
Error-Correcting Music Transformers

Jonathan Keane, Michael Conner, and Josiah Yoder
EECS

Milwaukee School of Engineering
Milwaukee, WI 53202

{keanej, connerm, yoder}@msoe.edu

March 18, 2023

Abstract

In state-of-the-art music Transformers today, a decoder-only Transformer autore-
gressively produces a musical work, basing its decisions for the next event on the
previous sequence of events. With this process, however, there are no means for the
model to iterate on itself and correct the original piece when musical inconsistencies
occur. Additionally, because decoder-only Transformers only can look backward at
the sequence created before it, current music Transformers have no future context
that can provide the semantic meaning of future notes, which may be beneficial in
informing better decisions about the correct note/event to be used at points earlier in
the sequence. Therefore, we propose training a second encoder-decoder Transformer
to correct music by training this Transformer to return songs with discretely inserted
abnormalities back to its original piece. With this second Transformer, we can then
use a generated piece of music from a decoder-only Transformer as the encoder in-
put such that this “error-correction” Transformer can iterate on the original work to
improve its quality. This encoder-decoder Transformer can then attend to the context
from the whole generated piece and will have learned during training how to correct
abnormalities it comes across.

(a) Encoder-Decoder Transformer (reproduced from [3]) (b) Decoder-Only Transformer (as in [1])

Figure 1: Two types of Transformers used for generating sequences.

1 Introduction

When musicians are composing a new piece of music, they do not often come across bril-
liance upon their first try. They often look at the piece they currently have and make small
adjustments, such as making a note more staccato or legato to better fit the piece or chang-
ing the note that is played in a piece because it is too sharp or flat. While we see this in
the case of human composers, state-of-the-art music Transformers today only perform a
single pass while composing a song. Therefore, we hope to show with this research that
by allowing a music Transformer to iterate and correct its original piece of music, we can
improve the results of the current state-of-the art.

There are two basic architectures of Transformers used for generating sequences. The first
kind of Transformer is the original model proposed by Vaswani et al. [3] (Fig. 1a) where
there is both an encoder and a decoder, and the goal of the model is to be able to take a text
from one “language” and generate a new sequence in a “target language.” This encoder-
decoder Transformer is commonly used in the NLP field for the task of translating between
languages (for example, generating English translations from Spanish source-texts). The
second form of the Transformer is a decoder-only model (Fig. 1b) where there is only an
encoder block, which uses self-attention to extend an input sequence. This decoder-only
Transformer is currently what is used in the state-of-the-art music Transformers (such as
[1]), where novel musical works are being generated without a reference work from which
they are derived.

While music Transformers [1] use the same general architecture as text-to-text translation
Transformers, qualitatively, music generators do not yet achieve musical compositions with

1

Figure 2: In autoregressively building a sequence with an encoder-decoder Transformer,
when you perform cross-attention, the model can take context from information ahead and
behind the token being generated.

the same level of coherence seen in text to text translations. One reason for this may be
that single note events (such as a “note on” event) convey less information than a word of
text. For example, in natural language, when you have the prefix “the dog” in a sentence,
because a verb would follow this far more naturally than an adjective. For music, a single
note could be followed by almost any other note on the scale, depending on what key the
song is in. Thus, a music Transformer must model ideas such as key or phrasing in addition
to the larger-scale “grammar” of music.

To address this challenge, we propose to improve the generative quality of music Trans-
formers by training an “error-correction Transformer” that uses the encoder-decoder ver-
sion of a Transformer (Fig. 1a) to translate music with errors (“bad music”) into music
without these errors (“good music”). We propose that by discretely augmenting a data set
of professional music with errors inserted programmatically and training to correct these er-
rors, this Transformer can learn to correct musical errors. With this, we can take this trained
model to iterate on the music from a trained state-of-the-art music Transformer (based on
the decoder-only model, Fig. 1b) that generates a sequence and improve upon the initial
piece by correcting its “musical errors,” improving the overall results of the model as a
whole. By having a full song to provide context for sequence generation, when we perform
cross-attention in our encoder-decoder Transformer during inference, we will have both
look-back as well as look-ahead relationships in our attention matrix as seen in Figure 2.
As a result, this model provides additional information to the decisions the model makes
that are not possible in an encoder-only Transformer.

2 Prior Work

For the task of music generation, the music Transformer produced by Huang et al. [1] is
the foundation that this work builds upon. In [1] Transformer using relative self-attention

2

described by Shaw et. al [2] was used and shown to be capable of producing music that cap-
tured long term structure, outperforming previously used techniques for music generation,
including both an LSTM and a baseline Transformer with no relative self-attention, when
evaluated by humans. This model was not rated as highly as the testing data produced by
actual musicians. Our work attempts to improve the performance of the generated music
toward the quality of actual musicians.

3 Experiments: Random Addition/Removal of Notes

With the proposed architecture combining both the encoder-decoder and decoder-only
forms of the Transformer, we look to have an encoder-decoder Transformer that can learn
to correct sequences of music that have randomly inserted/removed notes from a piece of
music to the original piece from a professional musician. With inserting random augmen-
tations into the a piece of music, we believe that if there are not enough augmentations, the
Transformer will only learn to output the original piece because the model will have lower
cost for keeping the errors than attempting to change them. In the case that there are many
augmentations, the model may learn to ignore the encoder input, regarding it as random
noise, learning only to heed the input prefix and its own previous output. We expect that
there is some region that falls in between these two possibilities such that the model learns
to correct to the original piece when it comes across these augmentations. We will perform
a grid search on the number of insertions and deletions to try and find what balance of
augmentations improves results.

To determine if there are improvements, we want to compare the results from the initial
decoder-only Transformer to the results that are passed through the initial encoder-decoder
Transformer. Users will be presented with the two samples for n songs and be asked to
determine which they believe is the better music without knowing which Transformer pro-
duced which. This will then be used to determine the improvements in an A/B test. From
these results, we will use statistical tests to see if our results achieve any form of statistical
significance.

3.1 Decoder-Only Transformer & Data Set

Our decoder-only Transformer is the Music Transformer [1], a decoder-only model (Fig.
1b). We use an open-source implementation 1 as the basis for our model. We adjusted some
of the hyperparameters and the model that we used for our experiments has the dimensions
described in Table 1 above. This baseline model of the music Transformer was trained on
the e-Piano competition data set. All pieces in this data set were solo pieces played on the
piano. All pieces are of classical music, performed by expert musicians. For training our

1https://github.com/jason9693/MusicTransformer-tensorflow2.0

3

https://github.com/jason9693/MusicTransformer-tensorflow2.0

Table 1: Model dimensions of our baseline Transformer used for generating music.

Model Attribute Dimension
Max Sequence Length 2048
Embedding Dimension 512

Heads per Attention Mechanism 8
Layers 6

Optimization Adama

Dropout 0.2
a(learning rate = 0.001,β1 = 0.9, β2 = 0.9)

baseline model, we took the original piano-e-competition data set and added an augmenta-
tions on pitch (shifting the whole song up or down for pitch shifts of up to 3 notes) as well
as time shift augmentations where we stretched/compressed the time shifts for an entire
piece between notes by a factor of 0.05. At this point, our baseline Transformer makes
sequences that are fairly well-formed pieces of music.

We encode performances as a series of events, using the encoding in Huang et al. [1].
This encoding has four different categories of events that represent events for NOTE_ON,
NOTE_OFF, VELOCITY, and TIME_SHIFT. In the encoding scheme, there are 128 NOTE_ON
and 128 NOTE_OFF events, which defines events to begin playing or stop playing a given
pitch. 32 VELOCITY events are used to represent how hard any keys following this event
will be pressed. Finally, to represent the natural timing of a performance, there are 100
TIME_SHIFT events that represent increases in the current timestamp in a piece, taking
up all 10 ms intervals between 10 ms and 1 second. When a TIME_SHIFT event is pro-
cessed, the current timestamp of the piece advances the defined amount and any notes that
have been activated by a NOTE_ON event and have not been turned off by their respective
NOTE_OFF event will be played for the duration specified by the TIME_SHIFT event.

3.2 Encoder-Decoder Transformer & Note Removal/Insertion

For the second Transformer being trained, we have an encoder-decoder setup that translates
from one piece of music to another with differences. The dimensions of this model are
defined in Table 1, but there is now both a decoder and an encoder in the model (as in Fig.
1a), which will be trained with encoder input as the augmented music and the expected
decoder output as the original piece.

The augmentation algorithm we use randomly inserts and removes a specific number of
notes. In our experiments, we took our samples from the beginning of the song, so that
the error-filled input sequence and correct output training sequence would be more closely
aligned. We do not expect that this would limit the trained model to operate only at the
beginning of sequences.

4

Figure 3: Visualization of when notes are being pressed down during a song, comparing
the original song, and the error-injected songs with error insertion rates of 5% and 15%,
respectively. In the error injected figures, the notes removed from the original song and the
new random notes added to the song are marked.

For our error injection procedure of adding/removing notes, in our preprocessing, for each
sample in the augmented data set, we convert the event sequence to a list of full notes
(encompassing the duration, pitch, and velocity) and use Algorithm 1 to remove and insert
notes.

Algorithm 1 Error removal/insertion algorithm.
1: P = number of pitches, V = number of velocites, T = number of time shifts
2: R = removal rate
3: N = notes
4: U =Uni f orm([0,1))
5: Dmax = max{∀ Ni ∈ N, Duration(Ni)}
6: Dmin = min{∀ Ni ∈ N, Duration(Ni)}
7: L = max{∀ Ni ∈ N, StartTime(Ni)}
8: V =U1×|N|

9: Nerrors = {Ni|Vi > R}
10: while |Nerrors|< |N| do
11: Start =U ∗L
12: Duration =U ∗ (Dmax −Dmin)+Dmin
13: Velocity = RandomInteger([0,V))
14: Pitch = RandomInteger([0,P])
15: Nerrors = Nerrors ∪{Note(Start,Duration,Velocity,Pitch)}
16: end while
17: return Nerrors

When we transform our original data set to uniformly distribute the notes/velocities/time
shifts across their respective ranges, we see that the less frequent of each type of event
in the original songs become more prominent in the error injected songs and vice versa
for more common events in the original songs. This transformation of the distribution of
events is visualized in Figure 4, as we see the NOTE_ON and NOTE_OFF events having
their distributions become more uniform and flatten out across the entire range of possible
notes. When we apply this transformation across the course of the whole song, we see that

5

Figure 4: Transformation of the distribution of the frequencies of the different note events
across the original songs and their error-injected forms. The y-axis represents the number
of each event across the training set.

there is typically an increase in the average length of notes, as the correct distribution of
the duration of notes is heavily weighted towards shorter notes compared to error-injected
sequences across this data set, which is visualized in Figure 3, in the peak on the left end
of the fourth rise.

3.3 Model Size & Training

We trained our Transformers on the ROSIE supercomputer at the Milwaukee School of
Engineering on a DGX-1 pod using a single NVIDIA V100 Tensor Core GPU for 8 epochs
across our augmented data set of 23072 samples, with each sample representing a whole
song or an augmentation of a whole song. We use an 80/10/10 training/validation split
of our data so we can observe the categorical accuracy measure on validation data during
training, selecting the first 80% of the data set for the training set, the next 10% for vali-
dation, and the final 10% for testing to keep data consistently separated through different
experiments.

3.4 Experiment Set 1: Batch Size = 1

In our first round of experiments, we used a batch size of 1 and a sequence length of 2048, to
fit the model within memory during training. We tried training with error-insertion/removal
rate from 2 to 30%, but the network continuously fell into producing repeated events or
notes.

6

(a) (b) (c)

Figure 5: Example of the proposed error-correcting Transformer attempting to correct er-
rors in a random error-injected song in the testing data. (a) Input to the encoder-decoder.
Green bars show erroneous notes inserted into the song. Orange bars show notes removed
(these are not given to the encoder-decoder). Black bars show notes retained. (b) Output
of the encoder-decoder, generated with the goal of removing errors. (c) The original song
corrupted to produce the input in (a).

3.5 Experiment Set 2: Batch Size = 8

Not finding any improvements with the hyperparameters explored in our first experiment
set, we hypothesized that these failures could be due to a batch size that was too small
to allow the model to generalize. We rationalized this as potentially being because with
each training step, the model would gravitate towards the song it had just seen, but this
would mean that the model would never have to try and synthesize results from many
samples at once, leading to poor training results. To test this, we switched to a batch
size of 8, while also reducing our max sequence length to 1024 to keep the entirety of our
model within a single GPU. Performing training on the compressed vocabulary dataset with
15% error-insertion/removal rate, we saw that this model was able to exceed the accuracy
score beyond what we saw in our first experiment set. In performing inference, generated
sequences created coherent strings of notes.

This model could predict correct tokens in both the training and validation set with approx-
imately 50% accuracy. While this measurement could potentially be misleading because
the model could be learning to build sequences that used the most frequent events, a qual-
itative review of a small subset of the songs, such as the song demonstrated in Figure 5,
showed that the pieces generated by the error-correction Transformer seemed to be much
more authentically musical compared to the error-injected data it was given as input, while
removing many of the errors injected into the piece. However, it seems that in learning
to correct errors, the model learned to have a tendency towards shorter notes and less har-
mony when compared to the original piece. This may be because we inserted notes with
random durations from the uniform distribution, our error-injected songs have longer notes
compared to our correct songs, as we see the number of TIME_SHIFT events in Figure
4 has many more smaller TIME_SHIFT events compared to longer shifts. Therefore, the
model may have learned to always use shorter notes because music with errors tended to

7

have longer notes, which is visible in the error-injected piece in Figure 5.

In a second experiment in this set, we began by training the Transformer to learn the identity
transformation (encoder sequence producing a target sequence that was the same encoder
sequence advanced one event) before switching to training with errors introduced in the
input sequence. Even though we used a batch size of 8, this model trained poorly. We sus-
pect that the pretraining may have hurt the performance by pruning out the more semantic
relationships to favor weights that would be most suitable for the identity transformation
only.

4 Conclusion

While we have not yet tested the encoder-decoder’s ability to correct errors in music gener-
ated by a decoder-only music Transformer, in the preliminary experiments we present here,
the music Transformer was able to both remove randomly-added notes and add in notes to
compensate for randomly-removed notes, creating a coherent melody consistent with the
corrupted source melody. With further experiments and tuning, this technique may be able
to improve on the state-of-the-art in music Transformers.

5 Future Work

The encoder-decoder Transformer may have a more concrete understanding of what a note
is because it must identify and remove spurious notes consisting of several related events: a
velocity shift, a series of time shifts for the duration of the piece, and both a NOTE_ON and
NOTE_OFF event. This potentially can be visualized by comparing the attention scores
that come from the final head of Transformer when generating notes using the encoder-
decoder Transformer compared to that of the original Transformer to see the attention to
different previous notes. We would expect that in the encoder-decoder network, the weight-
ing of the relationships of the NOTE_OFF event should have stronger weighting towards
the NOTE_ON, VELOCITY, and TIME_SHIFT event that were part of the creation of this
note, compared to these relationships in the decoder-only music Transformer.

Beyond improving unguided synthesis of music, the strategy proposed in this paper adds
the value that we can inject knowledge from the problem domain into the network, making
the model capable of being tuned towards any corrections that can be synthesized in the
training output data and away from any errors that can be synthesized in the training input
data.

There are a variety of strategies for synthesizing errors and improvements to a performance.
Are there efficient ways to use errors synthesized by the generator Transformer? Could
repetitions be inserted so the encoder-decoder learns to remove them? Can the melody line

8

of a performance be identified automatically and used to synthesize performance harmony
from a performance of a novel melody? Error-correcting music Transformers have many
possibilities.

References

[1] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer, Curtis
Hawthorne, Andrew M. Dai, Matthew D. Hoffman, and Douglas Eck. An improved
relative self-attention mechanism for transformer with application to music generation.
CoRR, abs/1809.04281, 2018.

[2] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with relative position
representations. CoRR, abs/1803.02155, 2018.

[3] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. CoRR,
abs/1706.03762, 2017.

9

	Introduction
	Prior Work
	Experiments: Random Addition/Removal of Notes
	Decoder-Only Transformer & Data Set
	Encoder-Decoder Transformer & Note Removal/Insertion
	Model Size & Training
	Experiment Set 1: Batch Size = 1
	Experiment Set 2: Batch Size = 8

	Conclusion
	Future Work

