s pose [10]. 

 
 

2.4.2. Control Points and Barycentric Coordinates 
 

Using the EPnP algorithm as a basis, the coordinates of the control points and are represented. This can help 
us to estimate homogeneous barycentric coordinates. Further, we can calculate barycentric coordinates from 
isometric coordinates. The positions of these points can help us to derive the camera angle and thus further 
estimate the camera pose. 
In this paper, the superscripts w and c are used to denote coordinates in the world and camera coordinate 
systems, respectively. Then, the coordinates of the 3D reference points in the real-world frame are pwi ,i = 
1,...,n, the coordinates in the camera frame are pci,i = 1,...,n. The four control points in the world coordinate 
system are cwj ,j = 1,...,4, the coordinates in the camera reference coordinate system are ccj,j = 1,...,4. 
 

       (5) 
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 [pWi T1]T and [cWj T1]T are both isometric coordinates. Thus, we also get barycentric coordinates computed 
as follows: (See Appendix for detailed derivation) 

                 (6) 

 

 2.4.3. Selection of Control Points 
 
 A specific method for determining the control points is given in here. The set of 3D reference points is 

PiW,i = 1,...,n and the barycentric coordinates of the 3D reference points are chosen as the first control point: 

                    (7)                                           (8) 

Donating the characteristic value of ATA as λC,i,i=1,2,3, the corresponding feature vector is vc,i,i=1,2,3. Thus, the 
remaining three control points can then be determined by the following formula: 

 (9)   

 

2.4.4. Solve for Coordinates of the Control Point in Camera Coordinates: 

 
 ui,i = 1,...,n is the 2D projection of the reference point pi,i = 1,...,n, then, 

       (10) 
Substitute cCj = [xCj ,yjC,zjC]T into the above equation and write K in the form of focal length fu,fv and optical 
center (uc,vc), then, 

            (11) 
Two linear equations can be obtained from Equation 11: 

 

 
(12) 

 

                                 
(13) 

Concatenating all n reference points, we can obtain a linear system of equations: 
                     Mx = 0                          (14) 

where M is a 2n × 12 matrix, x , x is the coordinate of the control point in the camera 
coordinate system, which is a 12×1 vector and x is in the right null space of M, or x ∈ ker(M). Hence, 
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                                          (15) 
In the equation above, vi is the N eigenvector corresponding to the N null eigenvalues of M. For the i-th 
control point: 

 

                                          (16) 
where vk is i-th 3×1 sub-vector of eigenvector vk. Then we can obtain vi by computing the eigenvectors of 
MTM. 

The next step is to calculate βi,i=1,...,N. Because the extrinsic parameters of the camera describe only 
coordinate transformations and do not change the distance between control points, thus: 

 

                            (17)                                (18) 
 
This is a linear equation for βij,i,j=1,...,N. In EPnP algorithm 
[14], four cases N = 1,2,3,4 is discussed. When N takes different values, the number of unknowns of the 
linear equation is: 

• N = 1, the unknown number is 1 • N = 2, the unknown number is 3 
• N = 3, the unknown number is 6 
• N = 4, the unknown number is 10 

When N = 4, the number of equations is 6 and the number of unknowns is more than the number of equations. 
By commutativity of the multiplication, we have 

                                  βabβcd = βaβbβcβd = βa0b0βc0d0           (19) 
where {a0,b0,c0,d0} represents any permutation of the integers {a,b,c,d}. Then we can reduce the number of 
unknowns. For example, if we solve for β11,β12,β13, then we get β23 = . 
 
 
2.4.5. Gauss-Newton Optimization 

 
 The objective function of the optimization is: 

 

(20) 

 

2.4.6. Calculating the Camera’s Pose 

The calculation of the pose of the camera in the EPnP algorithm is as follows. 
1) Calculate the coordinates of the control point in the camera reference coordinate system. 

                                   N 
   c           (21) 
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                                                                     j=1 

2) Calculate the coordinates of the 3D reference point in the camera reference coordinate system. 
 

(22) 
3) Calculate the barycentric coordinates pw0 of pwi ,i = 1,...,n and matrix A: 

 

                                (23)，                   (24) 
                                                    

4) Calculate the barycentric coordinates pc0 of pci,i = 1,...,n and matrix B: 
 

         (25)，                  (26) 
 

                                        
5) Calculate H: 

         H = BTA                     (27) 

6) Calculating the singular value decomposition (SVD) of H: 
                                                        H = U XV T                                        (28) 

7) Calculate the rotation R in the pose: 

R = UV T (29) 

8) Calculate the translation t in the pose: 

t Rpw0 (30) 

l represents the camera’s position in the real-world coordinate system: 
 l = −R−1t       (31) 

 
 
 

2.5. Sensor Fusion 
 

2.5.1. Role of IMU in Our System 
 
The third module is the IMU-based localization method. This method is used as a replacement when visual 
localization is not available. As can be seen in Figure 1, when the marker is not detected, the system uses 
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the IMU measurements to calculate the 3D coordinates of the mobile device. The sensors used in this system 
are mainly an accelerometer, gyroscope, and magnetometer, all of which are currently equipped in 
smartphones. Before we can use the sensor for localization, we need to convert the phone’s coordinate 
system. 
 

 
2.5.2. Coordinate System Conversion 

 
 

 
Fig. 4. Change in sensor values before(orange) and after(green) coordinate system conversion 

 
The acceleration sensor of an Android phone refers to its coordinate system when measuring acceleration. 
Therefore, we need to convert the phone’s coordinate system to an inertial, non-rotating coordinate system, 
which is the Earth coordinate system. This conversion will make it possible to hold the Android phone in 
any orientation and measure the correct acceleration vectors to calculate the phone’s trajectory in the earth 
coordinate system. The transformation from the Phone coordinate to Earth’s transformation [11] is done 
with formula (32) as shown below 
 

(32) 

Where [X, Y, Z] are the phone’s coordinate system linear accelerations, and Rz,Ry,Rx are the rotation matrices 
for each axis in order to rotate the [X, Y, Z] over to earth’s [x,y,x] axes. The Euler angles (ψ,θ,φ) correspond 
to the angles about the pitch, roll, and yaw. The difference between the acceleration in the earth coordinate 
system (The green line) and the Android phone coordinate system (The gray line) can be seen in Figure 4. 
The vertical coordinate in the figure represents the value of the sensor, and the horizontal coordinate 
represents the sampling times (we used a sampling rate of 100 Hz). After the conversion, the Z-axis’s gravity 
stays near 9.8 meters per second, while the gravity in the X-axis and Y-axis stays near 0 meters per second. 
This result is the same as what we know as common sense. 
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2.5.3. Displacement Estimation 
 
The last step of the sensor module is to use the acceleration to calculate the displacement and thus estimate 
the distance. Acceleration is the rate of change of an object’s velocity. At the same time, velocity is the rate 
of change in the position of the same object. In other words, velocity is the derivative of position, and 
acceleration is the derivative of velocity. Therefore, the following equation is available, (See Appendix for 
derivation) 

                            (33) 

A similar expression for displacement in the y-axis and z-axis. 
 

 

2.6. Kalman Filter Correction 
 
After the initial value is given by the IMU, the error of the sensor itself will accumulate in the continuous 
optimization. The role of Kalman filtering here is to correct this error using linear iterations. Kalman filtering 
[12] is mainly divided into two steps, prediction, and correction. Prediction is the estimation of the current 
state based on the state of the previous moment, and correction is the integrated analysis based on the 
observation of the current state and the estimation of the previous moment to estimate the system’s optimal 
state value. Then the process is repeated the next moment. The Kalman filter iterates continuously, it does 
not require many-particle state inputs, only process quantities, so it is fast and well-suited for state estimation 
of linear systems. Applying Kalman filtering to this project uses the position information obtained from 
vision-based localization to update the position information obtained from sensor-based localization.  

 
 
3. SYSTEM TESTING EXPERIMENT 

 

3.1. Design and Preparation 
 

To demonstrate that our proposed method is superior to both sensor-based localization only and vision-
based localization only, we first tested the effect of applying only one of these methods for localization and 
tracking. Lastly, we tested our complete system, i.e., applying the IMU to support visual localization. 

Our experimental setup is as follows: 
• Location: The laboratory in the Prairie Springs Science Center 
• Device: Nokia 7.2 
• Measuring tool: Tape measure 
• Conditions: Sufficient and insufficient light; shade and no shade on markers 

We choose a point in the lab as the origin of the world coordinates, and then affix ArUco markers at different 
heights 
and on different surfaces. Each marker’s location information was recorded to observe the difference 
between the system test results and the actual data results. We take the center point of the first marker as the 
origin of the world coordinate system.  
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In our indoor localization and tracking experiment, fifteen trails are conducted. Figure 5 is the actual 3D 
moving trajectory. The actual path shows the route of our experiment. The true path contains two corners, 
as well as a movement in the vertical direction. The maximum distance of motion in the x-axis direction 
reached 7 meters, and the maximum length of motion in the z-axis direction was 10 meters. 

 

  3.2. Testing of IMU-based Indoor Tracking & Vision-based Tracking 

Fig. 5(left). Comparison of real trajectory and trajectory obtained by sensor fusion-based method 
Fig. 6(right). Comparison of real trajectory and trajectory obtained by vision fusion-based method 

 

We first conducted 15 experiments on the IMU-based indoor localization method to evaluate its 
effectiveness of the method. Figure 5 shows the results of the sensor fusion-based method through 15 
experiments. As can be seen from the figure, the sensor-based method, which is also known as the IMU-
based method, has a significant drift in obtaining motion trajectories. The reason why the IMU-based method 
has such a large error is that the interference of the gravitational acceleration in the vertical direction cannot 
be eliminated and there are residuals. In addition, the double integration of acceleration leads to the 
accumulation of errors. Another reason is the drift of the sensor during the measurement. Specifically, the 
reading of the inertial sensor is not zero when a moving device goes from rest to motion and back to rest. 
The second part of the experiment is for the vision-based localization method. Again, this part of the 
experiment was repeated fifteen times. Figure 6 shows the comparison between the trajectory obtained by 
the vision-based localization method and the real trajectory. It can be seen from the figure that the vision-
based approach provides trajectories that are not smooth because it calculates the absolute position of the 
mobile device. This is caused by the fact that the vision-based localization method relies on markers as 
reference positions. When no marker is captured in FoV, the pose, and position of the camera cannot be 
estimated. In this case, there will be a gap in the trajectory, and the localization will continue once at least 
one marker is detected. As a result, the estimated motion trajectory will suddenly move from the previous 
position to the current one. 
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3.3. Testing of Our Optimized Method 

 

Fig. 7. Comparison of real trajectory and trajectory obtained by our system 

The third part of the experiment is to evaluate our proposed method and test the reliability and 
effectiveness of our system. The experiment has also been repeated 15 times. Figure 7 points out that the 
obtained trajectories have no big jumps, which means that sensor-based localization successfully fills this 
gap when vision-based localization cannot be used. This largely indicates that this method combines the 
advantages of the two methods mentioned above and achieves optimization. The new method achieves 
improvements of 93.6%, 80%, and 84.4% in the x-axis, y-axis, and z-axis, respectively, with respect to the 
sensor-based method. 
 
 
  3.4. Experiment Results in Comparison 
 
The experimental results show that the IMU-based indoor localization method has the worst performance. 
The average error of this method is about 8 meters in our 15 iterations of experiments. The vision-based 
localization method performs better, with an average error of less than 1 meter. Our system performed the 
best, with the highest accuracy of localization, with an average error of less than 0.5 m. Compared with the 
other two axes, the motion trajectory of the phone obtained by our system has a relatively large error in the 
Y-axis. The reason for this phenomenon may be that the markers are closer together in the vertical 
direction, causing repeated detection. Overall, this greatly enhances the accuracy of indoor positioning. 
 
 
4. CONCLUSION AND FUTURE WORKS 

 
Our proposed neural network-based indoor localization method improves the stability of the indoor tracking 
system. It is improved by introducing inertial sensors to assist vision-based localization. Compared to vision-
based localization without the assistance of inertial sensors, our system avoids the inability to localize due 
to missing markers. The proposed method does not rely on any expensive depth camera and can be easily 
planted on a mobile device. We evaluate and validate our method with the prototype implementation on the 
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smartphone platform. The experimental results show that the system has strong robustness to the complex 
indoor environment, strong anti-interference ability, high accuracy, and fast processing speed, which meets 
the demand for indoor localization. The neural network model we trained explicitly for detecting ArUco 
code has a breakneck detection speed, taking only 0.164 seconds to detect a single frame. Overall, the 
proposed method demonstrates a tracking accuracy of under 0.5 meters. 
 
In terms of future work, we plan to increase further the number and diversity of datasets, which will 
significantly improve the accuracy of the neural network in detecting markers. This improves the accuracy 
of vision-based location detection of markers, which in turn improves the accuracy of our system’s location. 
We also plan to include hardware devices like depth cameras in the approach. This will allow our visual 
localization method to no longer rely on markers and use objects already present in the indoor environment 
for localization. 

5. APPENDIX 
 
5.1. Derivation for barycentric coordinates 

 
The EPnP algorithm expresses the coordinates of the reference point as a weighted sum of the coordinates 
of the control point: 

(1) 
where the aij are homogeneous barycentric coordinates. They are unique and can easily be estimated. In the 
camera coordinate system, the same relationship exists: 

(2) 
Assuming that the extrinsic parameters (rotation matrix R and translation vector t) of the camera are [R,t] 
then a relationship exists between the virtual control points cwj and ccj: 

(3) 

Considering that the EPnP algorithm expresses the reference point coordinates as a weighted sum of the 
control point coordinates, then can get: 
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(4)         (5) 

In the above derivation, the important constraint of EPnP on the weight aij is used. Without this 
constraint, the above derivation will not hold. Putting the four control point constraints together yields the 
following equation: 

       (6) 

Obviously, [pWi T1]T and [cWj T1]T are both isometric coordinates. The equation (1) in the reference paper, 
however, is essentially a linear combination of the isometric coordinates of 3D reference points with the 
isometric coordinates of the control points. Thus, we also get barycentric coordinates computed as follows: 

                 (7) 

 

5.2. Derivation for Displacement Expression  
 

The relation between acceleration/ displacement and velocity:      ,             
 

The relation between displacement and velocity:         
 
The integral is the opposite of the derivative. If the acceleration of an object is known, then we can obtain 
the position of the object using the double integral. Assuming that the initial condition is 0, then there is the 
following equation. 
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