
Separating Spaces in Relative Attention for

Music Generation

Michael Conner, Jonathan Keane, Josiah Yoder
EECS

Milwaukee School of Engineering
Milwaukee, WI 53203

{connerm, keanej, yoder}@msoe.edu

March 19, 2023

Abstract

Songwriters rely heavily on timing when creating structure to their

music. Not just absolute timing but the relative distances between notes,

motifs, phrases, and more are all important when creating a song. In cur-

rent state-of-the-art transformers for music generation, a variant of self

attention which e�ciently captures relationships between tokens based on

relative distance is used. The e�cient method helps overcome challenges

to memory requirements which restricted possible sequence lengths when

relative relationships were �rst proposed. However, this method leaves

too much room to get lost in the latent space of the attention matrix

as the relative positional information is added straight into the atten-

tion matrix. We propose alternative methods for integrating the relative

positional information instead to help keep a clear separation between se-

mantic and positional information. While the complexity does increase

with the proposed solution, it is still requires much less computation than

the quadratic requirements of the original relative self attention system.

We trained and quantitatively evaluated our transformer on the Piano-e-

Competition dataset as well as qualitatively with human evaluations.

1



1 Introduction

When writing music, songwriters rely heavily on the timing between di�erent
musical elements, and often need to look far back at previous sections of a
song in order to iterate and alter those past sections. In the past, recurrent
neural networks have been used in arti�cial music generation, however they
are restricted to storing all past elements in a �xed size state which does not
lend itself well to long sequences like music or generalizing to sequences of any
length. More recently, transformers have been used for this task and have show
impressive performance compared to their RNN predecessors. Huang et al.
[2] for instance, have achieved state-of-the-art results using a transformer with
relative positional information added to the attention matrix in a similar fashion
to [5].

While there are great results achieved by [2], they rely on the same latent
space to capture both the positional and semantic information for the pairwise
relationships between elements. We believe that this space will get too complex
and confusing with the two di�erent types of information pushed into that space.
Therefore, we propose an alternative implementation for the relative information
in order to keep the di�erent types of information in completely di�erent spaces
to be mixed later in more complex ways than addition.

When the original transformers were introduced with global positional infor-
mation added to the input embeddings, many attempted, and acheived better
results, by concatenating the positional information to the inputs instead. This
was done for the same reasoning as we stated above and serves as the inspiration
for this work.

For data, the Piano-e-Competition dataset consists of human played piano
performances represented as MIDI. As the performances are human, there are
expressive dynamics which have very �ne timings. Therefore, following [2], we
use a similar representation to the one proposed by [4] where MIDI events are
expressed as note-on, note-o�, velocity change, and time change events and are
then put into one-hot vectors.

2 Previous Work

2.1 Multi-Head Attention

An attention head takes in an input sequence X = (x1, ...,xn), X ∈ Rn×dx

of n elements where xi ∈ Rdx is a row vector, and creates a new sequence
Z = (z1, ..., zn), Z ∈ Rn×dz where zi ∈ Rdz and each rowzi is a weighted sum
of a linear transformation of an input row:

zi =

n∑
j=1

αij(xjW
V ) (1)

2



The weight coe�cients αij , are computed via a softmax:

αij =
expeij∑n
k=1 expeik

(2)

The element eij is computed using a matrix multiplication of two linear trans-
formations of input elements and normalized with

√
dz, also known as a scaled

dot product:

eij =
(xiW

Q)(xjW
K)T√

dz
(3)

Because xi and xj are row vectors, this is an inner product.
The parameter matrices WQ,WK ,WV ∈ Rdx×dz are learned and unique

for every attention head. Each head can be seen as getting a section of the
embeddings, and heads learn to attend tokens to each other di�erently based
on the section of data that they receive. Later, the data is aggregated back
together to get single positions to attend.

2.2 Relative Self-Attention

The self-attention mechanism proposed by [5] alters the preexisting attention
mechanisms in order to allow information on relational distances between items
to be encoded directly into the attention matrix. They model the input as
a labeled, directed, fully-connected graph where the edge between two input
elements xi and xj is represented by the vectors aVij ,a

K
ij ∈ Rda where da = dz.

They use two di�erent edge representations so that one can be used to modify
eq. (1) and the other to modify eq. (3). Unlike the parameter matrices, the
edge representations are shared across all attention heads. As they are meant
to capture information about the relative distances between elements, it makes
sense that they should be consistent in all scenarios for any context. In order
to inject these representations into the attention matrices, they propose adding
them to the results of their corresponding linear transformations xjW

V and
xjW

K in eq. (1) and eq. (3) respectively. This results in the �rst new formula:

zi =

n∑
j=1

αij(xjW
V + aVij) (4)

The authors hypothesize that the relative information is important in the above
equation for tasks where edge information is useful to future layers for informa-
tion already being attended to by a given head, however it is the less important
of the two places where edge information is injected.

This also results in the second, more important, new formula:

eij =
(xiW

Q)(xjW
K)T + (xiW

Q)(aKij )
T

√
dz

(5)

The idea behind adding the relative information here is to use that information
when determining compatibility of queries and keys. They state the motivation

3



for using simple addition in these cases is for an e�cient implementation. Note
as well that while this equation could factor out (xiW

Q), multiplying before
the addition eliminates the need to broadcast the relative position information.
While this is more e�cient, it is still quite costly with a space complexity of
O(n2dx) as pointed out and improved by [2].

2.3 Memory E�cient Relative Self-Attention

To improve upon this, [2] �rst dispose of the relative position representation used
for values (Eq. 4) entirely as [5] was unable to prove a signi�cant improvement
while including it with the query relative representations. Huang et al. [2] thus
propose the new relative attention function:

RelativeAttention = Softmax(
QKT + Srel√

dh
)V (6)

where Srel = QRT , Rij = aKij , Q = XWQ, dh = dx

h , and K = XWK , V =

XWV are their respective linear transformations. To reiterate, Q ∈ Rh×n×dh ,
R ∈ Rh×n×dh , and Srel ∈ Rh×n×n, where h is the number of heads and R is the
matrix of relative positional representations. The bene�t of using Srel is that
the memory requirements go from O(n2dx) to O(ndx), additionally, while the
time requirements remain the same on paper, the authors found that there was
about a 6x speedup as well. Huang et al. [2] achieve this by creating what they
call the 'skewing' procedure.

The skewing procedure performs the operation QRTwhere R is a matrix
representing the embeddings of the relative positional information. While on
paper the details of this and the original relative self attention look the same,
[5] uses an implementation which adds an extra dimension to the data as an
intermediate step in the computation of Srel. As shown below, Q and R are
matrices where each row is representing a query in the case of q, and a relative
positional embedding in the case of r, r−2 denotes an embedding for the rela-
tionship between a query and the value that is two behind it relatively. After
computing QRT , the values that relate queries to non-existent values due to
looking too far behind are removed with an upper left mask. These positions
will eventually end up in the location where the look ahead mask in regular
attention is. Now the task is to e�ciently shift each row so that it's masked
values are on the right instead of the left. In order to do this, one can pad
a column onto the left of the matrix, reshape the matrix from (n + 1) × n to
n× (n+ 1), and slice out the desired lower portion of the result in order to get
the �nal value of Srel.

Q =

 q1
q2
q3


R =

 r−2

r−1

r0


4



QRT =

 q1r−2 q1r−1 q1r0
q2r−2 q2r−1 q2r0
q3r−2 q3r−1 q3r0



QRT =

 0 0 q1r0
0 q2r−1 q2r0

q3r−2 q3r−1 q3r0



Srel =

 q1r0 0 0
q2r−1 q2r0 0
q3r−2 q3r−1 q3r0


3 Experiments

In the relative positional embeddings used by [2] the embedding matrix is incor-
porated into the model by multiplying it by the query matrix, and then adding
the result to the attention matrix. However, this leaves room for the model to
intermingle and confuse semantic and positional information which was shown in
a di�erent context to hurt the perormance of a Transformer model [3]. In order
to help alleviate this we propose di�erent integrations of the relative positional
information that aim to better fuse the information into the model instead of
simple addition.

The hyperparameters were kept consistent between our experiments and the
baseline model. The optimizer, and learning rate warmup and decay were the
same as described in [6], however, we reset the learning rate every 400,000 steps
in order to speed up training. The inputs were learned embeddings of size
512 and were then concatenated with sinusoidal position embeddings again as
described in [6] resulting in inputs of size 1024.

Table 1: Hyperparameter con�guration.

Hyperparameter Value

Sequence Length 2048
Batch Size 8

Transformer Layers 6
Model Dimension 1024

Feed Forward Dimension 2048
Heads 8
Dropout 0.1

Learning Rate 0.1

3.1 Additional Attention

In order to better integrate the relative positional information into the attention
mechanism, we propose adding an additional query and value transform of the
input which require their own parameters WQ

2 ,WV
2 ∈ Rdx×dz and results in

Q2, V2 ∈ Rh×n×dh . The relative self attention mechanism originally used the

5



same values to query into the keys given by inputs and the keys that translate
to relative positions. We plan to learn those queries and corresponding values
again as functions of the input but separately:

RelativeAttention = Softmax(
QKT

√
dh

)V + Softmax(
Q2R

T

√
dh

)V2 (7)

As in previous works R ∈ Rn×dh . R, unlike the other parameters in the
attention mechanism, is consistent across attention heads, although still unique
per transformer layer as this is at the level of the attention mechanism. In order
to e�ciently compute this across heads, an einsum is used. This increased our
parameter count by 1.3x, and there was no noticeable di�erence in run time.

3.2 Data Augmentation

As previously stated, we used the same data augmentation methods as proposed
by [4] except for cases where the vocabulary of notes would be extended. We also
dropped time shift events. For implementation, we generated all of the avaliable
pitch shifts in the range of [-3,3] ahead of time, and each epoch iterated over all
of the new data.

4 Results

For training, 4 Tesla V100 GPU's were used. The compute was supplied by the
the Milwaukee School of Engineering's super computer ROSIE. After hyperpa-
rameter tuning on each di�erent experiment, two types of evaluation were used.
First is the quantitative evaluation which was used for hyperparameter selec-
tion. The quantitative evaluation was the categorical cross entropy of a portion
of the training data reserved for testing. The train/test split was 90/10 after
shu�ing the training data. After model selection for the individual experiments
based on quantitative evaluation we will move on to qualitative evaluation. The
qualitative evaluation will consist of blind participants listening to samples gen-
erated by a pair of models o� of the same primer sequence or o� of no primer
and choosing which output they favored more.

For generating �gures that were not given a primer, simply choosing the
most likely event would result in the same generated sequence every time. In
order to remedy this, we used an epsilon of e = 0.6 as a likelihood to not always
pick the most likely event, and instead sample from the top-k likelihoods with
probabilities equal to their model outputs with k = 32.

4.1 Data

The dataset used was the piano-e-competition. All of the years prior to 2018
were used as training and testing data, while the 2018 competition was withheld
throughout the entirety of training as a validation set. That set was used for the

6



Figure 1: An example visualization of a sample generated from a primer in our
testing dataset, along with three samples generated from no primer.

7



�nal quantitative evaluation below, as well as for generating primers to generate
o� of for the qualitative evaluation.

4.2 Quantitative Evaluation

Table 2: Qualitative evaluation of each model based on it's cross entropy of
the validation dataset. The validation dataset was completely withheld during
training. We also found that our model converged much faster than the baseline.

Model Variation Validation Cross Entropy

[2] Music Transformer (Baseline) 2.0608
Our Additional Attention Model 1.9239

4.3 Qualitative Evaluation

For a qualitative evaluation we had participants listen to pairs of samples that
were generated in batches and had them pick which of the samples they preferred
per pair. Pairs were either generated o� of the same primer or were generated
with no primer as described in section 4.

Table 3: Quantitative evaluation of models compared pairwise in human
listening tests. Wins and losses are from the perspective of Model A. The p-
value was calculated using a binomial test. A statistically signi�cant di�erence
is denoted by an asterisk.

Model A Model B Win Loss p-value

Our Model [2] (Baseline) 43 19 3.2e-3*

5 Conclusion

We have seen both a quantitative and a qualitative improvement over the Music
Transformer [2] with the trade o� of increasing memory requirements due to the
extra parameters. While our quantitative improvement is small the results of
our qualitative evaluation shows a signi�cant improvement.

Bibliography

References

[1] Michael Conner, Lucas Gral, Kevin Adams, David Hunger, Reagan Strelow,
and Alexander Neuwirth. Music generation using an lstm, 2022.

[2] Cheng-Zhi Anna Huang, Ashish Vaswani, Jakob Uszkoreit, Noam Shazeer,
Ian Simon, Curtis Hawthorne, Andrew M Dai, Matthew D Ho�man, Mon-
ica Dinculescu, and Douglas Eck. Music transformer. arXiv preprint

arXiv:1809.04281, 2018.

8



[3] Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in
language pre-training. 2020.

[4] Sageev Oore, Ian Simon, Sander Dieleman, Douglas Eck, and Karen Si-
monyan. This time with feeling: Learning expressive musical performance,
2018.

[5] Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani. Self-attention with rel-
ative position representations, 2018.

[6] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need, 2017.

Appendix A: Related Work

For a long time, sequence models have been the tool of choice for single track
music generation, from Recurrent Neural Networks, to Gated Recurrent Units,
and Long Short Term Memory [4, 1]. The representation of music has taken
many forms, such as a discretized multi-hot grid based on time [4] [2], or using
one-hot representations with speci�c events for changing time [4] [2], or using
multi-hot representations to capture the note turned on, velocity, duration, and
time-shift as a single event [1].

In recent years the transformer has been used in many applications ranging
from image generation, speech summation, and chat bots. Many of these ap-
plications all share the improvements from their predecessors by increasing the
length of sequences that are able to be input or generated. While the improve-
ments are substantial there is an issue, as memory requirements grow quickly
with longer sequences. This is especially the case for some implementations
which increase memory requirements already in order to capture more informa-
tion such as the relative self attention mechanism proposed by [5].

Appendix B: Annotated Bibliography

Attention is All You Need

[6] describe a new alternative to RNNs, LSTMs, GRUs and other models that
handle sequential information, which they named the Transformer. The key
element to their work is the lack of hidden states encoded into other hidden
states. This caused information to be lost as time went on making large sequence
lengths impossible. As the name suggests, the authors suggest a model which
relies almost exclusively on attention mechanisms and remove the use of hidden
states as RNNs use them. As they attend to entire sequences and no longer have
the issue of hidden states being drowned out as sequences increase in length, they
are able to handle tasks with much larger sequences. Like many other models
made for sequence to sequence tasks, they use an encoder and a decoder. Each

9



uses attention in a new mechanism they propose called multi-head attention.
Then using regular dense layers and normalization, they are able to achieve
state of the art results in translation tasks. Since then, the Transformer has
been iterated upon and used in many other tasks.

Self-Attention with Relative Position Representations

[5] builds upon the attention mechanism by creating a new positional representa-
tion. Unlike the sinusoidal positional embeddings used by [6], the new positional
representation is �rst learned, and also captures positional information about
the relative distances between tokens rather than absolute. This is stored in a
matrix of the same size of the attention matrix, and is then added pairwise to
get the new attention matrix. Also unlike the original positional embeddings,
the relative information will be the same between the �rst and third elements,
as it is for the second and fourth elements.

This Time with Feeling: Learning Expressive Musical Per-

formance

[4] introduces many new ways to capturing many di�erent types of represen-
tations for music. The relevant sections of the paper are those which cover
expressive performances of polyphonic piano captured as midi data, as well as
their methods of data augmentation. They introduce a way to use one-hot
encoding to capture midi events and their expressive timings for live perfor-
mances. In addition, this proposal also captures more events per time period
when music is more dense in content, this gives a better representation that past
representations which use sequences that correspond to �xed time periods.

The data starts as MIDI �les which are preprocessed to remove all events
that are irrelevant to capturing the needed data. Then all of the relevant events
are condensed to account for events like a change in sustain pedal usage. The
sustain pedal events give a value in [0-127], the pedal is regarded as in the on
state when the event's value is >= 64 and o� when the value is < 64. The
note o� events during time frames where the sustain pedal is in the on state are
shifted to be at the same time the sustain pedal transitions to it's o� state, or
when the same note is repeated again, whichever happens �rst.

The events are then one-hot encoded where [0-127] represents note on events,
[128-255] represents note o� events, [256-355] represents time shifts, and [356-
387] represents velocities. Unlike [4] which proposes 125 time shifts of 8ms
increments, we chose 100 time shifts of 10ms time shifts. MIDI velocity events
are also represented as a value between [0-127], however binning these into
32 bins greatly reduces complexity and still captures the dynamics needed to
represent the performances.

They propose two types of data augmentation for less and more augment-
ing. The less augmentation consists of transposing all examples up or down all
intervals up to a major third which creates 8 new examples. In addition, all

10



examples can be stretched by +-2.5% or +- 5.0% in time which creates 4 new
examples.

Music Transformer

[2] makes the �rst introduction of using transformers for music generation. They
show that transformers provided better results than their LSTM predecessors
in both quality and output sequence length. In addition to their contributions
to the �eld of music generation, they also provide algorithmic contributions to
the relative self attention mechanism proposed in [5]. Their algorithmic contri-
butions take the previous relative self attention mechanism which has memory
requirements of O(n2dx) and reduces them to O(ndx). While the time complex-
ity still remains at O(n2dx) they show improvements in model performance as
well. This reduction is what allows them to handle sequences of higher lengths
than previous works.

Additionally, the authors propose two di�erent model architectures based
on the type of music to be generated, continuations or accompaniments. In the
case of accompaniments, which the authors generate for the JS-Bach dataset
and introduce �rst, they use the original encoder-decoder type architecture as
proposed in [6]. However, when the authors shift to generating continuations of
given music pieces they instead opt to completely remove the encoder section of
the network and put everything into a decoder. The decoder, and thus the core
of the network, is then just an encoder with masking and a di�erent attention
mechanism followed by the �nal linear and softmax layers.

11


