
Discovering Vulnerabilities in Web Browser Extensions
Contained by Google Chrome

Chapin A. Johnson
Department of CSIT

Saint Cloud State University
St. Cloud, Minnesota, 56301

cajohnson5@go.stcloudstate.edu

Sharveen Paramiswaran
Department of CSIT

Saint Cloud State University
St. Cloud, Minnesota, 56301

sharveen.paramiswaran@go.stcloudstate.edu

Akalanka B. Mailewa
Department of CSIT

Saint Cloud State University
St. Cloud, Minnesota, 56301
amailewa@stcloudstate.edu

Abstract

In today’s world, web browsers are used by most everyone daily. Many of us take this
incredible functionality for granted, and don’t recognize the potential risks that are
involved with simple internet use. These risks exist in both the browsers and their
extensions. Google Chrome has cemented itself as one of the go-to browsers for both
commercial and everyday consumer use. In fact, Google Chrome is currently the most used
web browser in the world. But with such heavy global use, comes a feeling of false security.
Just like many applications and browsers that are widely available and free to use, Google
Chrome has its weaknesses and vulnerabilities. These exist within the browser itself, but
for the purposes of this research, Chrome’s extensions will be the main focus. This research
explores the potential risks that are involved in utilizing browser extensions for Google
Chrome. We will also look at a variety of attacks that extensions can execute, and exactly
how they work. These attacks aren’t guaranteed to cause malicious behavior, but we will
also discuss ways of increasing user safety when operating a web browser, and specifically
browser extensions. The objective of this research is to test a variety of different attacks
using browser extensions on Google Chrome. By researching and implementing a variety
of different attacks, authors plan to find where Chrome is susceptible to allowing malicious
extensions. This research will help to inform browser users of the dangers that exist when
using extensions, and how threat actors may be deceiving them to perform malicious
activities on their computers. This research also shows the different vulnerabilities that
exist within browsers, and demonstrates the privileges that browsers have on a computer.
It is expected the research output to show that browser vulnerabilities aren’t a one size fits
all type of attack and also expected some websites to have lower levels of protection
allowing for poor security against malicious extensions.

Keywords: Vulnerabilities; Security; Risk; Google-Chrome; Attacks; DOM; Passwords;
Browser-Extensions

mailto:amailewa@stcloudstate.edu

1

1 INTRODUCTION

The problem that we have identified in this research is the significant vulnerabilities that
browser extensions can exploit [1][2]. The threats we intend to identify are applicable to
any chrome user who utilizes extensions. According to Google’s 2020 statistics, most users
have at least one extension installed on their browser, and with over 60% of internet users
saying they prefer Chrome as their browser of choice, this has massive implications [3].
Most users who download an extension assume that they are safe, though this is far from
the truth. Extensions have significant access to the browser itself, along with limited access
to the computer they’re installed on [4]. In the world of technology, it’s important to stay
vigilant when browsing online as there is a constant threat affecting users like school
students, all the way up to business executives. In order to better protect ourselves when
using Google Chrome, we must first understand how Chrome can be vulnerable to attacks,
and what steps we can use to better protect ourselves [5][6].

With the security of Chrome’s extension coming under fire, several questions need to be
answered. Initially, we need to know what kind of privileges Chrome provides to its
extensions. If a malicious extension is installed, the privileges given by Chrome dictate
how much damage can be done. There’s also the possibility that Chrome could further limit
the privilege of these extensions to better secure the privacy of its users. Knowing the
privileges will also give us better insight as to what attacks could be executed with an
extension alone. But security isn’t all up to the browser [7]. That duty also falls to the
websites that user’s access. Therefore, websites can choose options to better secure their
webpages, and decrease the chances that users with malicious extensions could be affected.
Knowing which popular websites display low levels of security is important to increasing
the safety of users. Finally, it’s important to understand Google’s policy regarding
extensions, and discover what more can be done for the benefit of user security.

The objective of this project is to test a variety of different attacks using browser extensions
on Google Chrome. By researching and implementing a variety of different attacks, we can
find where Chrome is susceptible to allowing malicious extensions [8]. The scope would
entail any type of extension that could be installed in Chrome, with malicious intent. These
types of extensions can contain a variety of different attack vectors and target many
different types of websites or machines. Understanding the weaknesses of Chrome is
important to maintaining a safer browsing experience. As the world of technology is always
changing, and staying up to date in this field is paramount to security. This research will
help to inform browser users of the dangers that exist when using extensions, and how
threat actors may be deceiving them to perform malicious activities on their computers.
This research also shows the different vulnerabilities that exist within browsers, and
demonstrates the privileges that browsers have on a computer [9]. We expect the research
to show that browser vulnerabilities aren’t a one size fits all type of attack. In order to
successfully exploit a machine, a certain set of circumstances must first be met before an
exploit is successful [10]. We also expect some websites to showcase lower levels of
protection allowing for poor security against malicious extensions.

2

2 BACKGROUND

Chrome’s extension architecture is based on component isolation and privilege separation.
When it comes to Chrome extensions, it’s a zipped bundle of files that include various
formats like HTML, CSS, JavaScript, and many more [11]. When talking about extensions
for Google Chrome, it has three types of components. One of them being content scripts
that directly interact with web pages. The other being an extension core that interacts with
the browser. Lastly, an optional native binary that interacts with the operating system [12].
The extension core becomes active when either the browser starts or after a user logs into
their computer provided that the extension has background permission. With an extension,
it can inject content scripts into web pages loaded by the browser and each page has its
own instance of an extension’s content scripts. Each content script runs in the same process
as the web page into which it’s injected. A content script is a part of the extension that runs
in the context of a particular web page. Background scripts can access all the
WebExtension JavaScript APIs, but they can't directly access the content of web pages
[13]. So, if your extension needs to do that, you need content scripts. Just like the scripts
loaded by normal web pages, content scripts can read and modify the content of their pages
using the standard DOM APIs [14]. There is only one instance of the extension core per
extension and the extension’s native binary each run in a separate process. Throughout this
research experiment, we will implement code for an extension and edit the variables using
Firebase. Firebase is a product from Google that enables developers to build, manage, and
grow their apps. No programming is required on the firebase side which makes it easy to
use its features more efficiently. This real-time database enables users to sync-up
application data in the cloud and make it available across all devices [15].

With a browser like Google Chrome, it provides more than 40 API’s for chrome extensions
[16]. API is known as an application programming interface and it enables companies to
open up their applications’ data and functionality to external third-party developers,
business partners, and internal departments within their companies. This allows services
and products to communicate with each other and leverage each other’s data and
functionality through a documented interface. Through these APIs, extension cores would
be able to get real-time status of the browser [17]. An example of this can be seen as the
list of tabs and running extensions or apps. We also would be able to access and modify
user’s data, update browser components, hijack or modify arbitrary web requests, and send
messages to other extensions. Another concept to remember are iframes which would be
applied later in our experiments. An iframe or inline frame is a HTML element that loads
another HTML page within the document. It basically puts another webpage within the
parent page and is usually used for ads, embedded videos, interactive content, and web
analytics. When the web browser encounters an iframe element, it creates a new HTML
document environment to load the content within. It takes the code from the referenced src
or srcdoc and renders it as its own website that is then put entirely within the parent
browsing page. It is called an inline frame because to the user it is all one web page. The
child iframe is a complete browsing environment within the parent frame. It can load its
own JavaScript and CSS separate from the parent. They can also be refreshed and loaded
asynchronously from the parent site [18].

3

One of the major security features of Google Chrome’s extension architecture is that the
capabilities of components are limited based on their type and permissions granted to them.
One of the high risks associated with extensions are content scripts and how they can be
exploited by malicious websites because they directly interact with web pages [19][20].
Because of this reason, content scripts have the lowest privilege and can only use the APIs
provided to web pages which are called browser APIs. Browser APIs include JSON,
HTML5, and XMLHttpRequest APIs. When talking about content scripts, it is only
accessible through the subset of Chrome APIs that support messaging between an
extension and its content scripts (chrome.extension API). As previously mentioned the
capabilities of the extension is limited by its permissions, so for Chrome APIs, browser
APIs, and access to the web pages are guarded by these permissions [21]. The user is
notified of these permissions by declaring them in its manifest file. When dealing with
permissions, there are two main types which are API permissions and host permissions.
Host permissions specify which pages an extension can inject content scripts and are
basically a set of URLs. An example of this is when a password manager extension has
host permission for one site, then it cannot access any other site. When it comes to API
permissions, the extension core can only access it when it is guarded by permissions if it
has the corresponding permissions in its manifest [22][23][24]. To add on, gaining access
to certain Chrome extension APIs and browser APIs are constrained by host permissions.
An example of this is if an extension does not have host permission to a website like
http://www.facebook.com or an encompassing permission like “*://*.*”, then it can’t make
an XMLHttpRequest to http://www.facebook.com or even block a web request to
www.facebookcom even if it has API permissions webRequest and webRequestBlocking
[25].

3 METHODOLOGY

In regard to Google Chrome and the extensions that it uses, theft and forgery of user data
can be a highly rated risk associated with the extensions. Users that use Google Chrome
have sensitive data like usernames, passwords, social security numbers, and credit card
numbers which are normally communicated through different web pages [26][27]. There
are different attack vectors associated with stealing user data. As explained before,
extensions that are granted permissions to access the pages that contain private and
sensitive data can also easily steal the data. One of the flaws in Chrome extensions that
bleed into different attack vectors is the abuse of the ‘http://*/*’ host permission. The most
common type of permission that extensions are given are the permissions to inject content
scripts into the websites of Google Chrome. This permission enumerates the pages an
extension is allowed to access [28][29]. In most cases, the extension’s content scripts are
allowed to run on any page that is browsed by the user. This permission is denoted with
‘http://*/*’ and the injected content scripts can read any content on the page, and this
includes sensitive data from user input, extensions like password managers, and the
browser itself with its built-in auto form filler. An example of this is when a user visits a
web page, we can create a malicious extension that would inject scripts into the specified
page and since they are running in the page’s environment, the scripts would have the
ability to read from the DOM the password that the user enters. For this malicious extension
to execute, it needs to be installed and active in the browser at the time the user accesses

4

the page. Additionally, finding the specific information to extract in the DOM of the target
website is usually page specific [30][31]. Throughout this experiment, we will focus on
three main attack vectors which are stealthy attacks using background tabs, stealthy attacks
using iframes, and forging user data from specific extensions. Some of these attack vectors
are difficult for users to detect and some require fewer permissions which may be difficult
to attack as well.

3.1 STEALTHY ATTACKS USING BACKGROUND TABS

In relation to stealthy attacks using background tabs, there are at least two different
methods in which to open or redirect a tab to target websites that do not require additional
permissions beyond the “http://*/*” host permission. This means that the tab permission is
not required. The first method in using background tabs is to redirect an inactive tab to the
target web page and from there the extension can steal the sensitive data and later, redirect
the tab to the original website. As shown in the figure 1, in detail, by calling
‘chrome.tabs.query’ which is the queryInfo where the queryInfo’s active flag is set to false,
an extension can get the list of inactive tabs [32].

Figure 1: QueryInfo’s Active Flag Set to False

From there, the query can then be further restricted to tabs that are open in the background
windows by setting the queryInfo’s currentWindow field to false. From there, the extension
may be able to use ‘chrome.tabs.update’ to redirect the tab. A user may be able to do this
because the tab API methods are not considered sensitive to Google Chrome, and this
allows the extension to not claim the tab permission in its manifest. This is considered a
stealthy attack because the only way of noticing the attack is when the tab icon redraws
when a different page is loaded [33]. The other method in using the ‘chrome.tabs.query’ to
find out whether or not a tab is visible when using the Windows API. The Windows API
can determine which browser windows are currently focused on. For example, there could
be a browser window open at the foreground or have the pointer hovering over the windows
browser which would enable a malicious extension to launch attacks only when the user is
using an application other than the browser. This is sort of a workaround in not requiring
the extension to have any permissions. The implementation of stealthy attacks in stealing
information can be seen later when it comes to forging user data.

about:blank

5

3.2 STEALTHY ATTACKS USING I-FRAMES

Another stealthy attack vector when dealing with Chrome extensions is to use iframes. This
is done by loading extensions into iframes which could be placed in background tabs or to
make them unnoticeable or hidden to users by making the iframes fully transparent or
displaying them at a very small size. Stealthily attacking web pages with iframes can be
done in two methods [34][35]. The first method deals with modifying the DOM and the
autofill feature. For example, when an extension’s content script is running on a page, the
extension can modify the DOM of that page to create a new iframe by executing
“document.write(“<iframe src=\"http://target.com\"> </iframe>");”. After executing, the
page (target.com) is then loaded in the iframe and the autofill feature or a password
manager extension would automatically fill in the credentials or content needed for
‘target.com’. In order to read the content inside the iframe, an extension needs to have host
permission to the iframed page as well as the ‘all_frames’ option specified in its manifest.
With the addition of the ‘all_frames’ option, it causes no warning to be shown to the user
on installation.

The other method that deals with iframes takes an even stealthier approach [36]. In this
example, by having host permission to the specific page loaded in the tab, an extension has
a content script running in the same tab that doesn’t contain the target page. With this, the
extension can then create an iframe and load the target page similar to the previous method.
This then allows Chrome to use its autofill functionality or a password manager’s ability
to fill content for the target page. After this, the extension would be able to take a screenshot
of the page that is running and it would include the auto filled content. This method is used
to steal information in plain text like credit card numbers, usernames, date of births, etc. In
order to make the iframe stealthier than the previous attack, we could make the iframe
meticulously transparent. Another option instead of making the iframe transparent is to
change the size of the iframe in making it really small, so that the user would not be able
to notice it. We can make the iframe show a single character at a time and move the field
of view character by character until the data has been captured by using
‘frame.contentWindow.scrollTo(xcoord,ycoord)’. As shown below in figure 2 and figure
3, we were able to hide an iframe on a target user's reddit page with the help of the malicious
extension and it provided us with the login credentials which would help us find more
information like addresses.

Figure 2: Reddit Page with Transparent iframe on the Bottom

6

Figure 3: Reddit Page with Visible iframe on the Bottom

Occasionally, sensitive information like login credentials are only available after the user
has logged into the target page. In order to get sensitive information, the extension has to
mount the attack after the user has logged in but before the user’s session expires. One of
the ways that a malicious extension can detect the user has recently logged in is in the case
where extensions have host permission to the designated page because it can observe the
loading of the login page [37][38]. To add on, other permissions given to the extension like
viewing the history of the browser and web Requests also lets the extension know that the
user had recently logged in. Some of the limitations for these attack methods to work is
that the data has to be in plain text. Furthermore, the websites that would be able to
implement in an iframe does not include some of the top websites like Facebook, Twitter,
and Amazon. Another limitation in these two methods dealing with iframes is that the user
must enable or click on the malicious extension’s icon in Google Chrome in order for the
malicious extension to run or execute. Moreover, the user must already be on the website
that the malicious extension plans to extract information.

3.3 FORGING USER DATA

The last attack vector in dealing with Chrome extensions relates to forging user data or
web requests from the extensions itself so that it would appear it came from the user
[39][40]. From a malicious extension, it can gather information on the user. It could even
log into the targeted website and access the information like addresses or transaction
history provided that the user is logged in as well. The amount of information or data that
can be extracted also depends on the implementation of the website’s login process itself.
In most cases, it would be difficult if the website has two factor authentication. Figure 4
shows an example of how an extension can take the autofill information and translate it for
us.

Figure 4: Target Login Page

7

Figure 5: Console View of Captured Credentials

As seen in the figure 5 above, the malicious extension was able to log in to “Target.com”
with the identity of the user whose username and password have been auto-filled by the
browser or a password-manager extension. With this malicious extension, more damage
can be done than just taking the username and password. One of them includes data
integrity attacks when changing passwords since we can modify the extension to log in
with an incorrect password forcing the user to be locked out. To add on, we can further the
damage by making the user reset the password since the old password wouldn’t work and
in turn, it would create an opportunity to get the answers for the password reset questions
which could be then used for other websites of the user. Lastly, we would also be able to
change banking operations such as transferring money with the login credentials. Another
implementation of forging user data is through page captures where it would show us
captured information of all the sites the user would visit. This is considered a big threat
because whatever website the user visits, the attacker would be able to gain information
and use it for malicious purposes. Figure 6 illustrations an example of the implemented
code and how the extension would capture the webpage and provide the attacker the
information.

Figure 6: Extension Code for Screen Capturing

8

Figure 7: Application of Screen Capture with Malicious Extension

According to the figure 7 above, the page on the right shows the target’s page and the
websites that we would want to capture, whereas the page on the top right shows the
Firebase console and the page on the bottom right shows a small gallery that is built on top
of the Firebase console. With this, we can see that whatever website the target user visits,
we would be able to capture the information and use it for malicious purposes as mentioned
before.

4 RESULTS

From the attacks that we tested, there was a variety of success across the board. This was
expected however, as we originally hypothesized that attacks would vary in their success
rate and method. For the results, we’ll go through each of the three attacks that we
previously mentioned to see how successful each one was.

As far as the background tab attack, we expected this to be a go-to attack because of how
straight forward it is. The development is simple as extensions using this attack have been
around for a long time and aren’t anything groundbreaking. Because of this, many of the
extensions we wanted to test had already been banned due to being reported for this type
of malicious activity. However, several extensions still exist out there that contain one of
the attacks we plan to discuss in this project. Regarding our first kind of attack, the attack
is pulled off by first checking a series of requirements for performing the attack. The attack
takes place by finding tabs that Chrome has running in the background, and then gathering
data like login information from those tabs without the user knowing. The malicious
extension must first determine if Chrome has the “queryInfo active” flag. If the flag returns
false, then the attack can continue. If the flag returns true, then the background tabs won’t
update, showing the information that the attacker is looking for.

9

 Figure 8: Malicious Extension with “QueryInfo Active” Flag

As shown on the figure 8, just by looking through the source information on a given
website, we can see critical information about the options for that site. For most of the
testing, we used popular websites, in this case Youtube.com. By checking the query flags,
we can see that search queries on this website are hidden. This helps to hide information
like search results from other tools like extensions. In this case, an extension without
having a direct view of the window, wouldn’t be able to collect search queries on this site.

The downside of attacks using background tabs is the stealth element. The extension must
first look to see if the tab is in the background, and then choose to start updating the tab
using requests. This method is based on assuming the user can’t see the tab since it’s being
covered by something else on the screen. However, obviously this isn’t always the case,
and stealth is a major downside for this kind of attack since in some cases it’s easy to get
caught. Because of that, we regard this attack as one of the most popular because of its
simplicity and widespread use, however far from the most effective.

The next attack we investigated, was a far stealthier attack using iframes. The major
advantage here is the ability to access information in a similar fashion with far less chances
of the user noticing. This is done using iframes, which resemble small windows that can
be opened separate from the original Chrome tab. The advantage here is the flexibility that
these windows have. Just like a regular tab, these frames can request web pages and display
data. However, these iframes can be altered to be extremely small, so that the user doesn’t
see them, or even transparent. Because of this increased functionality, this kind of attack
can be much more effective than utilizing background tabs. The methods of how this attack
works remain relatively the same. Within this iframe, the attacker can use the extension to
take screenshots and record information shown in these frames. Strangely enough, the
success rate for this attack was the same for our previous type of attack. In fact, these use
similar attack vectors making the attacks almost interchangeable. This would explain why
the simple background tab attack is so rare now, since it’s been replaced by something with
higher stealth, and the same success rate.

10

Looking at our final attack utilizing forged user information, we saw different results than
expected. This type of attack has a guaranteed success rate if completed correctly, but it
must be completed under specific circumstances. For this type of attack, the attacker simply
uses stolen data to access restricted websites using login credentials. The extension is only
a piece of spyware designed to look at what the user is doing, and any chrome extension
you download would have this possible functionality. After seeing the user login, the attack
would record the inputs they saw, and mimic those inputs later when they wanted to gain
access. After digging through website HTML, and doing research on internet security, we
were unable to find any flag options that would prevent this. The downside is the length of
time an attack might have to wait before the user decides to login to something personal
like social media or a bank account. Finding an existing chrome extension that performs
this kind of attack was simple. There is plenty of documentation online giving links to
malicious extensions for research purposes. Below was one that we found almost instantly.

Figure 9: Chrome Extension with VK Tik-Tok Instagram Downloader

11

Figure 10: Chrome Privacy Practices

As you can see in the figure 9, the extension describes itself as a tool that can download
videos from Tik-Toc and Instagram. And upon examining the privacy practices shown in
the figure 10, we can see that it claims not to sell or collect any personal data for malicious
purposes. However, looking at every other Chrome extension available on the Google
store, we found that every single one has this exact same private policy page. This suggests
that in order to even publish an extension, the contents of this page must be true. However,
extensions are added to Chrome all the time, and Google doesn’t have the resources to
filter through each one, so developers can simply lie and claim their product to be harmless.
Upon looking into the reviews, we found following as shown in the figure 11.

 Figure 11: User Review

It’s clear that this was a malicious extension, intended to steal password data for websites.
The comment warns other users not to download this, as their accounts could get banned.
These extensions exist all over the Google store, and when installing extensions, it’s
important to understand what you’re downloading, before you download it.

12

5 CONCLUSION

Google Chrome’s browser extensions can be either useful or malicious depending on the
extension downloaded and applied. We have seen so far the capability of malicious Chrome
extensions and the extent to what is available in terms of attack vectors in Google Chrome.
We had tested out different ways in which a malicious extension can steal users’ sensitive
data, track their behavior, and forge their input. Even though these malicious extensions
are not as popular as other extensions and would not be easily installed by a user willingly,
many published extensions still have sufficient privileges to carry out these attacks. A
benefit to our approach is that we were able to extract more information than expected from
targeted websites. Furthermore, we were able to showcase different attack vectors with
simple code to steal user information. Lastly, we were also able to steal this information
discreetly without the awareness of the targeted user. The downside to our approach is that
we were testing the implementations of these malicious extensions by installing them
ourselves and executing them. If it were to apply to practical situations, then we would
have to figure out a method in getting the user to install the extension willingly by
themselves or we would have to install it on their Chrome browser. To add on, the
implications of the extension would be stated on the extension’s details and if the user were
to read it and have an understanding, then they would be neglected to install the extension.

When installing an extension on Google Chrome or any browser, it is always suggested or
required to read the extension details and see the permissions that are allowed for the
extension. Moreover, Chrome also verifies and declares what privacy practices the
extension would follow, and it would be necessary to read them if one wanted their
browsing secure with the installed extensions. Figure 12 shows an example of the privacy
practices for the extension Google Translate.

Figure 12: Privacy Practices of Google Translate Extension

Another method in ensuring that no malicious extension is installed is to enable Google
Chrome’s Enhanced Safe Browsing feature which is easily enabled by going to the
browser’s security settings, where one would discover three different degrees of protection
being enhanced protection, standard protection, and no protection.

13

6 FUTURE WORKS

In the future we would attempt to see if the same attack vectors can be used across different
web browsers like Mozilla Firefox and Safari. Through research, we found that different
browsers have different methods in implementing their extensions. With this, we would
like to test out how the attack vectors would work for these specified browsers. We would
also delve into more attack vectors for Google Chrome itself. There are several different
attacks that we could still attempt in order to steal user information. Some of them include
implementing a key-logger or cross-site scripting. In addition to discovering more attack
vectors, we would also like to figure out a method in making the user download or install
the malicious extension willingly and without full awareness of its capabilities even after
reading the details of the extension.

References

[1] Fass, Aurore, Dolière Francis Somé, Michael Backes, and Ben Stock. "Doublex: Statically detecting
vulnerable data flows in browser extensions at scale." In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1789-1804. 2021.

[2] Dissanayaka, Akalanka Mailewa, Susan Mengel, Lisa Gittner, and Hafiz Khan. "Security assurance of
MongoDB in singularity LXCs: an elastic and convenient testbed using Linux containers to explore
vulnerabilities." Cluster Computing 23 (2020): 1955-1971.

[3] Picazo-Sanchez, Pablo, Lara Ortiz-Martin, Gerardo Schneider, and Andrei Sabelfeld. "Are chrome
extensions compliant with the spirit of least privilege?." International Journal of Information Security 21, no.
6 (2022): 1283-1297.

[4] Pantelaios, Nikolaos, Nick Nikiforakis, and Alexandros Kapravelos. "You've changed: Detecting
malicious browser extensions through their update deltas." In Proceedings of the 2020 ACM SIGSAC
Conference on Computer and Communications Security, pp. 477-491. 2020.

[5] Dissanayaka, Akalanka Mailewa, Susan Mengel, Lisa Gittner, and Hafiz Khan. "Vulnerability
prioritization, root cause analysis, and mitigation of secure data analytic framework implemented with
mongodb on singularity linux containers." In Proceedings of the 2020 the 4th International Conference on
Compute and Data Analysis, pp. 58-66. 2020.

[6] Zhang, Mingming, Xiaofeng Zheng, Kaiwen Shen, Ziqiao Kong, Chaoyi Lu, Yu Wang, Haixin Duan,
Shuang Hao, Baojun Liu, and Min Yang. "Talking with familiar strangers: An empirical study on https
context confusion attacks." In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 1939-1952. 2020.

[7] Kariryaa, Ankit, Gian-Luca Savino, Carolin Stellmacher, and Johannes Schöning. "Understanding users’
knowledge about the privacy and security of browser extensions." USENIX, 2021.

[8] Picazo-Sanchez, Pablo, Lara Ortiz-Martin, Gerardo Schneider, and Andrei Sabelfeld. "Are chrome
extensions compliant with the spirit of least privilege?." International Journal of Information Security 21, no.
6 (2022): 1283-1297.

[9] Dissanayaka, Akalanka Mailewa, Susan Mengel, Lisa Gittner, and Hafiz Khan. "Dynamic & portable
vulnerability assessment testbed with Linux containers to ensure the security of MongoDB in Singularity
LXCs." In Companion Conference of the Supercomputing-2018 (SC18). 2018.

14

[10] Sapkota, Bhumika, and Akalanka B. Mailewa. "A Scalable Framework to Detect, Analyze, and Prevent
Security Vulnerabilities in Enterprise Software-Defined Networks." Journal homepage: www. ijrpr. com
ISSN 2582: 7421. (DOI:10.55248/gengpi.2022.3.2.1)

[11] Agarwal, Shubham, and Ben Stock. "First, Do No Harm: Studying the manipulation of security headers
in browser extensions." In Workshop on Measurements, Attacks, and Defenses for the Web (MADWeb).
https://doi. org/10.14722/madweb. 2021.

[12] Mailewa, Akalanka, and Jayantha Herath. "Operating Systems Learning Environment with VMware" In
The Midwest Instruction and Computing Symposium. Retrieved from
http://www.micsymposium.org/mics2014/ProceedingsMICS_2014/mics2014_submission_14.pdf. 2014.

[13] Hiremath, Panchakshari N., Jack Armentrout, Son Vu, Tu N. Nguyen, Quang Tran Minh, and Phu H.
Phung. "MyWebGuard: toward a user-oriented tool for security and privacy protection on the web." In Future
Data and Security Engineering: 6th International Conference, FDSE 2019, Nha Trang City, Vietnam,
November 27–29, 2019, Proceedings 6, pp. 506-525. Springer International Publishing, 2019.

[14] Iqbal, Junaid, Ratinder Kaur, and Natalia Stakhanova. "PoliDOM: Mitigation of DOM-XSS by detection
and prevention of unauthorized DOM tampering." In Proceedings of the 14th International Conference on
Availability, Reliability and Security, pp. 1-10. 2019.

[15] Shetty, Roshan Ramprasad, Akalanka Mailewa Dissanayaka, Susan Mengel, Lisa Gittner, Ravi
Vadapalli, and Hafiz Khan. "Secure NoSQL based medical data processing and retrieval: the exposome
project." In Companion Proceedings of the10th International Conference on Utility and Cloud Computing,
pp. 99-105. 2017.

[16] Xie, Mengfei, Jianming Fu, Jia He, Chenke Luo, and Guojun Peng. "JTaint: finding privacy-leakage in
chrome extensions." In Information Security and Privacy: 25th Australasian Conference, ACISP 2020, Perth,
WA, Australia, November 30–December 2, 2020, Proceedings 25, pp. 563-583. Springer International
Publishing, 2020.

[17] Solomos, Konstantinos, Panagiotis Ilia, Nick Nikiforakis, and Jason Polakis. "Escaping the Confines of
Time: Continuous Browser Extension Fingerprinting Through Ephemeral Modifications." In Proceedings of
the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 2675-2688. 2022.

[18] Bian, Yan, Dechao Ma, Qing Zou, and Weirui Yue. "A Multi-way Access Portal Website Construction
Scheme." In 2022 5th International Conference on Artificial Intelligence and Big Data (ICAIBD), pp. 589-
592. IEEE, 2022.

[19] Jairu, Pankaj, and Akalanka B. Mailewa. "Network Anomaly Uncovering on CICIDS-2017 Dataset: A
Supervised Artificial Intelligence Approach." In 2022 IEEE International Conference on Electro Information
Technology (eIT), pp. 606-615. IEEE, May 2022. (DOI:10.1109/eIT53891.2022.9814045)

[20] Fass, Aurore, Dolière Francis Somé, Michael Backes, and Ben Stock. "Doublex: Statically detecting
vulnerable data flows in browser extensions at scale." In Proceedings of the 2021 ACM SIGSAC Conference
on Computer and Communications Security, pp. 1789-1804. 2021.

[21] Wang, Xinyu, Yuefeng Du, Cong Wang, Qian Wang, and Liming Fang. "Webenclave: protect web
secrets from browser extensions with software enclave." IEEE Transactions on Dependable and Secure
Computing 19, no. 5 (2021): 3055-3070.

[22] Kaja, Durga Venkata Sowmya, Yasmin Fatima, and Akalanka B. Mailewa. "Data integrity attacks in
cloud computing: A review of identifying and protecting techniques." Journal homepage: www. ijrpr. com
ISSN 2582 (2022): 7421. (DOI:10.55248/gengpi.2022.3.2.8)

15

[23] Mailewa, Akalanka, and Kyle Rozendaal. "A Novel Method for Moving Laterally and Discovering
Malicious Lateral Movements in Windows Operating Systems: A Case Study." Advances in Technology
(2022): 291-321, ISSN 2773-7098. (DOI:10.31357/ait.v2i3.5584)

[24] Diamantaris, Michalis, Elias P. Papadopoulos, Evangelos P. Markatos, Sotiris Ioannidis, and Jason
Polakis. "Reaper: real-time app analysis for augmenting the android permission system." In Proceedings of
the Ninth ACM Conference on Data and Application Security and Privacy, pp. 37-48. 2019.

[25] Razali, Muhammad Amirrudin, and Shafiza Mohd Shariff. "Cmblock: In-browser detection and
prevention cryptojacking tool using blacklist and behavior-based detection method." In Advances in Visual
Informatics: 6th International Visual Informatics Conference, IVIC 2019, Bangi, Malaysia, November 19–
21, 2019, Proceedings 6, pp. 404-414. Springer International Publishing, 2019.

[26] Hajli, Nick, Farid Shirazi, Mina Tajvidi, and Nurul Huda. "Towards an understanding of privacy
management architecture in big data: an experimental research." British Journal of Management 32, no. 2
(2021): 548-565.

[27] Mailewa Dissanayaka, Akalanka, Roshan Ramprasad Shetty, Samip Kothari, Susan Mengel, Lisa
Gittner, and Ravi Vadapalli. "A review of MongoDB and singularity container security in regards to hipaa
regulations." In Companion Proceedings of the10th International Conference on Utility and Cloud
Computing, pp. 91-97. 2017.

[28] Sjösten, Alexander, Steven Van Acker, Pablo Picazo-Sanchez, and Andrei Sabelfeld. "Latex Gloves:
Protecting Browser Extensions from Probing and Revelation Attacks." In NDSS. 2019.

[29] Khan, Muhammad Maaz Ali, Enow Nkongho Ehabe, and Akalanka B. Mailewa. "Discovering the Need
for Information Assurance to Assure the End Users: Methodologies and Best Practices." In 2022 IEEE
International Conference on Electro Information Technology (eIT), pp. 131-138. IEEE, May 2022.
(DOI:10.1109/eIT53891.2022.9813791)

[30] Ghosal, Sandip, and R. K. Shyamasundar. "Preventing Privacy-Violating Information Flows in
JavaScript Applications Using Dynamic Labelling." In Information Systems Security: 18th International
Conference, ICISS 2022, Tirupati, India, December 16–20, 2022, Proceedings, pp. 202-219. Cham: Springer
Nature Switzerland, 2022.

[31] Khan, Saad, and Akalanka B. Mailewa. "Discover Botnets in IoT Sensor Networks: A Lightweight Deep
Learning Framework with Hybrid Self-Organizing Maps." Microprocessors and Microsystems (2023):
104753. (DOI: https://doi.org/10.1016/j.micpro.2022.104753)

[32] Gao, Yun, Kai Luo, Chongrong Fang, and Jianping He. "Fragility-Aware Stealthy Attack Strategy for
Multi-Robot Systems against Multi-Hop Wireless Networks." In 2022 IEEE 61st Conference on Decision
and Control (CDC), pp. 4827-4832. IEEE, 2022.

[33] Luo, Yukui, Cheng Gongye, Shaolei Ren, Yunsi Fei, and Xiaolin Xu. "Stealthy-shutdown: Practical
remote power attacks in multi-tenant fpgas." In 2020 IEEE 38th International Conference on Computer
Design (ICCD), pp. 545-552. IEEE, 2020.

[34] Mailewa, Akalanka, Susan Mengel, Lisa Gittner, and Hafiz Khan. "Mechanisms and techniques to
enhance the security of big data analytic framework with mongodb and Linux containers." Array 15 (2022):
100236. (DOI:10.1016/j.array.2022.100236)

[35] Chinprutthiwong, Phakpoom, Jianwei Huang, and Guofei Gu. "{SWAPP}: A New Programmable
Playground for Web Application Security." In 31st USENIX Security Symposium (USENIX Security 22),
pp. 2029-2046. 2022.

16

[36] Tramèr, Florian, Pascal Dupré, Gili Rusak, Giancarlo Pellegrino, and Dan Boneh. "Adversarial:
Perceptual ad blocking meets adversarial machine learning." In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications security, pp. 2005-2021. 2019.

[37] Gamnis, Steven, Matthew VanderLinden, and Akalanka Mailewa. "Analyzing Data Encryption
Efficiencies for Secure Cloud Storages: A Case Study of Pcloud vs OneDrive vs Dropbox." Advances in
Technology (2022): 79-98. (DOI:10.31357/ait.v2i1.5526)

[38] Lin, Xu, Panagiotis Ilia, and Jason Polakis. "Fill in the blanks: Empirical analysis of the privacy threats
of browser form autofill." In Proceedings of the 2020 ACM SIGSAC Conference on Computer and
Communications Security, pp. 507-519. 2020.

[39] Olaosebikan, Ayodeji, Thivanka PBM Dissanayaka, and Akalanka B. Mailewa. "Security & Privacy
Comparison of NextCloud vs Dropbox: A Survey." In Midwest Instruction and Computing Symposium
(MICS). 2022.

[40] Calzavara, Stefano, Alvise Rabitti, Alessio Ragazzo, and Michele Bugliesi. "Testing for integrity flaws
in web sessions." In Computer Security–ESORICS 2019: 24th European Symposium on Research in
Computer Security, Luxembourg, September 23–27, 2019, Proceedings, Part II 24, pp. 606-624. Springer
International Publishing, 2019.

	Discovering Vulnerabilities in Web Browser Extensions Contained by Google Chrome
	1 INTRODUCTION
	The problem that we have identified in this research is the significant vulnerabilities that browser extensions can exploit [1][2]. The threats we intend to identify are applicable to any chrome user who utilizes extensions. According to Google’s 2020...
	With the security of Chrome’s extension coming under fire, several questions need to be answered. Initially, we need to know what kind of privileges Chrome provides to its extensions. If a malicious extension is installed, the privileges given by Chro...
	The objective of this project is to test a variety of different attacks using browser extensions on Google Chrome. By researching and implementing a variety of different attacks, we can find where Chrome is susceptible to allowing malicious extensions...
	2 Background
	Chrome’s extension architecture is based on component isolation and privilege separation. When it comes to Chrome extensions, it’s a zipped bundle of files that include various formats like HTML, CSS, JavaScript, and many more [11]. When talking about...
	With a browser like Google Chrome, it provides more than 40 API’s for chrome extensions [16]. API is known as an application programming interface and it enables companies to open up their applications’ data and functionality to external third-party d...
	One of the major security features of Google Chrome’s extension architecture is that the capabilities of components are limited based on their type and permissions granted to them. One of the high risks associated with extensions are content scripts a...
	3 Methodology
	In regard to Google Chrome and the extensions that it uses, theft and forgery of user data can be a highly rated risk associated with the extensions. Users that use Google Chrome have sensitive data like usernames, passwords, social security numbers, ...
	3.1 Stealthy Attacks using Background Tabs
	3.2 Stealthy Attacks using i-Frames
	Occasionally, sensitive information like login credentials are only available after the user has logged into the target page. In order to get sensitive information, the extension has to mount the attack after the user has logged in but before the user...
	3.3 Forging User Data
	According to the figure 7 above, the page on the right shows the target’s page and the websites that we would want to capture, whereas the page on the top right shows the Firebase console and the page on the bottom right shows a small gallery that is ...
	4 RESULTS
	It’s clear that this was a malicious extension, intended to steal password data for websites. The comment warns other users not to download this, as their accounts could get banned. These extensions exist all over the Google store, and when installing...
	5 CONCLUSION
	6 FUTURE WORKS
	In the future we would attempt to see if the same attack vectors can be used across different web browsers like Mozilla Firefox and Safari. Through research, we found that different browsers have different methods in implementing their extensions. Wit...

	References

