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Technical Session 1:  2:00 – 3:00 pm - Friday April 4, 2025 
 Cybersecurity :  Hagfors 351 Session Chair:  Mansi Bhavsar 
2:00 Behavior as a Password: Machine 

Learning for Behavioral Biometric 
Authentication 

Joe Moriwa, Rushit Dave and Mansi 
Bhavsar 

2:30 Analyzing Ransomware Incidents in 
Healthcare: Patterns and Risk Assessment 

Dominik Degele, Dawit Tesfaye and 
Muhammad Abusaqer 

Reinforcement Learning : Hagfors 352 Session Chair: Alex Ewart 
2:00 Winning is the Friends We Made Along 

the Way: Cooperative Reinforcement 
Learning 

Alex Ewart, Mikhail Filippov, Peter 
Kwaterski, and Sam Keyser 

2:30 Adaptive vs Traditional Q-Learning 
Methodology 

Saif Khan, Kaif Khan and Cayden White 

ML for Business : Hagfors 367 Session Chair:Muhammad Abusaqer 
2:00 Evaluating Quick-Commerce Platforms: 

A Sentiment and Topic Modeling 
Analysis of User Reviews 

Toshif Khan and Muhammad Abusaqer 

2:30 A Web Application for Walmart Store 
Sales Forecasting 

Biyasu A and Mao Zheng 

 ML using Computer Vision: Hagfors 373 Session Chair: Adrian Manchado 
2:00 AI-Driven Soccer Analysis Using 

Computer Vision 
Adrian Manchado, Tanner Cellio, 
Jonathan Keane and Ian Wang 

2:30 Machine Learning for Active Matter: 
Tracking and Analyzing Hexbug 
Interactions 

Yuva Gottimukala and Moumita 
Dasgupta 

Computer Science Education : Hagfors 301 Session Chair: Mathew Wright 
2:00 A Reconstructive Multi-Objective 

Hybrid Mixed Integer Genetic 
Algorithm: Enhancing University Course 
Timetabling with Adaptive Scheduling 
Solutions 

Eric Weinberg 

2:30 Computational Inquiry in Undergraduate 
Math Courses 

Matthew Wright and Matthew Richey 

 Break:  3:00 – 3:30 pm - Snacks in Hagfors Center Atrium 
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Technical Session 2:  3:30 – 4:30 pm - Friday April 4 
ML and Pattern Recognition : Hagfors 351 Session Chair: Mansi Bhavsar 
3:30 Leveraging Machine Learning for 

Enhanced Music Recognition: 
Algorithms and Applications 

Redeate Kidanue, Rushit Dave and 
Mansi Bhavsar 

4:00 Exploring Development Patterns with 
Age Prediction 

Kwadwo Owusu and Sayantica 
Pattanayak 

ML in Medicine: Hagfors 352 Session Chair: Will Lassiter 
3:30 Machine Learning-Assisted Vocal Cord 

Ultrasound  Examination: Project VIPR 
Will Sebelik-Lassiter, Quentin Robbins, 
Evan Schubert, Excel Olatunji, Mustafa 
Barry, Muhammad Alliyu and Merry 
Sebelik 

4:00 Beautiful Brain Blueprint: Visual 
Stimulus Classification Through EEG 
Signal Analysis 

Grace Ivey, Joey Barganz, Ben Williams 
and Zach Peterson 

AI and Environmental Science:  Hagfors 367 Session Chair: Sydney Balboni 
3:30 Wildfire Spread Prediction Using Deep 

Learning 
Sydney Balboni, Adam Swedlund, Zoe 
Kirkman, Reagan Burkemper, Mason 
Beynon and Michael Wood 

4:00 SwarmRAG: A Distributed AI 
Framework for Environmental Modeling 

Ben Paulson, Sydney Balboni, John 
Cisler, Brett Storoe and Thomas 
Benzshawel 

AI in Education:  Hagfors 373 Session Chair: Samantha Foley 
3:30 Chatbot for Academic Advising Avari Caya and Samantha S. Foley 

4:00 Student Performance & Behavior Dataset Asmita Pun, Breanna Olson and 
Abusaqer Muhammad 

CS Education:  Hagfors 301 Session Chair: Sean Jones 
3:30 More Than Technical: Embedding 

Professional Competencies in a Software 
Requirements Course 

Sean Jones 

4:00 Web scraping IMDB site with Python – 
A ChatGPT proof assignment! 

Mm Bari 
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Robotics Contest and Pizza Party 
4:45 – 6:15 pm in Hagfors Center Atrium 

Sponsored  by: 

Programming Contest Announcements 
6:30 – 7:00 pm in Hagfors 150 

Programming Contest 
7:00 – 10:00 pm in Hagfors 150 
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Technical Session 3:  9:00 – 10:00 am - Saturday April 5 
Faculty BoF:  Hagfors 351 Session Chair:  Samantha Foley 
9:00 Faculty BoF: Exploring Faculty Hiring 

Trends and Opportunities at Our 
Institutions 

Allison Sauppé and Samantha S. Foley 

LLM Performance:  Hagfors 352 Session Chair: Aiden Miller 
9:00 Osire: Democratizing LLM Workflows 

for High Performance Computing 
Adam Haile and Aiden Miller 

9:30 An Extra RMSNorm is All You Need for 
Finetuning to 1.58 Bits 

Cody Steinmetz, Gavin Childress, 
Jasdeep Singh, Keagan Weinstock, 
Aaron Herbst and Eli Vang 

Green and Ethical Computing :  Hagfors 367 Session Chair: Wenkai Guan 
9:00 How GPUs Secretly Inflate AI’s Carbon 

Footprint: GPU-aware Carbon Modeling 
Exposes Hidden Carbon Emissions 

Youzhi Li and Wenkai Guan 

9:30 Reducing Bias in AI: Ethical and 
Technical Approaches 

Cheyenne Douglas 

Multi-Agent Systems:  Hagfors 373 Session Chair: Leigh Goetsch 
9:00 Applications of Reinforcement Learning 

in Competitive Robotics 
Andrew Needham, Evan Roegner, 
Joseph Beattie, Andy Dao and Leigh 
Goetsch 

9:30 Enhancing Collaboration in Multi-Agent 
Environments with Attention-Based 
Actor-Critic Policies 

Hugo Garrido-Lestache Belinchon and 
Jeremy Kedziora 

Applications of ML:  Hagfors 151 Session Chair: Abhishek Ghimire 
9:00 Predicting YouTube Video View Counts: 

Analyzing the Impact of Visual Features 
and Metadata 

Jalal Khalil and Abhishek Ghimire 

9:30 Mobility Patterns and Urban Travel 
Behavior in the Twin Cities 

Jalal Khalil and Aseia Nabi 

Break:  10:00 – 10:30 Snacks in Hagfors Atrium 
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Technical Session 4:  10:30 – 11:30 - Saturday April 5 

CS Education:  Hagfors 351 Session Chair: Mark Fienup   
10:30 Flipped Classroom Revisited Mark Fienup 
11:00 Lessons Learned from the Development 

of a Multi-Disciplinary Pre-capstone 
Course in Computing 

Tomi Heimonen and Tim Krause 

ML in Medical Imaging:  Hagfors 352 Session Chair: Caleb Gray 
10:30 Transformers, Tumors, and Time: 

Improving Multi-Modal Image 
Registration Using Cross-Modal 
Attention and Spatial Encoding 

Caleb Gray, Alexander Neher, Sonia 
Grade, Bart Gebka, John Bukowy and 
Peter LaViolette 

11:00 Beyond Boundaries: Building a General 
Latent Space for Medical Imaging with 
Self-Supervised Learning 

Alexander Neher, Alexander Drobek, 
Alhagie Boye, Sonia Grade, Autumn 
Mizer, Caleb Gray and Bart Gebka 

AI and Gaming:  Hagfors 367 Session Chair: Zachary Warns 
10:30 AI Plays Ultimate TicTacToe Zachary Warns 
11:00 Semi-supervised Weights for Action 

Generalization (SWAG) 
Dylan Norquist 

Ethics in AI:  Hagfors 373 Session Chair: Benjamin Fine  
10:30 An Overview of Gender and Political 

Biases in LLMs 
Jared B. Jones, Naeem Seliya, Emily M. 
Hastings and Benjamin T. Fine 

11:00 Generative AI: Emerging Policy, 
Innovation, and Debate 

Caroline Cronk, Cheryn Lindsay and 
Isaac Wayne 

Cybersecurity : Hagfors 151 Session Chair: T. Mohottalalage 
10:30 Emerging Paradigms in IoT Security: A 

Comprehensive Survey of Malware, Threats, 
Vulnerabilities, and Countermeasures 

Samuel Arne, Thivanka 
Mohottalalage and Akalanka 
Mailewa 

11:00 Psyber-Security Revisited: A 
Comprehensive Literature Review on 
Integrating Psychological Principles into 
Cybersecurity 

Thivanka Mohottalalage, Anushka 
Hewarathne and Akalanka Mailewa 

CS Education : Hagfors 301 Session Chair: Elena Machkasova 
10:30 A beginner-friendly environment for 

exploring error messages in the Clojure 
programming language. 

Tristan Kalvoda, Elena Machkasova, 
Jaydon Stanislowski and John Walbran 
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Keynote and Awards Ceremony 
11:45 – 12:45 pm in Hagfors Center 150 

Box Lunches and Departure 
12:45 pm in Hagfors Center Atrium 
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Park in Lot D or L: (no permits required in those lots) 
Important Contacts: 
  mics2025@micsymposium.org 
  Augsburg University Public Safety at 612-330-1717 

Nearby Restaurants: 
  Nabo - located in Oren Gateway Center  (Friday until 6pm, closed Saturday) 
  Einstein's - located in Christensen Center (Friday until 8pm, Saturday 7:30am to 3pm) 
  Jimmy John's - located on Riverside just north of Hagfors (10:30am to 10pm) 
  Oasis Mediterranean Grill - located on Riverside & 20th just north and west of Hagfors (11am-8pm) 
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Leveraging Machine Learning for Enhanced Music 

Recognition: Algorithms and Applications 

Redeate Kidanue, Rushit Dave, Mansi Bhavsar 

Department of Computer Information Science 

Mankato, MN, 56001 

redeate.kidanue@mnsu.edu, rushit.dave@mnsu.edu, and mansi.bhavsar@mnsu.edu 

Abstract 

Music is a tool that has been integrated into society for thousands of years, it has influenced social 

aspects of life and has also aided in communication. Today we have various uses for music that go 

past our traditional entertainment uses and self-expression. Commonly, we see music being 

incorporated into visual art forms, and also being used in the medical field, specifically music 

therapy. With this broad spectrum of usage, it is important that music stays organized and easily 

accessible. This project intends to review literature looking at the methods, results, and limitations 

of music recognition using machine learning. Various techniques like K-Nearest Neighbor, Deep 

Neural Networks, and Convolutional Neural Networks have been identified in the use of 

organizing music and audio files by genre and utility. This literature review will also explore 

methods of data acquisition and music information retrieval. This paper focuses on presenting 

various learning models in the field of music recognition and illustrating their results.  

Keywords: Machine Learning, Music Classification, K-Nearest Neighbor, Support Vector 

Machines, Neural Networks  

1. Introduction

Music has been an integral part of human culture for many years. It helps humans communicate, 

express themselves, and also connect with others. Music does not only include entertainment but 

also education, and therapy. With the rise of AI and machine learning entering our daily lives, we 

are seeing a change in how we consume and create music. Machine learning has allowed for 

automatic categorization of music, which shortens the process of sorting large datasets. 

Traditionally, music classification methods are time consuming, and often subjective. Machine 

learning can solve these problems with its ability to quickly analyze large datasets and detect 
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patterns, therefore automatically categorizing music. This technology is prevalent in the growing 

field of music streaming services where we see personalized playlists, and music recommendation 

systems. Today, we see a plethora of music streaming services where competition between them 

relies on how the well the service can cater to the individual users. By using a wide range of 

machine learning techniques, researchers are able to classify music based on genre, mood, and 

other attributes. This allows for enriched user experience. Music classification is an 

interdisciplinary field which uses knowledge from signal processing, machine learning, and music 

theory to create models capable of classifying audio files. Features like rhythm, melody, and timbre 

are extracted from audio signals and used to create a representation of each file or track. By 

analyzing these representations using machine learning models, patterns can be identified and used 

to classify tracks. Since music is an ever-growing field, the need for scalable and efficient 

algorithms is always sought out for. This paper aims to provide a review of existing machine 

learning techniques in the field of music genre classification. This paper focuses on methodologies, 

results, and limitations of each technique. This paper will also explore the most effective machine 

learning techniques for music genre classification, and how they compare in terms of accuracy and 

efficiency. It will also examine ways in which advancements in machine learning for music 

classification will benefit artists, industry stakeholders, and listeners, as well as how the integration 

of music theory and signal processing into machine learning pipelines can improve the 

interpretability and performance of classification models. By surveying the strengths and 

weaknesses of various machine learning techniques this paper intends to show the possibilities of 

machine learning being integrated into the field of music. This paper will also demonstrate how 

research in the field can be seen in practical application. Enhanced techniques in this field can lead 

to better discovery of new artists, leading to a more diverse, and flourishing music industry. These 

practical applications allow for benefits not only to music artists but business owners and industry 

workers as well.  

2. Background

Past research on music recognition and music information retrieval has spanned many different 

fields. Within computer science, Optical Music Recognition (OMR) has strived to automate the 

reading of sheet music (Calvo-Zaragoza et al., 2021). Sheet music contains a written language that 

portrays the pitch, timbre, length, and other aspects of a given note. The goal of OMR is to create 

a program that is capable of reading sheet music as efficiently as the human brain can. OMR aids 

in the field of Music Information Retrieval by obtaining the details that are encoded in sheet music. 

With this information we are able to classify written sheet music without explicitly converting it 

to audio. High quality audio data is able to be classified using spectral analysis. Spectral analysis 

is a method that is used to study a signals structure or content. Octave-Based Spectral Contrast is 

a type of spectral analysis in which harmonic components from spectral peaks and valleys are 

considered independently. This allows the contrast distribution to be reflected clearly and permits 

for a precise output of the frequency range. Mel-Frequency Cepstral Coefficients (MFCC) are a 

commonly used method in speech recognition as well as MIR. MFCC has the advantage of being 
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able to display the frequency content of audio signals in a compact manner. (Lee et al., 2009). 

These spectral analysis methods are used to transform raw audio data into structured signals. 

 Figure 1: Music Emotion Recognition Process (Yang et al., 2018)  

Today, we see deep learning methods being integrated within MIR. Deep learning is a 

subset of machine learning concerned with using neural networks with many layers to model 

complex relationships. Conventional machine learning techniques rely on manual feature 

extraction, however deep learning models are able to discern representations from raw data. The 

layers in the network capture abstract features from the input data. In music classification, the first 

layers typically focus on basic audio features such as frequency and amplitude. The deeper layers 

are able to identify features and patterns that can be mapped to specific genres (Bahuleyan, 2018). 

Figure 1 lays out the recognition process which includes extracting features from input audio. 

Features are then classified to an emotion space using various machine learning models. 

With the modern advancements of machine learning being merged with MIR and music 

recognition we are able to expand real world applications. This includes the possibility of joining 

this technology with the home virtual assistants we see today. MIR already provides excellent 

performance with music recognition in virtual assistants. Users are able to search for and discover 

new songs. Virtual assistants are also able to accurately respond to prompts such as “What song is 

playing?” or “What artists create similar songs to this one?”. Professionals in the music field can 

use this to aid in curating playlists, finding inspiration, and gathering an audience. MIR is also 

seen assisting various accessible solutions such as providing information to output tactical, or 

verbal feedback to visually impaired people or people who are hard of hearing. The voice activated 

aspects also supply access to people with mobility issues. Since MIR is an interdisciplinary field, 

we can also see its uses in healthcare. One of the most promising uses for MIR in healthcare is 

within the field of music therapy. Music recognition models can efficiently classify music based 

on genre and other factors, allowing for therapists and other professionals to promptly provide a 

treatment curated to a patient's mood or other needs. Music therapy has also seen promising results 

when used for patients with neurodegenerative diseases such as Alzheimer’s and Parkinson’s 

(Matziorinis & Koelsch, 2022). 
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3. K-Nearest Neighbor

In recent studies, researchers used K-Nearest Neighbor (KNN) to predict the genre of songs. KNN 

is known for being easily adaptable to many different types of data analysis. The purpose of their 

work was to advance the accuracy of classification for different genres of music. For the 

experiment, the GTZAN dataset was used, the GTZAN dataset is a well-known resource in the 

field of music classification. This dataset contains a broad collection of thirty second sound files. 

Each track is a 16-bit mono audio file at a sampling rate of 22050 Hz in .au format (Asim Ahmed, 

2017). The total dataset included for this experiment included 10,000 songs from ten different 

genres.  

For feature extraction, this experiment used Mel Frequency Cepstral Coefficients (MFCC). 

MFCC is a commonly used method in this field. It captures timbral and tonal properties of audio 

signals from given sound files. MFCC tries to replicate the human auditory system by transforming 

the audio into a compact representation. This technique greatly improves the performance of 

machine learning models especially in the field of genre classification.  

KNN was chosen for this experiment because of its simplicity and ease of use. KNN is an 

instance-based learning method which makes it fitting for tasks that involve classifying the 

differences between data points. It is also a non-linear method which allows effectiveness when 

discerning between direct and indirect patterns. Since this is a non-linear model, it can easily 

recognize and adapt to complex patterns. Additionally, one of the main advantages with KNN is 

that it improves in accuracy as the dataset size increases. However, this increased achievement in 

validity also comes with an increase in computational power. This can create limitations when 

building models using KNN. Since the KNN method does not have a training phase this leads to 

an increase in computational power by needing to store and process all data points during the 

classification and prediction phase. This creates drawbacks when using large datasets or 

multidimensional data.  

For the current experiment, KNN was primarily used to measure the distance between two 

soundtracks. This allowed the researchers to measure the similarity and dissimilarity between the 

audio files. The analysis utilized Kullback-Leibler (KL) divergence to quantify the distances. As 

seen in Figure 2, KL is a metric that measures the difference between information represented in 

two different data distributions. This difference is measured by observing how one probability 

distribution diverges from the second reference distribution. Since this distance metric can be 

aligned precisely when looking at the data, this allows the KNN model to create a detailed 

classification by being able to account for subtle differences between audio tracks. 

Figure 2: Kullback-Leibler loss function (Hall, 1987)  
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Advantages and disadvantages of different machine learning models for music generation 

have been a recent point of discussion (Liang, 2023). KNN was found to be ill-suited with music 

generation due to its poor performance with large multidimensional data. Since the KNN algorithm 

is instance based, meaning that there is no training phase, it is computationally expensive (Zhang, 

2017). KNN does have high accuracy when compared to simpler methods such as Naive Bayes 

but takes a great deal of memory storage because of its need to store all of the data points in order 

to compare them at a later time (Bijalwan et al., 2014). The high computational expense almost 

solely comes from classification happening at the time that instances are seen (Guo, 2003).  

The use of KNN in these studies showed its suitable mechanisms for classifying small 

amounts of data. When paired with MFCC, KNN can produce improved, more detailed outputs 

when classifying data. Much of the current research involving KNN includes constructing 

functions to measure distance (Zhang, 2021). However, the limitations with KNN can emphasize 

the importance of the correct uses of KNN in certain datasets and experiments.  

4. Support Vector Machines

Support Vector Machines (SVMs) are used to find the boundary that can separate two classes of 

data with the least amount of loss. Figure 3 visualizes a simple SVM model. SVMs are unique 

because of how they transform input data into a higher dimensional space using the kernel trick 

(Asim Ahmed, 2017). The kernel trick is a mathematical approach which allows non-linear data 

to be classified linearly. This is a necessary transformation because non-linear data may not be 

separable. Data may not be linear which leads to an inability to separate data (Jakkula, 2006). 

When the kernel trick is applied, we are able to map input data into a higher dimensional space, 

making it possible for a hyperplane to linearly separate the classes. The goal for SVMs is to 

maximize the distance between the data points and the hyperplane, this ensures a distinct division 

between classes and prevents overfitting (Yue et al., 2003). In music genre classification, SVMs 

can be seen to be fairly effective because they are able to handle multi-dimensional data. In the 

case of music genre classification, when analyzing audio files, there are many features that must 

be accounted for. Features can include pitch, rhythm, and as mentioned before, timbre. These 

features are usually represented in multidimensional spaces like MFCC or spectrograms. MFCC 

can be a valuable tool for SVMs when they are both implemented, leading to capturing certain 

features of audio files and creating useful inputs. The kernel trick is a key aspect of SVMs 

classification abilities. The most common kernel types include linear, polynomial, sigmoid, 

quadratic, and radial basis function (RBF). RBF is most commonly chosen for music genre 

classification because of its technique of measuring the similarity between data points using 

Euclidean distance. This kernel algorithm calculates the dot product of the input vectors in the 

transformed feature space. This saves computational load by not needing to do an exclusive data 

transformation. The linear kernel is typically used for simpler data sets, while polynomial kernels 

are used for classifying more complex patterns.  
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One limitation when dealing with SVMs is the fact that it is primarily a binary classifier. It 

uses a “one-vs-rest” approach for classifying many classes. In the case of music genre 

classifications, multiple SVM classifiers must be trained for classification, specifically one for 

each genre being classified. The classifiers then output a confidence score where the highest score 

is the final prediction. The need to train multiple classifiers can make this method computationally 

demanding, especially when dealing with large datasets.  

In the case of music recognition, SVMs work well for high dimensional data like what is 

seen in music recognition. Music features are typically seen in high dimensional data like 

spectrograms. SVMs are proficient in handling this kind of high dimensional data and also work 

well in smaller to medium sized datasets, making it well suited for niche music recognition 

projects. When looking at the GTZAN dataset which has a large amount of features but a moderate 

amount of data, this makes it well-suited for classification using SVMs. With the use of RBF 

kernels this typically makes SVM models outperform KNN models in accuracy. Xu et. al (2020) 

use SVMs to predict how participants will respond emotionally to music. They incorporate listener 

specific data such as physiological responses and also user preferences to predict emotional 

responses. This shows the flexibility of SVMs with handling multidimensional data. 

Figure 3: Support Vector Machine (Dharmani, Ayush, Prateek, 2023)  

SVMs require the use of the entire dataset during training and prediction phases. This too 

requires a high amount of memory and computational resources. This makes it difficult to work 

with SVM while looking at large datasets. Choosing the best fitting kernel is also very important 

and can affect the accuracy of the output. However, SVMs still remain one of the most common 

tools for music genre classification. When paired with other feature extraction methods they can 

produce results with greater accuracy. 
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5. Neural Networks

Deep Neural Networks (DNNs), Convolutional Neural Networks (CNNs), and Recurrent Neural 

Networks (RNNs) are all common machine learning methods used for music genre classification. 

Each having distinct strengths and weaknesses allowing them to have unique impacts on different 

datasets. A simple neural network, displayed in Figure 4 contains an input layer, at least 1 hidden 

layer, and an output layer. 

Figure 4: Simple Neural Network (Sun et al., 2018)  

5.1 Deep Neural Networks 

DNNs are composed of many layers of interconnected neurons. These layers are skilled at finding 

patterns in data which is important for music classification. When many layers of these 

interconnected neurons are stacked, DNNs can absorb different audio features from raw signals or 

processed inputs from spectrograms or MFCCs. For music genre classification, DNNs are used in 

high dimensional feature spaces. Features such as root mean square energy (RMSE) and zero-

crossing rate (ZCR) can be given to a DNN to see different patterns that distinguish one genre 

from another. Studies have also shown that DNNs are skilled in processing a wide variety of 

acoustic features which allows them to use the information for different datasets (Bahuleyan, 

2018). Since DNNs can automatically extract and learn feature representations from data makes it 

a popular tool in this field.  

` DNNs are also a flexible method of machine learning. Lee et al. (2021) used DNNs to 

predict moods in classical music. They analyzed tonal and harmonic attributes for the predictions. 

DNNs are useful in emotion recognition tasks as they are skilled in integrating audio features with 

physiological data such as brain activity and skin conductance (Xu et al., 2021).  

However, DNNs face limitations such as relying on labeled datasets. Due to DNNs being 

a supervised learning model this can create drawbacks when classifying data. DNNs are also prone 

to overfitting which can lead to further steps needing to be taken to finalize data. Techniques such 

as batch normalization, dropout, and early stopping have been used to tackle the issue of 
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overfitting. Advancements in computer hardware have also aided in the use of DNNs for further 

real-time music processing.  

5.2 Convolutional Neural Networks 

CNNs are best at analyzing data in a grid structure like images or spectrograms. This makes 

them effective in tasks that involve visual representations of audio. The main difference between 

CNNs and typical Neural Networks is that CNNs specialize in image processing (O’Shea, 2015). 

CNNs utilize convolutional layers to find patterns in data. CNNs often use Mel-spectrograms as 

input. These spectrograms give two-dimensional representations of audio signals, and this allows 

CNNs to learn about the time and frequency domain of the data. Since CNNs use localized 

feature extraction, this allows for it to learn genre specific patterns very well. CNNs are also used 

to analyze Mel-spectrograms. The CNNs showed promising results when classifying between 

genres like rock, jazz, and classical (Ashraf et al., 2023). 

Figure 5: Simple CNN (O’Shea, 2015)  

Transfer learning and fine-tuning practices can further improve the use of CNNs in genre 

recognition. When adjusting these pretrained models this allows researchers to modify the CNN 

to specific music datasets. Figure 5 demonstrates a CNN model where one can adjust the pooling 

layer of a fully connected layer. This can lessen the need for labeled data. CNNs are also useful 

for music transcription. They can extract pitch and note information from audio signals. CNNs do 

face challenges when seeking temporal dependencies which is important when working with 

music. Being unable to capture dependencies can make it difficult to understand the structure of 

the music, leading to difficulty classifying the genres. This is typically tackled by using a hybrid 

model of CNN and RNN together.  

CNNs are also adept at identifying emotional content. CNNs analyze features like spectral 

contrast and chroma to classify music into mood related categories like happy, sad, or energetic 

(Lee et al, 2021). Despite being relatively complex, CNNs must have specific hyperparameters 

tuned like filter size, stride, and pooling in order to reach their desired performance.  
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5.3 Recurrent Neural Networks 

RNNs are ideal for looking at temporal dependencies in music due to the fact that they are designed 

to process sequential data. RNNs attempt to understand how musical features change over time. 

They can incorporate data from their memory to model the sequential nature of music such as 

rhythmic patterns, melodic progressions, and changes in dynamics. Researchers use RNNs to 

analyze audio features like MFCC and spectral contrast in order to find the similarity between 

tracks (West, Cox, Lamere 2006) Long Short-Term Memory (LSTM) and Gated Recurrent Units 

(GRUs) are variants of RNNs which help with the common drawbacks of RNNs like vanishing 

gradients.  

When RNNs are trained on large data sets of music tracks, the RNN is able to generate new 

music that is based off of the given tracks. LSTMs specifically have been able to create many 

compositions in different genres. Hybrid models of CNNs and RNNs have been popular for music 

classification. CNNs are able to first extract spatial features from spectrograms, and the RNN is 

able to map the relationships within the features. This allows local and sequential patterns to be 

accounted for (Bahuleyan, 2018).  

Figure 6 shows a proposed hybridization of CNN and various RNN models such as 

GRUs and Bi-LSTMs. This model takes given audio input and uses either MFCC or Mel-

spectrogram for a feature extraction technique. Figure 7 shows that the different RNN models 

performed similarly when compared, with the GRU2 model performing highest for Mel-

spectrogram feature extraction and the LSTM performing highest for MFCC. 

Figure 6: Hybrid CNN and RNN architecture (Ashraf et al., 2023) 
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Figure 7: Results from proposed architecture (Ashraf et al., 2023)    

6.   Comparison   

6.1 KNN   

KNN is an incredibly useful algorithm for the classification of music genres. KNN measures 

the distance between data points to identify the closest neighbors, then assigning them to a class. 

Its simplicity allows it to fit well with smaller datasets. When KNN is paired with another tool 

for feature extraction such as MFCC, KNNs accuracy improves by being able to detect small 

differences between audio files. However, part of the KNN algorithm includes the need to store 

and process all of the data points. This means that it can be computationally inefficient especially 

when dealing with large datasets. KNN also does not perform well with high dimensional data, 

often needing aids to reduce dimensionality.   
 

6.2 SVM   

SVMs are skilled in classifying high dimensional data, this makes them well suited for this 

field. Using the kernel trick, SVMs are able to transform input data into higher dimensional spaces 

which allows for a linear separation. The RBF kernel is particularly effective for music 

classification, using Euclidean distance to measure the similarity between data points. SVMs 

require multiple classifiers to differentiate between genres, which can be inefficient. SVM still 

outperforms KNN in accuracy and is better qualified to handle spectrograms and MFCC.   

6.3 DNN   

DNNs are proficient at capturing patterns within data which allow for analysis or audio 

features like timbre, and pitch. DNNs are flexible allowing them to aid in genre classification or 

emotion recognition. A downside of DNNs comes with the fact that it heavily relies on labeled 

data, which creates a drawback when using it. However, many techniques have been used to aid 
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in these drawbacks such as dropout and transfer learning.   
 

6.4 CNN   

CNNs are able to extract spatial features through its convolutional layers, this allows them to 

capture time and frequency information from audio tracks. Transfer learning makes them 

increasingly useful by allowing pre-trained models to adapt to specific datasets. CNNs struggle 

with temporal dependencies, which is important in genre classification. Nevertheless, the 

integration of RNNs has been able to improve the performance of this classifier.   
 

6.5 RNN   

RNNs are designed to process sequential data which makes them ideal for modeling temporal 

dependencies. RNNs are able to analyze the change in musical features by adjusting memory 

mechanisms. LSTMs and GRUs are able to tackle common issues RNNs face like vanishing 

gradients. RNNs are also used for music generation, which can produce music in the style of the 

given training set.    

 

Study  Objective  Methods  Strengths  Limitations  Results  

Yang et 

al. 

(2007)  

Recognizing 

emotion content 

of music signals 

by predicting 

arousal and 

valence values  

Regression 

approach  

   

Continuous 

view of music 

emotion 

eliminates 

ambiguity  

Little 

background on 

continuous 

approach to 

MER  

Best 

performance: 

58.3% for 

arousal, 28.1% 

for valence  

Anand 

et al. 

(2021)  

Create a deep 

learning model 

to improve 

today's state of 

music 

recommendation  

MFCC feature 

extraction; 

CNN and 

RNN  

Stable RNN 

model  

Fluctuating 

CNN model  

System using 

both RNN and 

CNN had the 

best results  

Shah et 

al. 

(2022)  

Find which ML 

method performs 

best for music 

genre 

classification  

CNN used for 

training; SVM 

for 

classification  

Smaller 

architecture 

used to avoid 

overfitting.  

   

Little 

preprocessing 

of the data 

was done  

CNN achieved 

the highest 

accuracy with 

74.1%  
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Yandre 

et al. 

(2017)  

Develop a deep 

learning approach 

for singing skill 

evaluation  

Unit 

concatenation, 

HMM-based 

statistical 

parametric 

synthesis, and 

DNN  

Results are 

the best 

known 

results for 

dataset  

   

Model 

performed 

significantly 

better with 

African music 

dataset 

compared to 

Western 

music  

Combination of 

a CNN with an 

SVM trained 

with RLBP 

achieved 92% of 

recognition rate  

Esposito 

et al. 

(2022)  

Deep learning 

algorithms for 

recognizing 

COVID-19 

related cough 

audio signatures  

 

Log-mel 

spectrograms 

for 

preprocessing. 

Quantum 

circuits 

designed with 

PennyLane  

   

Dramatically 

reduced 

training time 

and reduced 

memory 

requirements  

Results were 

not validated 

with multiple 

techniques  

Covid detection 

test accuracy 

over 60%  

Pandey 

et al. 

(2022)  

Identify types of 

music based on 

EEG signals  

SVM, Random 

Forest, Naive 

Bayes,, LDA  

Discovered 

that music 

features like 

timbre and 

beat are more 

generic and 

further 

studies  

Brains are 

highly 

subjective and 

listen to songs 

differently  

Random forest 

and LDA 

performed best  

Modran 

et al. 

(2023)  

Create a Machine 

Learning model 

that can predict 

whether a 

specific song has 

therapeutic 

effects on a 

specific person.  

MFCC for 

feature 

extraction  

Basic NN 

structure  

Achieved 

accuracy 

over 94%  

Current 

solution must 

have users 

select their 

mood before 

prediction  

Model correctly 

predicted in over 

91% of cases  
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Ashraf 

et al. 

(2023)  

Music 

classification 

using a model 

with 

hybridization of 

CNN and 

variants of RNN  

CNN, RNN, 

LSTM, GRU  

Hybridizatio

n showed 

improved 

accuracy 

than typical 

CNN  

Gradient 

during back- 

propagation 

does not allow 

for layers to 

be sufficiently 

updated  

CNN and 

LSTM 

hybridization 

had an accuracy 

of 76.40%, 

CNN and Bi-

GRU 

hybridization 

had and 

accuracy of 

89.30%  

Lee, 

Jeong, & 

Ko 

(2021)  

Create a model 

for recognizing 

the detailed 

mood of classical 

music  

MFCC feature 

extraction.  

Clustering 

algorithm for 

classification  

   

Classical 

music tends 

to have 

inherent 

moods 

making it 

easy to 

classify  

Model does 

not perform 

well with 

other 

instrumental 

music  

Most mood 

classes have 

ROC AUC 

values between 

0.7 and 0.8, 

making it a 

good classifier  

Ni et al. 

(2012)  

Create a system 

for harmonic 

analysis  

New proposed 

harmonic 

analysis 

system uses 

chromograms, 

HMM 

topology, and 

parameter 

estimation  

System still 

performs 

comparably 

to other 

methods in 

other genres  

Model 

performs best 

on rock music 

due to mainly 

being trained 

on that genre  

Proposed model 

achieved 75% 

Weighted 

Average 

Overlap Ratio  

Table 1: Comparison of Machine Learning Experiments for Music Classification 

The research summarized in Table 1 exhibits the broad field of MIR. The unique regression 

approach done by Yang et al. (2007) finds a potential solution to the ongoing problem of ambiguity 

and subjectiveness in music emotion recognition. Researchers developed a continuous approach 

for mapping emotions therefore revealing a personalized baseline for listeners. Continuous 

mapping for MER is an under-researched approach which limits further implementation. Esposito 

et al. (2022) took audio feature extraction to the medical field by creating models to diagnose 

COVID-19 through cough audio. By integrating quantum processing researchers were able to 
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achieve 60% accuracy with test data. Similarly, Modran et al. (2023) created a model for use in 

music therapy. Mood was correctly classified 91% of the time for predicting whether a song would 

have therapeutic effects on a given person. However, participants were required to report their 

mood, giving the model a starting off point before the prediction. These studies all face the issue 

of generalizability. Further work still needs to be done in order to be capable of categorizing 

different genres. Yandre et al. (2017) created a successful model for classifying African music 

genres, but the model performed poorly on Western music. Research in MER must be able to 

balance specificity of different genres while also taking subjectivity into account.  

Despite the many promising strides made in this field there are also many limitations that have 

shown themselves within these studies. One of the significant limitations regards labeled datasets 

and the reliance of many supervised learning models on these datasets. DNNs, and SVMs heavily 

rely on training from labeled data. The task of labeling these large datasets is particularly time 

consuming. Commonly used datasets in this field like the GTZAN dataset can have biases and 

mistakes. We can see genre overlap and unequal distribution on genres. With these limitations the 

generalizability of algorithms can be compromised leading to inaccurate classification when used 

in real world applications. Additionally, many of these studies tend to focus on popular Western 

music genres such has rock, jazz, and pop music. This leads to a gap in research involving non-

Western music styles. This bias leads to much of the world’s music being undermined and 

therefore having a lower accuracy of classification when using existing algorithms.   

Another common limitation comes from the computational expenses and scalability of certain 

algorithms. KNN and SVM struggle with handling high dimensional data and large amounts of 

data. KNN requires a significant amount of memory capacity due to how the technique performs. 

SVMs must train multiple classifiers which leads to an increase of computational demand. Neural 

network approaches show improved performance compared to KNN and SVMs, but they demand 

an extensive amount of training and intervention from researchers. These computationally 

demanding techniques require specialized hardware from the researchers. The bounds of current 

computers are constantly growing as well as the amount of music in the world. In order to quickly 

classify large amounts of audio files researchers must have access to hardware that can handle 

these computationally expensive techniques. Running these techniques can also raise sustainability 

concerns since these models use a great amount of energy which increases costs of running these 

experiments. This drawback forces researchers to focus on smaller datasets that are more 

sustainable which can lead to results that do not represent the full scope of music genres.   

7.   Conclusion and Future Work   

The integration of different methods into ML models have proven to have promising results for 

MIR. As we can see with Esposito et al. (2022) the addition of quantum computing resulted in a 

great improvement in training time and memory requirements. With quantum computing’s ability 

to hold large amounts of data, the possibility to train on larger datasets becomes more probable. 

Ashraf et al. (2023) developed a hybrid model of a CNN with RNN elements incorporated. This 
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study showed promising results with the hybrid model performing better than the CNN alone. With 

the increase in accuracy and performance when incorporating different methods we can start to 

consider what more we can start training models on. Researchers can start training on music with 

lyrics, allowing the models to predict emotion not only based on musical features but also singing 

features and lyrics.   

Past and current research in MIR has typically used accuracy or F1 score to evaluate models 

performance. Future studies could consider implementing user preference and human judgement 

as evaluation metrics. This will introduce many new perspectives on the model’s output, also 

inviting specific feedback. Genre specific metrics could also be implemented, creating enhanced 

metrics. For example, ambient music evaluation might not need to depend heavily on beats and 

rhythm compared to other genres such as classical or pop. Jazz music tends to rely on 

improvisation as well, this opens up the possibility of unexpected key changes, and changes how 

the song may be interpreted. Future studies could build models trained on specific genres, allowing 

for strengthened classification.   

Many popular Western songs tend to follow similar patterns, and adhere to a similar set of 

rules. This creates a limitation in common datasets used due to the lack of variance. A potential 

next step in MIR could include the ability for the models to recognize errors in music. Errors such 

as notes being played in the wrong key, slight pitch errors, and differences in motifs can be detected 

by a professional, along with a potential solution being proposed. A model containing the ability 

to discern these errors and possibly present a solution as well could be useful in music education, 

creating a new resource for students and teachers.   

Machine learning has greatly helped the field of music classification by creating new ways 

to organize and analyze audio data. Machine learning techniques like KNN, SVM, DNN, CNN, 

and RNN each have unique strengths and weaknesses that can aid in all aspects of music genre 

classification. CNNs most commonly displaying the highest accuracy in many experiments 

demonstrate higher level performance than other ML methods. Deep learning models are adept at 

handling high dimensional data. However, these methods each face their own limitations, most of 

them including computational demands, but also relying on labeled data. Future work in this field 

could include developing computer hardware capable of handling large amounts of data in an 

efficient manner. Diving deeper into unsupervised and semi-supervised learning techniques would 

also help foster great strides in the field. By facing these limitations and finding solutions, 

researchers can further discover new ways to incorporate machine learning in the field of music.  
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2. Abstract

This paper presents the Reconstructive Multi-Objective Hybrid Mixed Integer Genetic Algo-
rithm, a novel approach to solving the University Course Timetabling Problem (UCTTP).
This complex problem involves scheduling courses in a way that accommodates numerous and
often conflicting constraints, such as room availability, faculty schedules, and student course
requirements. Our approach integrates heuristic strategies with Mixed Integer Programming
(MIP) and Genetic Algorithms (GAs) to create a hybrid methodology that balances compu-
tational efficiency with the quality of solutions. By reconstructing the problem around estab-
lished academic timeslot patterns and employing a dual-phase optimization framework, our
algorithm simplifies the complexity of UCTTP, enabling more focused and effective solutions.
We demonstrate the efficacy of our approach through a series of case studies, comparing our
algorithm’s performance with traditional scheduling methods. Our findings suggest that the
Reconstructive Multi-Objective Hybrid Mixed Integer Genetic Algorithm not only enhances
the efficiency of course timetabling but also offers a flexible and adaptable framework suitable
for addressing the dynamic scheduling needs of academic institutions.
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3. Background

The exploration of the University Course Timetabling Problem (UCTTP) is driven by the
real-world challenge of meeting the scheduling demands of academic institutions and the intel-
lectual ambition to enhance computational approaches to these optimization problems. This
issue comfortably spans both practical and theoretical realms, as it entails the intricate op-
timization task of organizing events within predetermined timeslots and spaces. Addressing
UCTTP necessitates navigating a myriad of often conflicting constraints, including room avail-
ability, faculty schedules, student course requirements, and the specific resource needs of each
class. This problem’s elements include not only students, teachers, and courses but also the
facilities and equipment that support both theoretical and practical learning environments.
This complexity has only increased as schedulers and scholar’s explore new requirements and
optimization techniques to integrate into these models(Bashab et al. 2023; Chen et al. 2023;
Chen et al. 2021)

In the realm of solving the University Course Timetabling Problem (UCTTP), a spectrum
of solution methodologies has been developed, reflecting the complex nature of the prob-
lem. One prevalent approach is the combination of heuristic strategies with Mixed Integer
Programming (MIP)Samarathunga and Wellahetti (2023) or Linear Programming techniques.
This hybrid methodology leverages the heuristic component for generating feasible solutions
or narrowing down the problem space, which is then precisely optimized using MIP.Rappos et
al. (2022) Such a blend not only caters to the intricate constraints and combinatorial aspects
of UCTTP but also strikes a balance between computational efficiency and the quality of
solutions. Meanwhile, exact algorithms focus on uncovering the globally optimal solution by
exhaustively searching through all possible configurations or employing advanced techniques
to discard non-viable or suboptimal solutions. Though these algorithms assure optimal out-
comes, their application is generally feasible only for smaller problem instances due to their
intensive computational demands.

Hybrid approaches have gained prominence by integrating elements from different method-
ologies to capitalize on their distinct advantages. These methods might combine heuristic
algorithms for generating an initial solution, subsequently refined through exact optimization
techniques, or use metaheuristic algorithms for a broad exploration of the solution space, with
sub-problems being solved optimally through MIP models. An illustrative instance of this ap-
proach involves resolving location constraints prior to the allocation of time slots. The primary
objective behind these hybrid methods is to achieve a balance, harnessing the high-quality so-
lutions provided by exact methods while also benefiting from the scalibility of heuristic or
metaheuristic approaches. Blum et al. (2011)

In parallel, metaheuristic algorithms are particularly effective for large-scale problems. Tech-
niques such as genetic algorithms, simulated annealing, and tabu search are notable for their
strategic exploration of the solution space, aiming to identify globally optimal solutions by
circumventing local optima. Although metaheuristics are versatile and potent in managing
intricate problems, they necessitate careful tuning of parameters and cannot always guarantee
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the discovery of the optimal solution.(Abdipoor et al. 2023; Mikkelsen and Holm 2022; Pillay
2016; Sylejmani et al. 2023; Teoh et al. 2015)

4. Introduction

Innovating off of the latest trends, we constructed a model that builds of the latest advance-
ments but focuses on its ability to solve real-world higher scheduling problems in an efficient
manner. Building upon the latest advancements in decomposing complex scheduling challenges,
the Reconstructive Multi-Objective Hybrid Mixed Integer Genetic Algorithm Approach to the
Course Timetabling Problem presents a strategy that emphasizes the reconstruction of the
problem around predetermined academic timeslot patterns such as Monday-Wednesday-Friday
(MWF) and Tuesday-Thursday (TuTh) which we describe as a reconstructive approach.1
Rather than decomposing the problem based on the given constraints, this model recomposes
the schedule in to less complex pieces based on known time-slot patterns. This methodologi-
cal innovation simplifies the initial complexity of the University Course Timetabling Problem
(UCTTP) by effectively segmenting the timetable into known patterns, thereby reducing the
optimization space and enabling a more focused approach to solving the remaining aspects
of the scheduling task. This initial step of reconstruction leverages the established schedul-
ing frameworks within academic institutions, offering a strategic advantage by aligning the
problem-solving process with the inherent rhythms of academic life. The next step is to take
the remaining 1 credit classes and the 1 credit separated from 4 credit classes and prepare them
for scheduling based on the remaining time slot and room availability. Such a reconstructive
approach not only aligns with but also advances the trend towards breaking down complex
problems into more manageable components, by instead integrating these components back
into a cohesive whole that respects the structured realities of academic scheduling.(Abbaszadeh
and Saeedvand 2014; Burke et al. 2009; Eledum 2017; Herres and Schmitz 2021; Holm et al.
0000 Accepted; Jawa Bendi et al. 2018; Samarathunga and Wellahetti 2023)

Following this reconstruction framework, the project employs a hybrid optimization model
that integrates the strengths of Mixed Integer Programming (MIP) and Genetic Algorithms
(GAs) beginning with an MIP model that loosens some constraints to accommodate a broader
exploration of solutions. The initial MIP phase addresses the multi-objective facets of the
timetabling problem, optimizing soft constraints to ensure a feasible and adaptable solution
for the 3 credit patterns and the remaining 1 credit sections. Moreover, the 1 credit classes are
separated from 4 credit classes so they can be optimized to adjacent to their 3 credit partners
leaving the remaining 1 credit for later optimization. Subsequently, the GA phase refines this
solution, where a custom mutation feature is crucial for preserving hard constraints, a common
challenge in metaheuristic optimizations. However, metaheuristic approaches like GAs face
their own set of challenges, including the risk of premature convergence to suboptimal solutions,
the need for meticulous parameter tuning to balance exploration and exploitation, and ensuring

1While are approach is most similar to deconstruction approaches, our focus on finding known patterns in the
given data set rather that deconstructing the constraints into parts leads us to describe this as reconstructive.
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diversity within the population to avoid stagnation. These challenges are addressed within our
model by careful algorithm design and the integration of advanced genetic operations, ensuring
the GA’s effectiveness in navigating the complex solution space of UCTTP.

At the core of our approach is the use of PuLP, an efficient linear programming library, piv-
otal in formulating and resolving the complex facets of the scheduling optimization challenge.
PuLP adeptly handles key variables—room availability, faculty schedules, and class credit
requirements—allowing for a nuanced optimization of these interdependent elements within
the class schedules.2 Complementing our optimization framework is a user-centric web applica-
tion developed with Flask, enhancing user engagement and simplifying the data management
process. This interface empowers users to tailor the scheduling environment—blocking slots
for specific classes, ensuring no collisions occur between selected classes, and anchoring classes
to fixed timeslots. Additionally, it offers the capability to adjust model hyperparameters, tun-
ing the balance and interaction between various constraints to refine the scheduling outcomes.
This interactive platform not only enables the integration of user preferences and external
data but also provides a platform for comparative performance analysis against established
timetables. Such interactivity is crucial, bridging the gap between theoretical advancements
in algorithmic strategies and their practical application, facilitating immediate adjustments
and iterative enhancements based on real-world feedback and empirical insights.

Fig. 1 The user interface of the class scheduling application. The interface includes sliders
for adjusting scheduling parameters, a data section for loaded course information, and
selection options for class constraints.

At the user interface’s forefront, sliders provide a dynamic means for users to fine-tune various
hyperparameters, directly shaping the behavior of the scheduling algorithm. These adjust-
ments, including ‘Avoiding Selected Classes,’ ‘Keeping 4 Credit Classes Together,’ ‘Blocked
Slot Penalty Value,’ and ‘Hold Penalty Slider Value,’ allow schedulers to modify the emphasis
placed on different model constraints, tailoring the optimization process to align with specific
scheduling priorities.

2PuLP is configured to use its default LP solver, which is sufficient for the scale and complexity of problems
addressed in this study. However, PuLP can also interface with more advanced solvers like CPLEX, GUROBI,
and SCIP, which may offer enhanced performance for larger or more complex optimization problems.
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Beneath these interactive sliders, the ‘Loaded Data’ section presents detailed course informa-
tion, such as days, times, faculty assignments, and locations, enabling users to engage with and
modify the schedule’s foundational elements. This section not only facilitates the assignment
of classes to preferred timeslots but also offers tools to set constraints, like holding a class at a
designated time or blocking slots to prevent scheduling conflicts. Additionally, a ‘Restrictions’
feature allows for the exclusion of class overlaps, particularly useful in scenarios where students
are likely to enroll in concurrent courses, thereby enhancing the schedule’s practicality and
user conformity.

The application plays a pivotal role in creating a dynamic feedback loop that significantly
enhances the iterative refinement of the scheduling process. By providing a user-friendly
interface, the application enables users to interact directly with the scheduling algorithm,
offering them the ability to input data, adjust hyperparameters, and visualize the results in
real time. This continuous interaction fosters a collaborative approach to optimization, where
users’ insights and preferences directly inform the algorithm’s behavior. As users observe the
outcomes of their adjustments and provide iterative feedback, the algorithm progressively fine-
tunes its approach, adapting to the unique constraints and objectives of the specific scheduling
scenario. This symbiotic relationship between the users and the algorithm not only accelerates
the optimization process but also ensures that the resulting schedules are more closely aligned
with the users’ needs and expectations. Ultimately, this feedback loop empowers users to play
an active role in shaping the scheduling solutions, driving a process of continuous improvement
that leads to increasingly effective and tailored scheduling outcomes.

Our research is enriched by an empirical component, featuring a series of case studies based
on actual schedules previously crafted by hand within various academic departments. We
selected three such real-world schedules as benchmarks to evaluate the efficacy of our model.
By integrating these historical, manually-created schedules into our system, we were able to
conduct a thorough assessment of our model’s capacity to optimize and enhance traditional
scheduling practices.

These case studies were chosen to mirror the authentic conditions and challenges of academic
scheduling, allowing us to test our model’s performance in realistic settings. By fine-tuning
the model’s hyperparameters, we replicated diverse scheduling scenarios, establishing a com-
prehensive testbed for our optimization approach. This hands-on validation is critical, as it not
only corroborates the model’s theoretical soundness but also examines its operational utility
in practical, real-world university environments.

The insights gleaned from analyzing these actual, hand-crafted schedules helped drive the the
iterative refinement and advancement of our scheduling model.
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Fig. II: Algorithm Flow Diagram. The process flowchart details the steps of the Genetic
Algorithm from initialization through iterative optimization and final selection of the best
timetabling solutions. No external coordination points are used in this diagram.

5. Mathematical Formulation of the University Course Timetabling Model

While we optimize with a Genetic Algorithm as part of our solution, we do the bulk of the work
in the Mixed Integer model. The mathematical model employs a composite objective function
comprising several goals, each targeting specific aspects of the our version of the university
course timetabling problem. It is these goals that can be manipulated by users to make the
model dynamic. There is also a set of hard constraints that ensure the final schedule will
meet the university requirements such as no instructor or room overlaps. This model will be
equivalent for the classes being scheduled under the weekly pattern or the expanded one credit
pattern where every section meeting is a possible time slot.

5.1 Table of Variables

Variable Description
𝑥𝑖𝑗 Binary variable indicating if class i is scheduled in timeslot j.
C Set of all classes.
T Set of all timeslots.
𝑍Conflict Sum of penalties for class conflicts, minimized in the objective

function.
𝑍Move Sum of penalties for moving classes from preferred timeslots.
𝑍Blocked Sum of penalties for scheduling classes in blocked timeslots.
𝑍Hold Sum of penalties for not adhering to hold constraints for affiliated

sections.
𝑠𝑖 Size of class i, used in the room capacity constraint.
𝑓𝑖 Binary parameter indicating if an instructor is involved in class i,

used in faculty availability constraint.
𝑅𝑗 Capacity of room j, used in the room capacity constraint.
𝐶𝑜𝑛𝑓𝑙𝑖𝑐𝑡𝑖𝑗 Penalty for a class conflict if class i is scheduled in timeslot j.
𝑀𝑜𝑣𝑒𝑃 𝑒𝑛𝑎𝑙𝑡𝑦𝑖𝑗 Penalty for moving class i from its preferred timeslot j.
𝐵𝑙𝑜𝑐𝑘𝑒𝑑𝑃 𝑒𝑛𝑎𝑙𝑡𝑦𝑖𝑗 Penalty for scheduling class i in an undesired timeslot j.
𝐻𝑜𝑙𝑑𝑃 𝑒𝑛𝑎𝑙𝑡𝑦𝑖𝑗 Penalty for not maintaining the hold requirement for class i in

timeslot j.

5.2 Composite Objective Function:

The overall aim is to minimize the sum of all objectives:
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Minimize 𝑍 = 𝑍Conflict + 𝑍Move + 𝑍Blocked + 𝑍Hold

Where each component is defined as:

• Class Conflict Objective (𝑍Conflict): Minimizes overlapping class schedules for classes
that should not be scheduled at the same time.

𝑍Conflict = ∑
𝑖∈𝐶

∑
𝑗∈𝑇

Conflict𝑖𝑗 ⋅ 𝑥𝑖𝑗

• Move Objective (𝑍Move): Minimizes deviation from a set timeslot if a prefrence is
declared.

𝑍Move = ∑
𝑖∈𝐶

∑
𝑗∈𝑇

MovePenalty𝑖𝑗 ⋅ 𝑥𝑖𝑗

• Blocked Slot Objective (𝑍Blocked): Reduces usage of undesired timeslots if there a set
of undesired timeslots is created.

𝑍Blocked = ∑
𝑖∈𝐶

∑
𝑗∈𝑇

BlockedPenalty𝑖𝑗 ⋅ 𝑥𝑖𝑗

• Hold Objective (𝑍Hold): If two affilated sections (1 credit and 3 credit) are set to hold
together this will optmize to keep them closse together in time

𝑍Hold = ∑
𝑖∈𝐶

∑
𝑗∈𝑇

HoldPenalty𝑖𝑗 ⋅ 𝑥𝑖𝑗

Constraints(Hard):

• Class Assignment Constraint: Each class is assigned to one timeslot.

∑
𝑗∈𝑇

𝑥𝑖𝑗 = 1 ∀𝑖 ∈ 𝐶

• Room Capacity Constraint: No room exceeds its capacity at any time.

∑
𝑖∈𝐶

𝑥𝑖𝑗 ⋅ 𝑠𝑖 ≤ RoomCapacity𝑗 ∀𝑗 ∈ 𝑇
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• Faculty Availability Constraint: No instructor is scheduled for overlapping classes.

∑
𝑗∈𝑇

𝑥𝑖𝑗 ⋅ 𝑓𝑖 ≤ 1 ∀𝑖 ∈ 𝐶

C denotes the set of all classes, T the set of all timeslots, 𝑥𝑖𝑗 is a binary decision variable
indicating if class i is scheduled in timeslot j, 𝑠𝑖 represents the size of class i, and 𝑓𝑖 is a
binary parameter indicating the involvement of an instructor in class i.

5.3 Reconstructive Scheduling Process with Weekly Patterns

The scheduling model adopts a reconstructive approach that accounts for the predefined weekly
patterns for courses with different credit requirements.

• For 3-credit classes that follow a MWF or TuTh pattern, we define a set of time-slots,
𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠, from which we start the scheduling process.

• After assigning 3-credit classes, we expand the scheduling options to include 1-credit
classes, using a larger set of time-slots, 𝐿1𝑐𝑟𝑒𝑑𝑖𝑡, which allows for greater flexibility. There
is an metaparamater that will optionally try to keep the 𝐿1𝑐𝑟𝑒𝑑𝑖𝑡 and 𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠 close
together.

The mathematical representation of the process is as follows:

• Define the initial set of time-slots for 3-credit classes

𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠 = {”MWF slots”, ”TuTh slots”}

• Determine the number of time-slots for 3-credit classes:

|𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠| = Count of ”MWF” and ”TuTh” slots

• Define the expanded set of time-slots after assigning 3-credit classes:

𝐿1𝑐𝑟𝑒𝑑𝑖𝑡 = Full set of weekly time-slots − 𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠

The deconstructive scheduling is then carried out in the following manner:

• Start with the set of time-slots for the most complex scheduling requirements:

For each 𝑙𝑘 ∈ 𝐿3𝑐𝑟𝑒𝑑𝑖𝑡𝑠 ∶
Select appropriate time-slots and solve the scheduling model

• Update the set of available time-slots for 1-credit classes

𝐿1𝑐𝑟𝑒𝑑𝑖𝑡 = Update with remaining time-slots
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5.3 Mathematical Dynamics of Custom Genetic Operations

Upon transitioning from the Mixed Integer Programming (MIP) model to the genetic algo-
rithm (GA) component in our university course timetabling solution, we employ a universal
evaluation function to measure and compare the effectiveness of potential schedules. This eval-
uation function is a critical tool that operates both at the conclusion of the MIP phase and
continuously throughout the GA’s optimization process. It serves as a standardized metric for
assessing the quality of schedules based on a comprehensive set of criteria, including but not
limited to, adherence to hard constraints, satisfaction of soft preferences, and overall schedule
compactness and efficiency.

In the Genetic Algorithm (GA) phase of our course timetabling optimization, we leverage a
suite of programming tools, libraries, and frameworks to implement and refine our solution.
The core of our GA is built using Python, a versatile programming language known for its
readability and broad support for scientific computing. We employ the DEAP (Distributed
Evolutionary Algorithms in Python) library, a framework designed specifically for rapid pro-
totyping and testing of evolutionary algorithms. DEAP provides the necessary infrastructure
to define individuals, populations, and the evolutionary process, including selection, crossover,
and mutation operations. For the evaluation function that plays a pivotal role in both the
MIP and GA phases, we utilize NumPy for efficient numerical computations.

The universal evaluation function allows us to quantify the improvements each candidate
schedule offers over others, enabling a systematic selection of the most successful solutions
within the population.

• Function Definition: evaluateSchedule(individual)

• Purpose: To calculate a fitness score for a given schedule based on various constraints
like class overlaps, instructor conflicts, room conflicts, and more.

• Penalties:

– overlap_penalty: Applied when two or more classes are scheduled in the same
timeslot.

– instructor_conflict_penalty: Applied when an instructor is assigned to multi-
ple classes in the same timeslot.

– room_conflict_penalty: Applied when two or more classes are scheduled in the
same room at the same timeslot.

– proximity_penalty: Applied when related classes (e.g., 3-credit and associated
1-credit labs) are not scheduled close enough in time.

– unwanted_timeslot_penalty: Applied when a class is scheduled in a timeslot that
has been explicitly marked as unwanted.

– pattern_violation_penalty: Applied when classes do not follow their expected
scheduling patterns (e.g., MWF or TuTh).
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– mutual_exclusion_penalty: Applied when classes that are meant to be mutually
exclusive are scheduled at the same time.

– same_day_penalty: Applied when classes that should be spread out are scheduled
on the same day.

• Process:

– The function iterates through each class in the schedule (individual), checking
against all constraints and accumulating penalties.

– The penalties are aggregated to produce a total score for the schedule. Lower scores
indicate better schedules (closer adherence to constraints).

• Return Value:

1. The function returns a dictionary with two keys: total_score, representing the
aggregated penalty score, and detailed_scores, providing a breakdown of the
penalties for each class.

Total Score = 300 × 𝑂 + 300 × 𝐼 + 300 × 𝑅 + 2 × 𝑃 + 3 × 𝑈 + 2 × 𝑀 + 300 × 𝑉 + 300 × 𝑆

𝑂 ∶ Number of overlap violations
𝐼 ∶ Number of instructor conflicts
𝑅 ∶ Number of room conflicts
𝑃 ∶ Number of proximity issues
𝑈 ∶ Number of unwanted timeslot violations

𝑀 ∶ Number of mutual exclusion violations
𝑉 ∶ Number of pattern violations
𝑆 ∶ Number of same day violations
𝑝𝑜 ∶ Weight of overlap penalty(300)
𝑝𝑖 ∶ Weight of instructor conflict penalty(300)
𝑝𝑟 ∶ Weight of room conflict penalty(300)
𝑝𝑝 ∶ Weight of proximity penalty(2)
𝑝𝑢 ∶ Weight of unwanted timeslot penalty(3)
𝑝𝑚 ∶ Weight of mutual exclusion penalty(2)
𝑝𝑣 ∶ Weight of pattern violation penalty(300)
𝑝𝑠 ∶ Weight of same day penalty(300)

By applying this function, we can objectively identify and favor schedules that represent a
significant optimization leap, thereby ensuring that each iteration of the GA is directed towards
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progressively enhanced timetabling solutions. The hard constraints are given an exponentially
higher value which has prevented significant breaking of any hard constraints. If breakage
does occur, a given population can also be rejected.

The inclusion of this evaluation mechanism has proven to be highly beneficial, yielding ap-
proximately a 15% increase in optimization efficiency overall. This improvement is attributed
to the function’s ability to discern subtle distinctions in schedule quality, guiding the GA’s
evolutionary operators to focus on modifications that yield tangible benefits. As a result, the
universal evaluation function not only facilitates a seamless transition between the determin-
istic optimization offered by the MIP model and the exploratory, adaptive nature of the GA
but also significantly amplifies the effectiveness of the entire optimization process. Through
this rigorous and quantifiable approach to evaluating and enhancing timetables, our solution
achieves an elevated level of optimization, effectively addressing the complex and dynamic
scheduling needs of academic institutions with unprecedented precision and success. Below is
the results of a sample dataset. In it the MIP comes starts with a value of 75000 < 𝑛 < 90000
represented as the top min value and becomes more efficient over generations eventually giving
us enhanced schedule.

Mutation Operation

The mutation operation in our genetic algorithm plays a pivotal role in enhancing the solution’s
adaptability and diversity. This operation introduces a controlled randomness that is essential
for preventing the algorithm from converging prematurely on local optima, thus facilitating a
more exhaustive exploration of the solution space. By allowing class sections to switch timeslots
or patterns based on a predefined probability, the mutation function injects variability into
the population, which is crucial for the algorithm’s ability to discover and refine innovative
scheduling solutions.

This variability is not arbitrary but is guided by the underlying structure of the university’s
scheduling constraints, ensuring that any mutations align with the logistical and educational
parameters of the institution. For instance, when a class section transitions to a different pat-
tern, this change is not just a random shift but a calculated move to explore new scheduling
configurations that could offer improvements in terms of conflict reduction, resource optimiza-
tion, or overall timetable quality.

Moreover, the mutation operation’s sensitivity to the credit hours (minCredit) of classes en-
sures that the algorithm’s adjustments are contextually relevant, acknowledging that different
classes—based on their credit value—have varying levels of scheduling flexibility and impact.
This nuanced approach allows the algorithm to effectively balance the need for innovation with
the preservation of schedule feasibility and integrity, thus contributing significantly to the ge-
netic algorithm’s capability to evolve and adapt robust solutions in the dynamic landscape of
university course timetabling.

The mutation function probabilistically modifies the scheduling assignments within an indi-
vidual’s timetable to foster exploration of the solution space. For a given class section charac-
terized by its credit hours (minCredit), the mutation operation assesses whether to adjust its
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timeslot within the current pattern (e.g., MWF or TuTh) or to transition it to an alternative
pattern. This decision process is mathematically governed by a mutation probability (mutpb),
dictating the frequency and extent of these alterations. Formally, the operation is represented
as:

• For sections with minCredit � 3, either:

– Retain the current pattern, selecting a new timeslot from the same set of days, or
– Switch to a different pattern, ensuring compatibility with the section’s requirements.

This mutation logic enhances the genetic diversity within the population, promoting the dis-
covery of potentially more effective scheduling arrangements.

Crossover Operation

The crossover function’s role extends beyond the mere combination of parent timetables—it
introduces a strategic blend of genetic diversity, crucial for the algorithm’s exploration and
exploitation balance. By categorizing class sections into distinct scheduling patterns, the func-
tion maintains the integrity of the course’s temporal structure, a key aspect given the unique
constraints of university timetabling. The selective exchange of subsets based on scheduling
patterns ensures that the resulting offspring inherits a feasible and coherent timetable struc-
ture, aligning with established academic norms and requirements. This methodical exchange
process is pivotal, as it underpins the genetic algorithm’s ability to generate new and poten-
tially optimal timetabling solutions, while respecting the hard constraints and optimization
goals set forth by the MIP phase. This intricate interplay between genetic diversity and oper-
ational feasibility enhances the algorithm’s capability to navigate the complex solution land-
scape, offering innovative scheduling arrangements that remain grounded in the practicalities
of academic scheduling. Through this dynamic process, the crossover function significantly
contributes to the genetic algorithm’s robustness, fostering an environment where novel solu-
tions can emerge, adapt, and thrive within the defined operational parameters of university
course scheduling.

The crossover function amalgamates the genetic information of two parent timetables to pro-
duce offspring with inherited characteristics. It categorizes class sections by their scheduling
patterns and executes pattern-specific exchanges at designated crossover points. Mathemati-
cally, this process involves:

• Partitioning each parent’s schedule into subsets based on the scheduling pattern,
• Exchanging these subsets between parents at selected indices to create new offspring

schedules.

Ensuring the offspring’s feasibility with respect to the university’s scheduling constraints is
paramount, with validity checks confirming adherence to the foundational rules established by
the MIP model.
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5.4 Integration with the MIP Framework

The GA’s mutation and crossover functions mathematically enrich the scheduling optimization
process by iteratively refining the solutions initially formulated by the MIP model. While the
MIP model constructs a viable and optimized foundation for the timetable, considering both
hard and soft constraints, the GA’s iterative enhancements aim to uncover and exploit new
scheduling configurations, offering a pathway to potentially superior solutions.

This hybrid optimization strategy leverages the deterministic capabilities of MIP and the
adaptive exploratory prowess of GAs, presenting a cThe Devastation of Iraqomprehensive
solution to the complex challenge of university course timetabling. This dual-phase approach
ensures a robust and dynamic optimization framework capable of accommodating the diverse
and evolving scheduling needs of academic institutions.

6. Efficacy of the Reconstructive Multi-Objective Hybrid Approach

Our study’s results demonstrate the successful application and effectiveness of the Reconstruc-
tive Multi-Objective Hybrid Mixed Integer Genetic Algorithm Approach in addressing the
University Course Timetabling Problem (UCTTP). This approach significantly simplified the
initial complexity of UCTTP, enabling the efficient organization of courses into predetermined
academic timeslot patterns such as Monday-Wednesday-Friday (MWF) and Tuesday-Thursday
(TuTh). By leveraging these established scheduling frameworks, we observed a marked reduc-
tion in the optimization space, facilitating a more focused and effective solution strategy.

The integration of Mixed Integer Programming (MIP) with Genetic Algorithms (GAs) in a
hybrid model proved particularly advantageous. The MIP phase effectively tackled the multi-
objective aspects of the timetabling problem, focusing on accommodating soft constraints to
ensure a feasible and adaptable solution.3 This foundation allowed the subsequent GA phase
to refine the timetable within the constraints established by the MIP model, introducing
adaptability and evolution to the optimization process. This innovative hybrid approach not
only optimized the timetable with precision but also demonstrated adaptability to dynamic
scheduling needs, setting a new benchmark for academic timetabling solutions.

3Initiating our Genetic Algorithm with a feasible solution confers multiple technical advantages. Primarily, it
constrains the initial search space to the realm of possible solutions, streamlining the algorithm’s convergence
towards optimal schedules by avoiding wasteful exploration of infeasible regions. This strategy accelerates
the convergence speed because the algorithm begins the optimization process closer to potential optimal
solutions. Moreover, it ensures that each generation maintains feasibility, focusing computational efforts on
enhancing solution quality rather than rectifying infeasibility. Such an approach is crucial for respecting
the hard constraints inherent to the University Course Timetabling Problem, such as room capacity and
instructor availability, guaranteeing that all solutions adhere to these non-negotiable requirements. Fur-
thermore, embedding heuristics within the GA’s operators enhances the effectiveness of the algorithm when
applied to feasible solutions, steering the exploration towards areas of the solution space that are likely to
yield higher fitness values. Lastly, this method promotes genetic diversity within the bounds of constraint
satisfaction, encouraging the algorithm to uncover innovative scheduling configurations that balance the
various objectives of academic timetabling.
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6.1 Comparison with Non-Reconstructive Models

In contrast, the non-reconstructive version of our model, which attempted to apply a tradi-
tional Algorithm without the initial restructuring provided before the MIP phase, encountered
significant challenges. Specifically, it ran into maximum recursion errors and failed to find
solutions during optimization attempts, indicating a struggle to efficiently navigate the com-
plex solution space of our UCTTP. This limitation underscores the intricate nature of the
timetabling problem and highlights the necessity of an advanced solver to manage such com-
plexity effectively. Moreover, when the GA was attempted on the non-reconstructed problem,
it struggled to find and optimal solution and the timeclock reached over 7 minutes for our
sample datasets before any convergence.

Although it is conceivable that a more advanced solver could mitigate these issues, this scenario
underscores the practical and theoretical advantages of our reconstructive hybrid approach.
By recomposing the problem and leveraging the strengths of both MIP and GAs, our method
not only avoids the pitfalls encountered by non-reconstructive models but also demonstrates
superior efficiency and adaptability in generating optimized academic schedules.

7. Case Study

To test our scheduling algorithm, we tested against three variants of previously optimized
schedules4. For this highlighted instance, we intentionally introduced conflicts into our sample
schedule at various points—specifically 9 instances—to verify the algorithm’s effectiveness in
generating valid schedules. We proceeded to block five time slots for faculty and create non-
intersection, to observe the algorithm’s adaptability. Additionally, we designated 5 classes to
be non-intersecting, with all tests yielding successful outcomes.

7.1 Detailed Case Study Results Analysis

Solver Outputs Overview

The solver’s efficiency and the quality of the solutions it provides are critical in evaluating
the effectiveness of the scheduling algorithm. Below, we break down the outputs from two
different model runs to highlight these aspects.

7.2 3 Credit Patterned Time Slot Output Summary

4For brevity, we are only highlight one of the three case studies. The second case study used was a different
year of two other departments that included Chemistry and Biology departments. In these cases we follow
the same protocol as the highlighted case study and had similar optimal results.
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Metric Value
Objective Value 0.000
CPU Time (seconds) 0.02
Wallclock Time (seconds) 0.02
Nodes Enumerated 0
Total Iterations 0

• Interpretation: The optimal objective value of 0 indicates an ideal solution where all
constraints are met without any penalties. The swift resolution time demonstrates the
solver’s high efficiency.

7.3 1 Credit MIP Output Summary

Metric Value
Objective Value 14.000
CPU Time (seconds) 0.01
Wallclock Time (seconds) 0.01
Nodes Enumerated 0
Total Iterations 0

• Interpretation: An objective value greater than suggests minor conflicts or constraints
that could not be perfectly resolved, indicative of the model’s complexity.

7.4 Genetic Algorithm Performance

The genetic algorithm’s ability to improve solutions over generations is crucial. The graph
below summarizes its progression over 30 generations.

7.5 Summary/Results

The detailed breakdown and analysis of solver outputs and the genetic algorithm’s perfor-
mance provide a comprehensive view of the scheduling optimization process. The rapid solver
convergence and the genetic algorithm’s continuous improvement over generations underscore
the potential of this hybrid approach in addressing complex scheduling challenges.

Following these validations, we embarked on a comparison between schedules crafted manually
and those generated by our algorithm. Like is common, we alter previous years schedules
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Fig. 2 Genetic Algorithm Performance Over Generations. This graph tracks the performance
of the algorithm across generations, highlighting the average, minimum, and maximum
scores at each step. Key points are marked to indicate significant changes in the score
trend.
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with minor modifications to fit the current needs.(Babaei et al. 2015; Chen et al. 2023;
Samarathunga and Wellahetti 2023) This comparison spotlighted the maintenance of non-
overlapping courses as compared like the human version, showcasing the system’s ability to
create a coherent and conflict-free timetables rapidly. Such precision is vital to prevent issues
like double-booking, a key concern in effective timetable construction.

The algorithm’s strategic allocation of rooms—utilizing “RCE 228” for different classes at
varied times—further illustrates its capacity to optimize space while meeting logistical require-
ments. Additionally, its adept handling of one-credit or lab classes, particularly the alignment
of “ENGR-150-001_one_credit” with its corresponding lecture, showcases an advanced level
of scheduling insight. This nuanced approach, which aligns related course components to fa-
cilitate student participation, may surpass the manual scheduling process that could overlook
such detailed interconnections.

In the broader context of our case study, the additional schedules analyzed also demonstrated
that the algorithm consistently meets or exceeds the standards set by traditional manual
scheduling. By delivering optimized schedules that account for the complexities of academic
timetabling, the algorithm not only achieves a high level of scheduling efficiency but also sup-
ports academic administrators by providing a reliable tool that enhances operational efficiency
and allows them to focus on other critical aspects of educational management. This alignment
with the goal of reducing the administrative burden on schedulers underscores the practical
value and transformative potential of the algorithm in the realm of academic scheduling.

The algorithm proves its robustness in structuring schedules that are not only well-organized
but also responsive to multiple scheduling dimensions, aligning with the core objectives of
academic timetabling. While defining “optimal” scheduling is subjective and dependent on
institutional priorities, the improvements in the algorithm-generated schedule point towards
significant strides in achieving a more optimal scheduling process. Continuous evaluation
against real-world feedback and performance metrics remains vital to ensuring the algorithm
meets the comprehensive needs of the academic community. In our case study, the optimiza-
tion model showcased its real-world efficacy on a dataset of 3 groups of around 40 classes,
demonstrating its ability to handle complex scheduling requirements efficiently. (Mokhtari et
al. 2021)

This integration of the GA, significantly enhancing the optimization score from roughly 90,000
to below 65,000 within about 5 seconds, illustrates a substantial improvement in the model’s
ability to refine and optimize complex scheduling scenarios. The GA’s collaboration with
MIP in this context not only demonstrates a marked improvement in managing university
course timetabling complexities but also signals a promising direction for future enhancements,
showcasing the potential of this hybrid approach to deliver efficient and effective academic
scheduling solutions. Below is the alternative to the human solution without any parameter
or hyper parameter tuning.
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7.6 Results Set 1

Section Name Instructor Timeslot
CSCI-160-001 Instructor A M W F - 10:10AM
ENGR-150-001 Instructor B M W F - 10:10AM
ENGR-250-001 Instructor C M W F - 3:35PM
ENGR-320-001 Instructor B M W F - 11:15AM
ENGR-365-001 Instructor D M W F - 8:00AM
ENGR-365-001 Instructor D Tu Th - 8:00AM
ENGR-370-001 Instructor C M W F - 10:10AM
MATH-221-001 Instructor D M W F - 10:10AM
MATH-230-001 Instructor D M W F - 3:35PM
MATH-365-001 Instructor D M W F - 12:20PM
PHYS-102-001 Instructor E M W F - 10:10AM
CSCI-200-001 Instructor A M W F - 8:00AM
CSCI-210-001 Instructor A M W F - 8:00AM
CSCI-210-001 Instructor A Tu Th - 8:00AM
CSCI-499-001 Instructor A M W F - 3:30PM
CSCI-499-001 Instructor A Tu Th - 3:30PM
ENGR-489-001 nan M W F - 10:10AM
ENGR-499-001 Instructor C M W F - 1:25PM
MATH-091-001 Instructor F M W F - 9:30AM
MATH-091-001 Instructor F Tu Th - 9:30AM
MATH-112-001 Instructor G M W F - 10:10AM
MATH-113-001 Instructor G M W F - 2:00PM
MATH-113-001 Instructor G Tu Th - 2:00PM
MATH-130-001 TBD M W F - 10:10AM
MATH-130-002 TBD M W F - 8:00AM
MATH-130-002 TBD Tu Th - 8:00AM
MATH-155-001 Instructor G M W F - 3:30PM
MATH-155-001 Instructor G Tu Th - 3:30PM
MATH-255-001 Instructor H M W F - 8:00AM
MATH-270-001 Instructor G M W F - 11:15AM
MATH-344-001 Instructor G M W F - 11:00AM
MATH-344-001 Instructor G Tu Th - 11:00AM
MATH-499-001 Instructor D M W F - 2:30PM
PHYS-251-001 Instructor I M W F - 11:15AM
PHYS-261-001 Instructor J M W F - 12:20PM
CSCI-160-001_one_credit Instructor A W - 9:05AM
ENGR-150-001_one_credit Instructor B M - 9:05AM
ENGR-250-001_one_credit Instructor C F - 9:05AM
ENGR-320-001_one_credit Instructor B Th - 12:30PM
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Section Name Instructor Timeslot
ENGR-365-001_one_credit Instructor D M - 9:05AM
ENGR-370-001_one_credit Instructor C Tu - 12:30PM
MATH-221-001_one_credit Instructor D Th - 12:30PM
MATH-230-001_one_credit Instructor D Tu - 12:30PM
MATH-365-001_one_credit Instructor D W - 9:05AM
PHYS-102-001_one_credit Instructor E F - 9:05AM
MATH-081-001 Instructor F F - 9:05AM
MATH-083-001 Instructor F W - 9:05AM

8. Conclusion

The integration of a Genetic Algorithm (GA) into our university course timetabling solution
represents a strategic enhancement to the scheduling optimization process, building upon the
foundational work laid out by the latest advancement in the field. The MIP model, with its
focus on multi-objective optimization, primarily addresses soft constraints to establish a simple
yet feasible timetable. While other models have been tested on more extensive datasets with
more complex constraints, ours demonstrates that this recomposition model effectively opti-
mizes while maintaining adaptability and could lead to further optimizations through this or
similar reconstructive approaches. Our MIP approach ensured that the foundational timetable
not only meets basic scheduling requirements but also provides a degree of flexibility in accom-
modating preferences and minimizing conflicts, thus emphasizing simplicity and feasibility in
the initial scheduling solution.

Following this, the GA’s mutation and crossover functions come into play, iteratively refining
this initial solution while still accounting for the recomposed nature of the problem. By lever-
aging new scheduling configurations and exploring the solution space beyond the confines of
the MIP model, the GA seeks to enhance the timetable’s overall quality, potentially uncover-
ing superior solutions that were not initially apparent. This hybrid optimization framework
marries the deterministic precision of MIP with the adaptive, exploratory nature of GAs, cre-
ating a comprehensive and dynamic approach to tackling the complex challenge of university
course timetabling.

Such a dual-phase strategy ensures a robust optimization framework capable of evolving along-
side the diverse and changing needs of academic institutions. It offers a structured yet flexible
approach to timetabling that adeptly navigates the myriad constraints and objectives inherent
in academic scheduling. It also models constraints alongside the distributed process of schedul-
ing within higher education. Through balancing various objectives, the model crafts schedules
that not only adhere to room capacity and faculty availability but also respect the myriad
preferences and requirements of the university community. This reconstructive optimization
process adeptly manages scheduling across different class complexities, resulting in optimized
timetables that facilitate an enhanced educational experience for both faculty and students,
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and underscores the model’s capacity to deliver practical, optimized scheduling solutions in a
complex academic landscape.
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Abstract 

In today’s fast-moving tech landscape advancements are happening at a fast pace. These 
advancements come with new opportunities to make our lives easier. However, alongside 
the rise of these new technologies also comes the introduction of new threats. So, it is 
important that security trends evolve along with the fast-paced development of 
technology. Most security today is based on traditional physiological biometrics like 
fingerprint and iris scans. While this is effective to an extent, it is not adequate as there are 
ways this type of authentication can be breached. This research study explores behavioral 
biometric authentication using machine learning. It aims to answer the question: How can 
behavioral biometrics combined with machine learning techniques provide a strong 
defense to counter modern cyber threats? This project will present an analysis of various 
behavioral traits, such as keystroke dynamics, mouse movements and gait analysis using 
machine learning techniques. These techniques include feature extraction, model training, 
and validation. Through the application of these techniques, this project provides an 
analysis of these behavioral characteristics, demonstrating their potential in developing 
more robust and adaptive security frameworks that offer greater protection against 
emerging threats. 

 

Keywords: Machine Learning, Behavioral Biometrics, Continuous Authentication, Mouse 

Dynamics, Gait analysis, Touch Dynamics.  

 

50

mailto:joe.moriwa@mnsu.edu
mailto:rushit.dave@mnsu.edu
mailto:mansi.bhavsar@mnsu.edu


2 
 

1. Introduction 

The development of technology coinciding with improved ambient devices such as 
sensors and smart phones has led to a rapid development of smart environments [1]. 
Security systems should in turn evolve with this growth as old methods that relied on 
knowledge of secrets such as password and pin codes come with some limitations in 
terms of security and usability [2]. An example of this limitation is a guess attack where 
an attacker guesses the user’s credentials as most people tend to choose simple PINs 
like their birth dates as their credentials. In worse cases users leave their devices 
without any form of protection by opting not to use a password [3]. More than 555 
million passwords have been obtained through data breaches and exposed to the 
public domain. Some 27% of those surveyed in a Google poll admitted attempting to 
guess the passwords of others, 17% of whom claimed to have succeeded, and, 
according to one report, 80% of hacking incidents are enabled by stolen and reused 
login information, 81% of which at the company level are caused by the many poor 
passwords among the 300 billion in use [5]. 

To combat this issue, new research has started proposing the use of behavior-based 
authentication means such as keystroke dynamics, phone movement and gait touch as 
a replacement of passwords for user authentication. Behavioral biometrics require 
minimal interaction during the authentication process, resulting in an increase in user 
acceptability [3]. Keystroke dynamics, for example, refers to the unique patterns of 
rhythm and timing-based features that are created when a user types on a touchscreen 
in computing devices such as mobile devices [4].  

This paper discusses how continuous behavioral biometrics can be implemented and 
the improvements it brings. An implicitly continuous reauthentication method should 
keep authenticating the user, in addition to the initial login authentication, without 
interrupting users. This can detect an adversary once he gets control of the smartphone 
and can prevent him from accessing sensitive data or services via smartphones, or 
inside smartphones. One such systems that employs this system is SmarterYou. 
SmarterYou enables implicit, continuous authentication as a background service, when 
the users use smartphones.  

 

2. Background  
The rapid growth of digital technologies and the rise of advanced cyber threats have 
exposed significant limitations in traditional authentication methods, such as 
passwords and PINs. These methods are highly vulnerable to breaches, guessing 
attacks, and misuse [2]. Additionally, poor usability, password fatigue, and weak user 
practices exacerbate their shortcoming [2] [3]. Biometric computer authentication 
offers an advantage over password and access card authentication in that it is based on 
something you are, which is not easily copied or stolen [13]. These include such as 
keystroke rhythms, mouse dynamics, and gait patterns, to provide continuous and 
adaptive authentication [4] [9]. Unlike traditional methods, behavioral biometrics 
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passively monitors user behavior without interrupting workflows, making it harder for 
attackers to mimic legitimate user [9] [11].  The increasing adoption of IoT devices and 
smart environments further underscores the need for research in this area, as these 
devices demand seamless, scalable, and continuous authentication solutions. However, 
challenges such as data variability, privacy concerns, and real-time processing 
constraints hinder widespread adoption [9] [14]. Research into advanced machine 
learning techniques can address these challenges by enabling systems to extract 
meaningful features, adapt to user behavior changes, and detect threats [12]. By 
advancing behavioral biometrics secure authentication systems that meet the demands 
of today’s evolving technological landscape can be developed. 
 
 

3. Systematic Review Methodology 

Research Questions 

The primary goal of this literature review is to analyze the advancements and 
challenges in continuous user authentication using behavioral biometrics.  
RQ1: What behavioral traits have been most commonly explored for continuous 
authentication, and what are their strengths and limitations? 
RQ2: What methodologies and models are used for feature extraction and classification 
in continuous authentication systems? 
RQ3: What challenges exist in implementing continuous authentication systems, and 
how are these being addressed? 
 
Literature Selection 
The literature search was conducted in three phases: identifying phase, diversity phase 
and summary phase. 
 
Identifying phase 
The review sourced journals and research papers from academic search engines. These 
engines included google scholar, IEE to name a few. The keywords used in the search 
process were behavioral biometrics, continuous authentication and machine / deep 
learning. This made the pool of papers generated closely related and addressing 
different approaches to the topic. 
 
Diversity phase 
In this phase, the selected papers aimed to get wide-ranging approaches, 
methodologies, and applications of continuous authentication using behavioral 
biometrics. By emphasizing diversity, this phase ensured that the literature review did 
not overlook smaller areas e.g authentication in smart watches [7]. 
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Summary phase 
Every paper was summarized into three categories, namely: overview, dataset, 
methodology, and limitations. The overview provided a general understanding of the 
study's objectives, scope, and key findings, while the dataset section detailed the data 
sources, collection methods, and sample characteristics used in each research. The 
methodology section focused on the machine learning models, feature extraction 
techniques, and evaluation metrics applied, and the limitations highlighted challenges. 
 

4. Thematic Analysis and Feature Extraction Techniques 
 
Continuous authentication leverages behavioral traits unique to individuals to validate 
their identity dynamically. Unlike traditional biometric methods such as fingerprints or 
facial recognition, behavioral biometrics focuses on patterns in user interactions, 
offering the advantage of passive and continuous monitoring. This ensures a higher 
level of security, as authentication is not limited to a single point in time but runs 
throughout a session. This section talks about various behavioral modalities used in 
continuous authentication, highlighting their unique characteristics, advantages, and 
limitations. The modalities discussed include: 

• Keystroke Dynamics: Typing patterns that capture timing and rhythm during 
text input. 

• Mouse Dynamics: Movement and interaction patterns with a mouse or other 
pointing devices. 

• Touch Dynamics: Gestures, pressure, and interaction styles on touchscreens. 

• Gait and Motion Patterns: Physical movement traits measured via sensors like 
accelerometers and gyroscopes. 
 

Keystroke Dynamics 
Keystroke dynamics refers to the unique patterns of rhythm and timing-based features 
that are created when a user types on a touchscreen in computing devices such as 
mobile devices [4]. The biometric system uses a pattern recognition system to classify 
users based on their physical and behavioral characteristics [12]. This type of system 
uses artificial intelligence to differentiate legitimate users and illegitimate users [10]. 
  
As illustrated in fig 1., features commonly extracted includes dwell time—the duration 
a key is pressed—flight time, which is the interval between releasing one key and 
pressing the next [8], and typing speed and error rate, all of which can vary among 
users. Keystroke-based authentication offers advantages such as easy data collection, 
since no additional hardware is required beyond standard keyboards or touchscreens, 
and it is non-intrusive, integrating seamlessly into existing workflows [15]. However, 
challenges include the variability of typing patterns, which can be influenced by factors 
like stress, fatigue, or different keyboard types [16]. Additionally, the way in which an 
individual types on a keyboard is considered less permanent than other traits, such as 
physiological biometrics (e.g., facial and fingerprint recognition) [16]. The need for 
sufficient data, as shorter text inputs may not provide enough variability to ensure 
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reliable authentication, is also a limiting factor. There are also privacy concerns with 
this form of authentication [17]. 
 

 

Fig 1. dwell time and flight time of keystroke dynamics 

 
Mouse dynamics 
 
Mouse dynamics refers to the analysis of user interactions with a pointing device, such 
as a mouse or trackpad, capturing behavioral patterns like cursor movement 
trajectories, speed, acceleration, click frequency, and drag-and-drop behaviors [9]. 
These interaction characteristics are considered relatively unique to individuals, 
making mouse dynamics a viable form of behavioral biometric for user authentication 
[18].  
 
Features analyzed in this form of authentication include cursor movement (trajectory, 
speed, acceleration), click frequency (patterns of left and right clicks), and drag-and-
drop behavior as illustrated in fig. 2. By combining these features with machine learning 
algorithms like SVMs and Random Forests, a high accuracy system is developed and 
there is rapid detection of impostors [20]. Unlike traditional methods, mouse dynamics 
enable continuous monitoring during regular activities without requiring specialized 
hardware, making them both non-intrusive and cost-effective [19]. However, one 
drawback of this approach is task dependency (browsing versus gaming, for example) 
and hardware variability, since different pointing devices (trackpads vs. mice) may yield 
inconsistent data [9]. 
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Fig 2. Tracking mouse actions w.r.t X, Y plane 

 

Touch Dynamics 

Touch dynamics, as shown in fig. 3, analyzes how users interact with touchscreens by 
capturing features such as swipe patterns (speed, direction, and consistency), tap 
pressure and duration, and multi-touch gestures like pinch, zoom, and rotation [6]. This 
form of behavioral biometric is well-suited for mobile devices like smartphones and 
tablets, using their touch interfaces for seamless integration. Touch dynamics provide 
a high degree of personalization since interaction styles tend to be unique to individuals 
[21]. Research indicates that specific features like average swipe velocity and the 
largest deviation from end-to-end line are particularly effective in user authentication, 
as these characteristics remain distinct across individuals [21].  
 
However, challenges such as hardware sensitivity where variations in touchscreen 
responsiveness across devices can affect data consistency and context variability, can 
affect the validity of this form of authentication. 
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Fig 3. user interactions with touchscreen 

 
 

Gait Dynamics 
 
Gait and motion patterns rely on data from sensors like accelerometers, as illustrated 
in fig. 4, and gyroscopes to identify individuals based on their physical movements, with 
features analyzed including step length and cadence, body orientation measured 
through gyroscopic data, and motion variability over time [11]. Research highlights the 
effectiveness of gait-based biometrics, showing that accelerometer-based systems can 
achieve an accuracy of over 90% in ideal conditions by focusing on metrics such as 
stride patterns and stability [22]. These systems, commonly integrated into mobile and 
wearable devices, allow for passive data collection in the background without user 
involvement. It also clearly identifies unique users as walking styles are different. 
However, challenges such as environmental influences like variations in sensor 
placement, and the inability to authenticate when users are stationary can be a limiting 
factor. Additionally, the reliance on device-specific sensors can introduce variability in 
data quality and impact performance [22]. Recent advances suggest that combining 
gait data with other modalities, such as community-driven data for personalized 
modeling, can enhance robustness and adaptability in diverse settings, further 
improving the practicality and reliability of gait-based biometric systems [23]. 
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Fig 4. Raw accelerometer of raw Gait signal 

 
5. Data Extraction and Processing 

 
Effective behavioral biometric systems rely heavily on robust data collection and 
thorough cleaning processes to ensure the reliability of machine learning models. 
 
 
Keystroke Dynamics 
 
Keystroke dynamics data is collected by recording the timing patterns of users' typing 
behavior, capturing features like dwell time (time a key is pressed), flight time (time 
between releasing one key and pressing another), and typing speed. Collection is often 
done through custom applications or frameworks, such as the iProfile app (illustrated 
in fig. 5), which records keypress events along with metadata like timestamps, pressure, 
and coordinates [4]. Publicly available datasets, such as HMOG, also provide rich data 
sources for evaluating keystroke dynamics, including thousands of keypress events 
collected in controlled settings across various tasks like reading, typing, and navigation 
[26]. Cleaning the collected data involves several critical steps to ensure accuracy and 
consistency. Noise removal techniques are applied to address inconsistencies caused 
by irregular typing behaviors, device variations, or environmental factors. For instance, 
outlier detection methods, such as interquartile range (IQR) filtering and z-score 
analysis, are commonly used to eliminate anomalous data points [4] [26]. 
Normalization processes, such as scaling features like timing intervals and pressure to 
a standard range, ensure uniformity across datasets, particularly when integrating data 
from multiple users or devices [5]. Segmentation of typing data into fixed-length 
sequences or windows is another important preprocessing step. This method ensures 
that input samples are comparable across users, enabling models to analyze keystroke 
patterns within consistent contexts. Feature extraction algorithms are then used to 
derive advanced metrics, such as n-graph timing and spatial data, which enhance the 
robustness of user authentication models [5][26]. 
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Fig 5 iProfile app allows the users to type the passcode via 
the virtual keypad. 

 
Mouse Dynamics 
 
Mouse dynamics data collection typically involves monitoring user interactions with a 
pointing device, such as a mouse or trackpad, through specialized software that 
captures raw events like cursor movements, clicks, and drag-and-drop actions. For 
example, in one study, data was collected by intercepting low-level mouse events, 
including event types, timestamps, and coordinates, which were then aggregated into 
higher-level features, such as movement trajectories, angles, and speeds as shown in 
fig. 6 [9] [18]. Public datasets, offering pre-recorded mouse activities performed under 
various real-world conditions were also used [19]. Cleaning the raw data involves 
several preprocessing steps to ensure accuracy and usability for machine learning 
models. Noise introduced by device inconsistencies, such as varying mouse sensitivities 
or environmental factors, is addressed using filters like median smoothing and 
normalization techniques. Data discretization is another critical step, where continuous 
variables like angles, speeds, and distances are divided into fixed intervals, such as angle 
bins or pixel ranges, to reduce variability and enhance feature extraction [9] [20]. 
Outlier detection methods, such as analyzing high-percentile movement speed 
distributions, help remove anomalous data caused by unintended user actions [9]. 
Segmentation of mouse actions into specific categories, such as "Point and Click" or 
"Drag and Drop," ensures that models can focus on distinct behavioral traits during 
analysis. Additionally, the construction of histograms to summarize features like 
movement direction, elapsed time, and speed distributions aids in capturing the 
essence of user interaction patterns [20]. 
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Fig 6. percentile values from the movement speed by movement angle data set. 

 
 
Touch Dynamics 
 
Data collection for touch dynamics primarily involves using the built-in sensors of 
mobile devices, such as touchscreens and accelerometers, to record user interaction 
patterns, including swipe gestures, tap pressure, and duration. These interactions, 
highlighted in fig. 7 are captured during various user activities to create datasets 
representing diverse behavioral patterns. For instance, the Touchstroke system collects 
data in controlled settings, recording user interactions under different conditions (e.g., 
sitting, walking) to ensure variability and robustness in the dataset [3]. Cleaning the 
collected data involves several critical steps to enhance its quality and ensure reliability 
for model training. Noise introduced by hardware inconsistencies or environmental 
factors is addressed using filtering techniques, such as low-pass and median filters. 
Additionally, techniques such as Z-score analysis and interquartile range (IQR) filtering 
are employed to detect and remove outliers caused by irregular user interactions or 
device errors, ensuring a cleaner dataset [23].  
 
Alignment of data across sensors is another vital preprocessing step, particularly for 
multimodal datasets that combine touch interactions with sensor readings like 
orientation and accelerometry. Data normalization methods, such as min-max scaling, 
are used to bring features into a uniform range, facilitating better model performance 
during training [22]. Segmentation of continuous data into fixed-length windows 
ensures consistency and enables models to analyze user behavior over comparable 
timeframes. 
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Fig 7 Stroke features projected on a 2D-subspace. The user ID is given as a colored 

number. 
 

 
Gait Dynamics 
 
Data collection typically involves the use of inertial measurement units (IMUs), such as 
accelerometers and gyroscopes, embedded in mobile devices and wearables to capture 
motion patterns like step frequency, stride length, and body orientation [11]. Publicly 
available datasets like whuGAIT and OU-ISIR are widely utilized, as they provide 
standardized protocols and diverse samples, enabling the benchmarking of different 
models and preprocessing techniques [27]. However, challenges like sensor placement 
inconsistencies (e.g., pocket versus wrist) and environmental noise make preprocessing 
during the cleaning phase a bit more challenging. Data cleaning begins with noise 
removal, as illustrated in fig. 8, to handle artifacts caused by device malfunctions, user 
behavior, or environmental factors. Techniques such as low-pass filters are employed 
to smooth accelerometer signals, while median filters address spikes in gyroscope data. 
Outlier detection methods, including z-score analysis and interquartile range (IQR) 
filtering, are applied to identify and remove irregular data points, ensuring that 
anomalous readings do not skew the models’ performance [11].  
 
Another critical step is aligning and segmenting the collected data into fixed-length 
windows, which bypass the need for precise gait cycle detection—an error-prone 
process due to variability in sensor sensitivity and placement. This segmentation 
ensures consistent input for models, allowing them to focus on key temporal and spatial 
patterns [27]. 
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Fig 8. processed ECG signal 

 
 

6. Machine Learning Techniques 

After processing behavioral data, it has to be converted into actionable authentication 
decisions. This section discusses the different approaches employed supported by 
insights from the referenced research papers. 
 
Keystroke Dynamics 

Support Vector Machines (SVMs) are a popular choice, utilizing hyperplane 
optimization to classify user behaviors such as keystroke dynamics. For instance, SVMs 
with multi-class classification and one-vs-one decision functions demonstrated 
effective user authentication through keystroke data, supported by feature selection 
techniques like minimum redundancy maximum relevance (mRMR) to enhance 
classification performance [4] [5]. Ensemble methods, including Random Forest 
Classifiers (RFC) and Gradient Boosted Classifiers (GBC), have shown superiority in 
continuous authentication scenarios, particularly in keystroke dynamics, due to their 
ability to capture non-linear patterns and handle noisy data [26]. Additionally, 
probabilistic models like Naive Bayes and clustering techniques such as k-means have 
been employed for tasks like trajectory dissimilarity analysis in mouse and keystroke 
dynamics, achieving high accuracy while addressing variances in user behavior [5]. 
These techniques, combined with preprocessing methods like data normalization and 
outlier detection, create robust systems capable of adapting to the dynamic nature of 
behavioral biometrics [4] [26]. 
 

7. Mouse Dynamics 
Naive Bayes classifiers have been applied, leveraging probabilistic modeling to analyze 
features like movement speed, acceleration, and double-click intervals for anomaly 
detection in user behavior [9]. Support Vector Machines (SVMs) have been widely 
adopted due to their ability to handle high-dimensional data and deliver strong 
classification performance; for instance, they are used with Gaussian kernels to classify 
mouse movement patterns, achieving low false acceptance and rejection rates [19] 
[20]. Decision Tree Learning and Random Forest Classifiers have also been employed, 
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providing interpretable models and robustness against noisy data, especially when 
analyzing complex features like drag-and-drop actions and movement directions 
[19][28].  
 
Additionally, hybrid approaches using clustering algorithms like k-means and score-
level fusion techniques have demonstrated efficacy in adapting to user behavior 
variability [20]. These machine learning models, combined with advanced 
preprocessing techniques such as histogram-based feature extraction and dynamic 
binning of data, enable systems to efficiently classify user behavior while maintaining 
adaptability and robustness in diverse real-world scenarios [21]. 
 
 
Touch Dynamics 
Methods like Support Vector Machines (SVMs) and Random Forests are commonly 
employed for feature classification, as they effectively handle the high-dimensional 
data generated from sensory inputs [3] [22]. Neural networks, including Convolutional 
Neural Networks (CNNs) and Long Short-Term Memory (LSTM) networks, have been 
utilized to capture temporal and spatial features from continuous data streams, 
enabling precise modeling of user-specific patterns [23]. Semi-supervised approaches, 
such as self-learning frameworks and clustering techniques, have been adopted to 
address challenges in labeled data scarcity by leveraging community-driven data to 
personalize models [23]. Bayesian classifiers and Gaussian Mixture Models (GMMs) 
also play a critical role in probabilistic modeling for touch dynamics, especially in 
detecting anomalies in user behavior [3]. Together, these machine learning 
methodologies provide robust frameworks for continuous, non-intrusive, and adaptive 
authentication systems tailored to individual user behaviors. 
 
Gait Dynamics 
Traditional methods often relied on Support Vector Machines (SVMs) and Decision 
Trees, which effectively analyzed extracted features like step frequency and stride 
length but faced limitations in handling complex temporal dynamics [11]. Transformer-
based architectures have emerged as state-of-the-art solutions for gait recognition due 
to their ability to process long sequences in parallel and capture global dependencies 
through self-attention mechanisms [32]. Variants like Informer and Autoformer have 
been tailored for time-series data, reducing computational complexity and enhancing 
memory efficiency [27]. Feature fusion techniques, such as combining gait data from 
multiple sensors (e.g., accelerometers and gyroscopes), further enhance model 
robustness by integrating complementary information, as seen in multimodal systems 
[11]. These advances underscore the growing potential of deep learning and 
transformer-based models in refining gait-based biometric authentication systems, 
ensuring higher reliability and adaptability in diverse environments. 
 

8. Discussion & Analysis 
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Keystroke Dynamics 

Features Keystroke dynamics analyze typing behavior, focusing on 
dwell time (duration a key is pressed), flight time (interval 
between releasing one key and pressing another), typing 
speed, and error rate [1]. 

Advantages Non-intrusive, integrates seamlessly with workflows, 
requires no additional hardware, and supports passive 
data collection [1]. 

Applications Commonly used for authentication on keyboards and 
touchscreens, enhancing security for banking systems, 
enterprise access control, and personal devices [24]. 

Insights Offers effective authentication when consistent input is 
available, with typing speed and rhythm providing 
individualization. [14]. 

Data Collection Captured using software-based keystroke logging tools or 
datasets such as HMOG, which collect typing activity in 
real-world conditions [4]. 

Machine Learning 
Models 

SVMs, Random Forests, Naïve Bayes, CNNs, Autoencoders, 
and Deep Belief Networks (DBNs) are used for feature 
classification and anomaly detection [4][30]. 

Mouse Dynamics 

Features Mouse dynamics capture user interactions with pointing 
devices, such as cursor trajectories, speed, acceleration, 
click frequency, and drag-and-drop behavior [29]. 

Advantages Enables continuous monitoring without requiring 
specialized hardware, cost-effective, and highly adaptable 
to various tasks [18]. 

Applications Primarily used for authentication during computer and 
web usage, offering security for shared systems, multi-user 
environments, and secure networks [19]. 

Insights Achieves high accuracy using ML algorithms like SVM and 
Random Forests, with rapid impostor detection and 
adaptability to different usage patterns [28]. 

Data Collection Captured using logging tools that track real-time mouse 
events such as movement trajectories, click timestamps, 
and acceleration curves [28]. 

Machine Learning 
Models 

Decision Trees, Random Forests, Hidden Markov Models 
(HMM), and Deep Learning-based hybrid approaches like 
CNN-RNN fusion. [28][19][20]. 

Touch Dynamics 

Features Touch dynamics analyzes interaction with touchscreens, 
including swipe patterns (speed, direction, and 
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consistency), tap pressure and duration, and multi-touch 
gestures like pinch, zoom, and rotation [25]. 

Advantages Provides high personalization due to distinct touch 
interaction styles, integrates seamlessly with mobile 
devices, and is effective for touch-based authentication 
[25]. 

Applications Applied in authentication for smartphones, tablets, and 
other touch-based devices, and widely used for securing 
mobile banking applications and app-based services 
[25][31]. 

Insights Demonstrates reliability through features like swipe 
velocity and end-to-end deviation, capitalizing on the 
ubiquity of touch-based devices for user authentication 
[25] 

Data Collection Captured via mobile sensors such as capacitive 
touchscreens, gyroscopes, and accelerometers in real-time 
logging applications [31]. 

Machine Learning 
Models 

CNNs, LSTMs, Bayesian Classifiers, Gaussian Mixture 
Models, and hybrid deep learning frameworks leveraging 
self-learning models for behavioral adaptation [25]. 

Gait Dynamics 

Features Gait and motion patterns rely on sensors like 
accelerometers and gyroscopes to analyze traits such as 
step length, cadence, body orientation, and motion 
variability over time [11][27]. 

Advantages Allows passive data collection without user involvement, is 
suitable for wearables and mobile devices, and leverages 
the uniqueness of walking styles for robustness [11]. 

Applications Employed in authentication through wearables and mobile 
devices, as well as healthcare monitoring and fitness 
tracking [32]. 

Insights Studies show over 90% accuracy under ideal conditions, 
particularly for stride patterns and stability. Combining gait 
data with other modalities improves reliability and 
adaptability [27]. 

Data Collection Collected via inertial measurement units (IMUs) such as 
accelerometers and gyroscopes embedded in 
smartphones, smartwatches, or dedicated wearable 
devices [32]. 

Machine learning 
Models 

RNNs, Transformer-based architectures (Informer, 
Autoformer), Autoencoders, and CNN-RNN hybrids for 
sequential gait analysis [11][27][32]. 
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Table 1. comparative analysis of behavioral biometric modalities 

Table 1 provides a comparative analysis of four behavioral biometric modalities: 
keystroke dynamics, mouse dynamics, touch dynamics and gait dynamics. It outlines 
key aspects such as definitions, features, advantages, challenges, applications, data 
collection methods, preprocessing techniques, machine learning models, and 
performance outcomes. This table serves as a good reference for understanding how 
these biometrics work individually. 

 

9. Limitations/Challenges 

Behavioral biometrics often requires extended data collection periods to create a 
reliable user profile. Long data collection times reduce the practicality of real-time 
systems, especially for high-security applications [9] [25] [23].  “Current span of an hour 
to two hours is probably too long to be actually deployed for security extension, as an 
intruder may harm or exploit the system in much shorter duration” (C. Yoon, D. Kim, 
2009). Behavioral biometric systems also face challenges due to the natural variability 
in human behavior across different sessions. Factors such as mood, physical condition, 
stress levels, or environmental changes can significantly impact patterns like typing 
rhythm, touch gestures, or gait. For instance, a user feeling fatigued might type more 
slowly or interact differently with a touchscreen compared to when they are alert. 
These variations can lead to an increase in false positives, where legitimate users are 
incorrectly rejected, or false negatives, where intruders are mistakenly accepted. Such 
inconsistencies highlight the need for adaptive models that can account for behavioral 
fluctuations over time, improving the system's robustness and reducing error rates [24] 
[21][19]. Behavioral biometric systems are highly sensitive to variations in device 
hardware and the context of use. Differences in hardware, such as mouse sensitivity 
settings, screen size, touchscreen responsiveness, or even sensor calibration in 
wearables, can lead to inconsistencies in the data collected. For instance, a user 
interacting with a high-resolution touchscreen may produce different touch dynamics 
compared to using a less responsive device, which can impact the accuracy of 
authentication systems. Similarly, context, such as whether the user is sitting, standing, 
or walking, can influence behavioral patterns like touch pressure, swipe velocity, or gait. 
Such variability poses challenges in maintaining a consistent feature set across different 
devices and environments. Addressing these challenges requires sophisticated 
normalization techniques or models capable of adapting to diverse hardware and 
contextual conditions to ensure reliable performance [24][25]. Continuous monitoring 
of behavioral data introduces significant ethical challenges, particularly regarding user 
consent and data security. The constant collection of sensitive behavioral information, 
such as keystroke patterns, touch gestures, or movement data, raises privacy concerns, 
as users may feel uneasy about being continuously tracked without explicit and ongoing 
consent. Additionally, the risk of data breaches or unauthorized access to this 
information could deter users from adopting such systems, especially if the collected 
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data includes highly personal traits. Ensuring transparency, secure data handling, and 
offering users control over their data are essential steps in addressing these concerns 
and promoting trust in behavioral biometric systems [9][15]. One of the key challenges 
in developing behavioral biometric systems is acquiring sufficiently large and diverse 
datasets for training and testing. Small or biased datasets can limit the reliability of 
models and hinder their ability to generalize effectively to new users or varying 
conditions. For instance, if a dataset lacks variability in user demographics, device 
types, or interaction contexts, the resulting models may perform poorly when deployed 
in real-world scenarios. Additionally, collecting behavioral data often requires 
prolonged and consistent user participation, which can be difficult to achieve. These 
limitations not only affect the robustness of the models but also complicate efforts to 
evaluate their effectiveness comprehensively [9][6][20]. 
 

 

10. Conclusion 

This paper provides a literature review of continuous user authentication with 
behavioral biometrics via machine learning. It discusses the unique user patterns used 
to authenticate such as keystroke dynamics, mouse dynamics, touch gestures, and gait. 
These systems offer significant advantages, including passive monitoring, higher 
personalization, and seamless integration with modern devices, making them well-
suited to meet the demands of an increasingly connected world. While all these are 
highlighted, there is room for improvement through more studies as these drawbacks 
are delaying the widespread implementation of this for of authentication. Variability in 
user behavior, sensitivity to hardware and environmental conditions, ethical concerns 
around privacy, and the need for large, diverse datasets for robust machine learning 
models are just some of the issues that are slowing down progress. Despite these 
challenges, advancements in feature extraction, adaptive machine learning models, 
and multimodal systems show some promises in overcoming the challenges.  To 
address these issues, future research should explore developing models that adapt to 
changing behavioral metrics that can affect results caused by factors like stress, fatigue, 
or environmental changes. Another area of research should be integrating behavioral 
biometric authentication with the already existing traditional systems to boost 
resilience. As cyber threats continue to evolve, the importance of robust authentication 
systems is a top priority. Behavioral biometrics, powered by machine learning, 
represents a critical step toward developing secure, scalable, and user-friendly 
authentication frameworks. With continued research, a safer digital environment can 
be created that is both scalable and accessible.  
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Abstract 

Sales forecasting is critical to business success, serving as a foundation for anticipating 
future trends and optimizing inventory management and marketing strategies. By 
predicting sales trends, businesses can streamline operations, optimize inventory levels, 
and allocate resources more effectively. Recognizing the importance of sales forecasting, 
this project aims to leverage historical sales data to develop a robust and reliable sales 
forecasting system. 

This manuscript details the design and development of a web application system for 
Walmart store sales forecasting. The project utilizes the Walmart Recruiting - Store Sales 
Forecasting dataset, available on Kaggle, for training and testing purposes. This dataset 
includes historical sales data from February 5, 2010, to November 1, 2012, from 45 
Walmart stores across various regions, spanning multiple departments. It contains key 
information such as store numbers, department numbers, dates, weekly sales, and holiday 
indicators. 

The web application enables users to select specific stores and departments to view weekly 
sales forecasts. It offers visualizations of past sales trends, including year-over-year 
comparisons, which provide valuable insights such as peak sales periods, trends, or 
anomalies identified by the model. Additionally, the system displays performance metrics 
like RMSE to build user trust and confidence in the predictions. The forecasting model 
uses XGBoost to enhance predictive accuracy, with data preprocessing and analysis 
handled using Pandas. 

The project employs modern technologies, including React HTML, and CSS for the 
frontend, and Python, Flask, and MySQL for the backend. The application is deployed on 
a Linux server for efficient and reliable performance. 
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1 Introduction 

In the retail industry, accurate sales forecasting is critical to optimizing inventory 
management, resource allocation, and overall business operations. By predicting sales 
trends, companies can make informed decisions to align their stock levels with customer 
demand, improving both efficiency and profitability. For example, in inventory 
management, sales forecasts help retailers avoid overstocking or stockouts, ensuring that 
the right products are available at the right time. In marketing, forecasts enable businesses 
to plan promotional campaigns more effectively by identifying peak sales periods and 
customer preferences. Additionally, sales forecasting plays a vital role in financial 
planning, allowing companies to allocate budgets and resources more efficiently, thereby 
enhancing long-term financial stability.  

To explore the machine learning techniques in the sales forecasting, this project leverages 
a dataset from Kaggle's "Walmart - Recruitment Prediction Competition", which provides 
comprehensive historical sales data from multiple retail stores. The dataset is provided in 
".csv" format and includes four main tables: stores.csv, train.csv, test.csv, and features.csv. 
The stores.csv file contains detailed information about 45 stores, including store types (e.g., 
Type A, B, C) and sizes, which are crucial for understanding the scale and characteristics 
of each store. The train.csv file serves as the historical training data, covering weekly sales 
from February 5, 2010, to November 1, 2012. This file includes store IDs, department IDs, 
weekly sales figures, and holiday indicators, providing a foundation for training the 
forecasting model. The test.csv file is structurally similar to the train.csv file, but excludes 
weekly sales, making it suitable for evaluating the model's performance on unseen data. 
Finally, the features.csv file provides additional contextual data related to store, 
department, and regional activities, such as temperature, fuel prices, promotional 
markdowns, and economic indicators like the Consumer Price Index (CPI) and 
unemployment rates. These features are essential for capturing external factors that 
influence sales trends.  

In our approach, we developed a web-based system that allows users to review sales 
projections for various stores and departments. In this regard, it offers a visualization of 
historical sales trends, also including year-over-year analysis. It shows information about 
peak sales seasons, trends, and anomalies identified by the model. Additionally, the system 
evaluates model performance using metrics such as Root Mean Squared Error (RMSE)[1], 
Mean Absolute Error (MAE), and Coefficient of Determination (R²), enhancing user 
confidence in the predictions. The forecasting model uses XGBoost[2], a powerful machine 
learning algorithm known for its efficiency and accuracy, combined with optimization 
techniques to achieve optimal performance. 

2 Requirements 
The system is designed to facilitate sales forecasting and analysis by allowing users to 
upload, process, and visualize sales data. Key features include log in, log out, real-time 
data updates, interactive forecast visualization, data management and downloadable 
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reports. Through these functionalities, the system enhances decision-making by providing 
accurate and timely sales predictions. 

2.1 Data visualization 

Sales Forecasting Visualization 

1. Data Table – The Data Table displays the forecasted results generated during the model 
training phase using the test dataset provided by Kaggle. This dataset includes detailed 
information such as store IDs, department IDs, predicted weekly sales, and other 
relevant features. Users can filter the data based on specific criteria (e.g., store, 
department, or date range) and export the results for further analysis. 
 

 
Figure 1: Data table sub-view in Sales Forecasting Page  

 
2. Sales Changes Line Chart – Shows sales fluctuations over a selected time frame, 

helping users identify patterns of sales growth or decline. In Figure 2, the x-axis 
represents the date, which by default includes all available years in the dataset. Users 
can adjust the date range using a selector, which allows filtering sales data within a 
specific time frame. Additionally, a year selection dropdown enables users to quickly 
view sales trends for an entire year by choosing a particular year, displaying a line chart 
that reflects the sales data for the selected year as a whole. The x-axis represents the 
date, while the y-axis represents the sales volume. By default, the line chart displays 
all available sales data for the selected store and department, sorted chronologically 
from left to right based on the date. 
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Figure 2: Sales Changes sub-view in History Data Page 

 
3. Pie Charts:  

 
  Four features, as seen in Figure 3, were selected over others because they provided 
more meaningful categorical groupings (e.g., holiday vs. non-holiday, markdown 
types, temperature ranges, months) that directly impact sales performance and business 
decision-making. While the dataset includes various numerical and categorical 
attributes, these specific features were chosen for pie chart visualization due to their 
clear, distinct categories and their influence on sales trends. The use of pie charts for 
these features enables a straightforward comparison of proportions, making it easy to 
identify dominant categories and their impact on overall sales.  
- Sales on Holidays vs. Non-Holidays – Compares sales performance during holiday 

and non-holiday periods, highlighting the impact of holidays on revenue. By 
comparing sales during holiday and non-holiday periods, this pie chart highlights 
the proportion of revenue generated during these key times. This visualization helps 
businesses understand the importance of holiday promotions and plan their 
strategies accordingly. 

- Markdown Contribution – Visualizes the proportion of sales influenced by different 
markdown categories, showing how discounts affect total revenue. Understanding 
the contribution of each markdown type is essential for optimizing promotional 
campaigns and maximizing revenue. This pie chart breaks down the proportion of 
sales influenced by different markdown categories, providing insights into which 
types of discounts are most effective. 

- Temperature Contribution – Weather conditions, represented by temperature 
ranges, can significantly influence consumer purchasing patterns. This pie chart 
shows the distribution of sales across different temperature ranges, helping 
businesses analyze how weather impacts sales. By visualizing the proportion of 
sales in each temperature range, businesses can adjust their inventory and 
marketing strategies based on seasonal weather patterns. The distinct temperature 
categories make this feature a good fit for a pie chart, as it allows for a quick 
comparison of sales across different weather conditions. 
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- Monthly Sales Contribution – Represents the share of total annual sales for each 
month, offering insights into seasonal variations. Seasonal variations are a key 
aspect of retail sales. This pie chart represents the share of total annual sales for 
each month. By identifying months with higher or lower sales contributions, 
businesses can optimize resource allocation and prepare for seasonal fluctuations. 
 

 

Figure 3: Pie charts sub-view in History Data Page 

  In summary, these four features were chosen for pie chart visualization because they 
represent categorical data with clear, distinct categories that have a direct and measurable 
impact on sales performance. Pie charts are particularly suited for such data, as they allow 
users to quickly grasp the relative proportions of each category and understand their 
influence on overall sales. By focusing on these four features, the pie charts provide 
actionable insights into key factors that influence sales performance, supporting data-
driven decision-making in the retail industry. 

3 Design 
3.1 Architecture Design 

The sales forecasting system adopts a classical client-server architecture, ensuring 
modularity and scalability. This architecture consists of three key components: the 
frontend, the backend, and the data layer. The interaction between these components 
follows the client-server model, where the front-end serves as the client and the backend 
as the server. 

The frontend was developed using React.js, which provides a dynamic and user-friendly 
interface for users to interact with the application. React was used to design and manage 
the graphical user interface, enabling variables such as selecting stores and departments to 
view sales forecasts.  

The backend was built with Flask, a lightweight Python web framework. It acts as the 
application server, handling API requests and responses. Key functionalities include 
processing prediction requests through an endpoint, loading and using machine learning 
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models, and serving static files. Flask ensures seamless communication between the front-
end and the underlying machine learning model, making predictions accessible to the user. 

The data layer consists of a MySQL database, which stores the data needed to support the 
application’s operations. This includes historical sales data and other relevant information 
needed to make accurate predictions. The database acts as the foundation for the system, 
ensuring that the backend has access to all relevant information to effectively process user 
requests. 

This architectural design allows a clear separation of concerns, allowing the frontend, 
backend, and data layer to be independently developed, tested, and deployed. 

3.2 Machine Learning Model 

Machine learning models play a crucial role in sales forecasting by identifying patterns and 
trends within historical data. Various algorithms can be employed to model the complex 
relationships between sales and influencing factors such as seasonality, promotions, and 
holidays. The selection of an appropriate model depends on its ability to generalize 
effectively to unseen data while maintaining computational efficiency.   

The tree-based ensemble methods, including Random Forest, Gradient Boosting, 
XGBoost, LightGBM, CatBoost, and Extra Trees, offer greater flexibility and the ability 
to model complex interactions. These models leverage multiple decision trees to enhance 
predictive performance through techniques such as boosting, bagging, and feature 
selection.   

To ensure a fair comparison, all models were trained on the same preprocessed dataset and 
evaluated using standardized performance metrics, including Mean Squared Error, Root 
Mean Squared Error, and R² score. Additionally, factors such as model interpretability, 
training time, and scalability were taken into account.  

After data preprocessing, multiple machine learning models were evaluated to determine 
the most suitable approach for sales forecasting. Models considered included Linear 
Regression, Random Forest, Gradient Boosting, XGBoost, LightGBM, CatBoost, and 
Extra Trees. Each model was trained and tested using the preprocessed dataset, and their 
performance was assessed based on key evaluation metrics, including Mean Squared Error 
(MSE), Root Mean Squared Error (RMSE), and R² score. Additionally, training time was 
considered a factor to ensure computational efficiency. Specific results are shown in Figure 
4. 

Among the evaluated models, XGBoost demonstrated the best balance between predictive 
accuracy and computational efficiency. It consistently achieved lower MSE and RMSE 
values while maintaining a high R² score, indicating its ability to capture complex 
relationships in the data. Moreover, its training time was reasonable compared to other 
models, making it a practical choice for deployment.   
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Figure 4: Performance Evaluation of Different Models 

Furthermore, under the same feature set, feature selection, and optimization conditions, 
XGBoost continued to outperform other models. Its ability to efficiently leverage feature 
interactions and optimize through gradient boosting contributed to its superior 
performance. The model maintained a consistently lower error rate while achieving 
competitive results across all key evaluation metrics. The results, as shown in Figure 5, 
further confirm XGBoost’s robustness in handling the complexities of sales forecasting. 

 

Figure 5: Performance Evaluation of Different Models Using the Same Optimized 
Conditions 

4 Implementation 
The application follows a Client-Server Architecture, which separates the frontend and 
backend into two distinct components. The frontend, built with React.js, HTML, and CSS, 
is responsible for rendering the user interface and handling user interactions. React.js 
features a component-based architecture that enhances modularity, reusability, and 
maintainability in frontend development. 

On the backend, Flask serves as the web framework, handling server-side logic, data 
processing, and API endpoints. Flask's lightweight and flexible nature makes it ideal for 
building RESTful APIs that communicate with the frontend. The backend is designed to 
receive requests from the frontend, process them, and return appropriate responses, 
typically in JSON format. This separation of concerns ensures that the frontend and 
backend can evolve independently, improving the overall scalability and maintainability 
of the application. 
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Communication between the frontend and the backend is facilitated through HTTP requests 
and RESTful APIs. The frontend sends requests to the backend to fetch data or perform 
actions, and the backend processes those requests, interacts with the database or machine 
learning models, and returns the results to the frontend. For example, when the frontend 
sends a prediction request, the backend preprocesses the input data, queries the machine 
learning model, and returns the prediction result. This process is implemented in the 
/predict route, as shown in the following code snippet (Figure 6): 

 

Figure 6: Code snippet for /predict route 

We used the XGBoost model for sales forecasting, with hyperparameter tuning performed 
using Bayesian optimization[3]. This method efficiently searches for the best parameters, 
improving the model’s performance. After selecting the optimal model, five-fold cross-
validation is applied to evaluate its robustness, ensuring generalization across different data 
splits. Finally, predictions are generated and saved for further analysis. Part of the 
implementation process of the above is given in Figure 7. 

4.1 Evaluation and Results 

The performance of the final model was rigorously evaluated using both cross-validation 
and a test set to ensure its robustness and generalization capability, as shown in Figure 8. 
In cross-validation, the model demonstrated strong predictive power, with consistently low 
error metrics (MAE, MSE, and RMSE) and a high R² score across all folds. This indicates 
that the model effectively captured patterns in the training data and performed well on 
various subsets of the data, showcasing its stability and reliability. 

                            

Figure 8: Performance Evaluation of Final XGBoost 

@app.route('/predict',	methods=['POST'])	
def	predict():	
				data	=	request.json	
				processed_data	=	preprocess_data(data)	
				prediction	=	model.predict(processed_data)	
				return	jsonify({'predicted_weekly_sales':	prediction[0]})	
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Figure 7: Code snippet for model prediction  

#	Bayesian	optimization	seeker	
bayes_search	=	BayesSearchCV(	
				xgb.XGBRegressor(n_jobs=-1),	
				param_space,	
				n_iter=32,		
				cv=5,	
				scoring='neg_mean_absolute_error',	
				verbose=1	
)	
#	Get	the	best	model	
bayes_search.fit(X_train_full,	y_train_full)	
best_model	=	bayes_search.best_estimator_	
for	fold	in	range(5):	
				dataset_train	=	splited.loc[splited['fold']	!=	fold]	
				dataset_test	=	splited.loc[splited['fold']	==	fold]	
				train_y	=	dataset_train['weeklySales']	
				train_x	=	dataset_train[important_features]			
				test_y	=	dataset_test['weeklySales']	
				test_x	=	dataset_test[important_features]			
				predicted	=	best_model.predict(test_x)	
				mae,	mse,	rmse,	r2	=	mean_absolute_error(test_y,	predicted),	
mean_squared_error(test_y,	predicted),	
np.sqrt(mean_squared_error(test_y,	predicted)),	r2_score(test_y,	
predicted)	
				error_cv	+=	mae	

print(f"Fold	{fold}	MAE:	{mae},	MSE:	{mse},	RMSE:	{rmse},	R²:	{r2}")	
	

#	Reorder	columns	to	match	the	training	data	
dataset_test_for_prediction	=	dataset_test[important_features]	
#	Predict	on	test	data	
predicted_test	=	best_model.predict(dataset_test_for_prediction)	
dataset_test['weeklySales']	=	predicted_test	
	
#	Save	results	to	output	with	specific	columns	
output_df	=	dataset_test[['Store',	'Dept',	'Date',	'weeklySales',	'IsHoliday',	
'Temperature',	'Fuel_Price',	'MarkDown1',	'MarkDown2',	'MarkDown3',	
'MarkDown4',	'MarkDown5',	'CPI',	'Unemployment',	'Type',	'Size']]	
output_df.to_csv('output.csv',	index=False)	
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5 Conclusion 
In conclusion, this project successfully demonstrates the potential of machine learning in 
sales forecasting, providing a reliable and scalable solution for predicting weekly sales. 
The combination of advanced machine learning techniques, a user-friendly interface, and 
a robust backend architecture makes this system a valuable tool for businesses seeking to 
optimize their sales strategies and improve decision-making processes. 

5.1 Limitations 

While the current system utilizes a pre-trained model for real-time predictions, there are 
some limitations that impact its performance and adaptability. The model is trained on a 
dataset provided by Kaggle, which, although comprehensive, is limited in both size and 
timeliness. The dataset covers sales data from 2010 to 2012, which may not fully capture 
the dynamics of today’s retail environment. Consequently, the model may struggle to 
account for recent changes in market trends, consumer behavior, or external factors like 
economic shifts or global events. 

5.2 Future Works 

The automated feature engineering techniques, such as feature selection algorithms or deep 
learning-based feature extraction, should be explored to improve the model performance. 
These approaches would reduce the reliance on manual feature engineering and domain 
knowledge, enabling the system to automatically identify the most predictive features. 
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Abstract 

The rapid expansion of the Internet of Things (IoT) has introduced numerous devices and 

applications that are transforming modern life. Simultaneously, this progress has created an ever-

shifting landscape of malware, threats, and vulnerabilities that challenge existing security 

paradigms. This survey presents an extensive review of up-to-date research on IoT security, 

focusing on malware, threats, vulnerabilities, and countermeasures. We consolidate and analyze 

key contributions to highlight current gaps and outline future research directions. Our findings 

indicate that security must be a continuous, collaborative process that evolves in tandem with 

emerging technologies such as 5G networks, machine learning, and blockchain. This paper 

synthesizes the literature on intrusion detection systems, distributed denial of service attacks, 

privacy protection, Industrial IoT (IIoT) security, and more, providing an invaluable resource for 

researchers and practitioners aiming to secure the next generation of IoT ecosystems. 

Keywords: IoT, IIoT, Malware, Threats, Vulnerabilities, Machine Learning, DDoS, Intrusion 

Detection 

1. Introduction 

The Internet of Things (IoT) is revolutionizing industries by enabling real-time data processing, 

intelligent automation, and ubiquitous connectivity [16] - [18]. From smart homes and consumer 

electronics to critical infrastructures and industrial control systems, IoT devices promise 

unprecedented benefits in efficiency and convenience [19] - [20]. However, each new feature or 

technology introduces potential security weaknesses that adversaries can exploit [21] - [23]. 

Consequently, ongoing research and development seek robust solutions to mitigate these evolving 

threats [1] - [3]. 

Despite a significant body of work, IoT security remains highly challenging due to resource 

constraints, heterogeneous protocols, and the sheer scale of IoT deployments [24] - [25]. Notorious 

incidents such as the Mirai botnet have illustrated how compromised devices can be leveraged to 

launch massive Distributed Denial of Service (DDoS) attacks [26] - [27]. Researchers have 

recognized that comprehensive security frameworks must account not only for hardware/software 

vulnerabilities but also for issues involving device authentication, network intrusion detection, and 

policy regulations [28] - [30]. 
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This paper consolidates and critically examines recent IoT security research, with particular 

emphasis on malware, threats, vulnerabilities, and countermeasures, including machine learning 

driven solutions. We highlight key findings from academic and industrial literature, identify gaps, 

and discuss future research directions. The remainder of this paper is organized as follows. Section 

2 reviews background and related work, focusing on recent studies. Section 3 discusses extended 

analyses of key areas, including IoT communication protocols, collaborative security frameworks, 

and machine learning–based intrusion detection. Section 4 deepens the exploration of advanced 

topics such as privacy, trust management, edge computing, and blockchain. Section 5 combines 

multiple critical elements: the major challenges, gaps in current solutions, future directions, 

extended conclusions, and a comparative analysis table. Finally, all references are provided in 

ascending numerical order at the end. 

2. Background 

IoT devices are rapidly integrating with 5G networks, industrial systems, and consumer 

electronics, resulting in an expansive attack surface [1], [16], [17]. This section provides a detailed 

account of prior works categorized into four primary themes: (A) DDoS threats in 5G-enabled IoT, 

(B) intrusion detection and machine learning, (C) industrial IoT vulnerabilities, and (D) advanced 

malware and mitigation measures. These themes illustrate the breadth of current research efforts 

and how they connect to broader security challenges [25] - [30]. 

A. DDoS Threats in 5G-Enabled IoT 

Studies by Maiwada et al. [1] and Bertino et al. [25] report that 5G’s high bandwidth and low 

latency amplify both opportunities and risks for IoT. The Mirai botnet outbreak [27] showcased 

how weakly secured devices with default passwords can be hijacked for large-scale DDoS attacks. 

More recent surveys [16], [28] emphasize the importance of multi-stakeholder collaboration 

among manufacturers, network operators, and regulators to prevent large-scale disruptions. These 

collective efforts aim to address the gap in device-level security policies, including password 

standards, secure boot mechanisms, and frequent firmware updates. 

B. Intrusion Detection and Machine Learning 

Ahmed et al. [4] explored honeypot-driven approaches for intrusion detection, while Khang et al. 

[5] provided a comprehensive review of deep learning and ensemble techniques applicable to IoT. 

Studies [6], [7], [9] have confirmed that machine learning–based intrusion detection systems are 

effective at identifying zero-day attacks by analyzing network traffic anomalies. Even so, large-

scale deployment of ML-based IDS frameworks can present new challenges, such as increased 

computation, scalability issues, and the need for continuous retraining [34], [37]. Researchers are 

exploring federated learning [31] and distributed anomaly detection [34] to address data privacy 

concerns and to manage the scale of IoT networks. 

C. Industrial IoT (IIoT) Vulnerabilities 

Smart factories rely on IoT sensors to manage production lines and supply chains efficiently [10], 

[20]. However, SCADA systems originally designed for isolated networks [11] now face an 
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expanded threat surface, encompassing IP-based connections and cloud integration [24], [42]. 

Vulnerabilities within IIoT environments can lead to catastrophic consequences, especially when 

critical infrastructures (e.g., power grids, transportation systems) are targeted [2], [30], [40]. To 

counter these threats, some frameworks [33], [39] incorporate robust encryption, multi-level 

authentication, and stringent access controls, although consistent adoption remains a major hurdle. 

Researchers are also examining real-time intrusion detection for cyber-physical systems [40], [42], 

as downtime or sabotage in these environments can lead to severe operational and economic 

repercussions. 

D. Advanced Malware and Mitigation 

Recent discussions center on AI-enhanced malware that leverages machine learning to evade 

signature-based detection [13], [21]. Proposed methods include image-based analysis using 

convolutional neural networks [13], resource-aware distributed detection strategies [15], and 

multi-feature cloud-based approaches [8]. Other frameworks [22], [25] champion blockchain and 

zero-trust architectures as means to improve integrity and authentication. Authors in [20], [50] 

underscore that while these emerging solutions hold promise, they also introduce unique 

challenges, such as latency in blockchain transactions, the high computational overhead of some 

zero-trust frameworks, and the complexity of integrating these solutions into legacy IoT devices. 

3. Extended Analysis of Key Areas 

This section extends the core discussion by delving into IoT communication protocols, 

collaborative security frameworks, and a comparative analysis of machine learning based intrusion 

detection. Each topic underscores different dimensions of IoT security and their respective 

solutions, bridging gaps identified in the background section [25] - [30]. 

A. IoT Communication Protocols and Their Vulnerabilities 

Gerodimos et al. [12] describe vulnerabilities in commonly used protocols such as MQTT, CoAP, 

and HTTP. These protocols, designed for lightweight operation, can be susceptible to 

eavesdropping or injection attacks [21]. Lin et al. [8] propose encryption and authentication 

enhancements yet highlight the need for resource-efficient mechanisms tailored to constrained IoT 

devices. Additional efforts to standardize secure protocols across vendors [17], [49] are underway 

but remain fragmented, particularly in large-scale IoT ecosystems. 

B. Collaborative Security Frameworks 

Sun et al. [2] and Roman et al. [17] argue that any successful IoT security strategy must involve 

cooperation among device manufacturers, network service providers, and policymakers. 

Frameworks such as zero-trust networking, secure firmware updates, and hierarchical 

authentication [29], [44], [49] can standardize best practices. However, universal adoption is 

challenging due to varying national regulations, differing device architectures, and the financial 

burden of implementing consistent security measures [33], [39]. Initiatives for more transparent 

vulnerability disclosures and global IoT security guidelines [28], [40] are also gaining momentum. 
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C. Comparative Analysis of Machine Learning–Based IDS 

Multiple works [7], [9], [14], [34] examine the use of neural networks (CNN, LSTM, BiLSTM) 

and traditional ML algorithms (Decision Trees, SVM, KNN) for IoT intrusion detection. Studies 

[26], [28], [38] note that anomaly based systems excel at detecting unknown or zero day threats 

but can suffer from higher false positive rates. The need for robust feature engineering, combined 

with domain expertise, is critical for balanced detection performance [5], [37]. Table I (within the 

merged final section) compares recent IDS frameworks, revealing strengths, weaknesses, and 

potential deployment challenges. 

4. Advanced Topics in IoT Security 
Although preceding sections offer substantial insights, IoT security research has additional 

advanced topics, each addressing distinct facets of this rapidly evolving field [25] - [30]. From 

edge/fog computing architectures to blockchain-based security enhancements, these directions 

represent the cutting edge of IoT research and development. 

A. Privacy and Trust Management 

Privacy protection remains a key pillar of IoT security, given the massive volume of sensitive data 

generated by consumer and industrial devices [18], [22]. Yan et al. [22] proposes a trust 

management model that uses continuous monitoring of device behavior to evaluate 

trustworthiness. Ziegeldorf et al. [18] add that privacy must be maintained at all lifecycle stages, 

from data generation to storage and sharing. Some frameworks [24], [37] incorporate distributed 

consensus mechanisms to ensure data legitimacy, although performance overhead is often a 

concern. 

B. Edge Computing and Resource Constraints 

Emerging research [15], [31], [33] explores edge-based solutions to reduce latency and mitigate 

bottlenecks on centralized servers, which is crucial for mission-critical applications like real-time 

healthcare monitoring or autonomous vehicles [19], [46]. Nonetheless, the distribution of 

intelligence to network edges introduces new security challenges, including multi-tenant isolation, 

key management, and the risk of compromised edge nodes [32], [35]. Many studies stress the 

importance of secure device registration and authentication protocols at the edge [25], [49] to 

protect the local network from infiltration. 

C. Blockchain-Integrated Solutions 

Sharma et al. [20] discuss integrating blockchain to maintain tamper-proof records of IoT 

transactions, thereby enhancing transparency and trust among devices. Mosenia and Jha [39] 

similarly emphasize the potential of smart contracts for automated policy enforcement, enabling 

devices to self-regulate based on predefined security rules. However, blockchain technology itself 

faces scalability and throughput constraints [49], [50], often requiring high computational 

resources and incurring latency not always acceptable for time-sensitive IoT operations [44]. 

Despite these challenges, the synergy between blockchain, IoT, and decentralized trust continues 

to attract research attention due to its potential to mitigate single points of failure [28], [32]. 
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5. Challenges, Gaps, and Future Directions: A Comparative Analysis 
In this section, we address the main limitations in current IoT security approaches, propose future 

research directions, present extended conclusions, and provide a comparative analysis table. The 

content reflects ongoing scholarly debates and converging recommendations for safeguarding IoT 

ecosystems in a rapidly evolving threat landscape [1] - [50]. 

A. Challenges and Gaps in Current Solutions 

Despite the breadth of existing research, several significant challenges persist in IoT security: 

1. Resource Limitations: Many IoT devices lack the computational power or memory to 

implement complex security protocols [21], [39]. As a result, simplified algorithms may 

fail to provide adequate protection against advanced attacks [13], [20]. 

2. Fragmented Standards and Regulations: Inconsistent security standards across different 

manufacturers and jurisdictions hinder interoperability and hamper large-scale adoption of 

unified frameworks [12], [45]. This fragmentation also increases the difficulty of enforcing 

consistent best practices and establishing baseline security measures [17], [40]. 

3. Scalability of IDS and ML Models: Systems developed for small-scale testbeds may not 

scale effectively to monitor millions of IoT devices in real deployments [9], [14]. 

Additionally, retraining ML-based IDS in real time can be computationally intensive [5], 

[7], especially when dealing with unbalanced datasets [26], [43]. 

4. AI Bias and Data Quality: Machine learning algorithms are only as robust as their training 

data [22], [28]. Anomalies or insufficient representation of attack vectors can lead to high 

false positive or false negative rates [5], [9]. Adversarial machine learning [13], [21] further 

complicates model reliability. 

5. Legacy Infrastructure Integration: SCADA systems and other legacy architectures, 

which are integral in power grids, oil pipelines, and transportation, often cannot seamlessly 

adopt modern security patches [11], [24]. This exposes critical sectors to undue risks, 

particularly if outdated protocols remain in circulation [2], [30]. 

B. Future Research Directions 

1. AI-Driven Adaptive Security: While deep learning techniques have proven effective, 

more adaptive AI solutions are required to handle evolving zero day exploits [29], [37]. 

Models must continuously learn from new data, ideally in a distributed or federated manner 

[31], [34]. 

2. Lightweight Cryptographic Schemes: Energy-efficient, low-latency cryptographic 

mechanisms are needed for constrained IoT devices [15], [25]. Areas such as elliptic-curve 

cryptography and post-quantum algorithms [41] warrant deeper investigation, along with 

hardware acceleration strategies that minimize computational overhead [49]. 

3. Holistic Governance and Standardization: Clear regulations and global security 

guidelines, potentially backed by governmental bodies, are essential for uniform adoption 

of protective measures [2], [44]. An international consensus on vulnerability disclosure and 

device manufacturing standards could significantly reduce baseline risks [12], [40]. 

4. Cross Layer Collaboration: Integrating data from sensors, network intelligence, and 

cloud analytics can yield more accurate, context-aware intrusion detection [37], [43]. 
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Future systems may unite software-defined networking principles [17], [37] and advanced 

security orchestration to create dynamic, self-defending architectures [24], [32]. 

5. Quantum Resistant Architectures: As quantum computing becomes more accessible, 

quantum-resistant encryption for IoT must be investigated to future-proof devices and 

networks [25], [41]. Preparations for a post quantum era are vital, given the widespread 

risk of retroactive data decryption if current encryption standards are compromised [35], 

[50]. 

C. Extended Conclusions 

The IoT ecosystem continues to expand, intersecting with 5G, industrial automation, and smart 

city initiatives [10], [16]. Our survey reveals a delicate balance between innovation and security. 

The literature overwhelmingly supports the notion that collaborative, adaptive security 

frameworks are crucial to tackling threats ranging from DDoS attacks to advanced malware. 

Machine learning approaches play a pivotal role in intrusion detection and threat intelligence, but 

they require robust, high-quality data and resilience against adversarial manipulations [5], [9], 

[26]. Future efforts must focus on scalable, real-time, and layered security solutions that address 

both current vulnerabilities and emerging concerns like quantum computing [20], [25], [41]. 

Collaboration between device manufacturers, regulators, and research institutions remains a 

foundational pillar for safeguarding IoT’s transformative potential [2], [17]. 

D. Comparative Analysis Table 

To present a succinct overview, Table 1 compares selected IoT Intrusion Detection Systems (IDS) 

and highlights performance metrics, advantages, and limitations. Each system aims to detect 

threats effectively but varies in computational overhead, detection accuracy, and operational 

complexity [7], [9], [14], [34]. These comparisons underscore the importance of tailoring solutions 

to specific deployment environments, resource constraints, and threat models [13], [24]. 

Table 1. Comparative Analysis of Selected IoT Intrusion Detection Systems 

Study  IDS Technique Dataset Reported 

Accuracy 

Key Strength Limitations 

Ahmed et 

al. [4] 

Honeypot-based hybrid IDS 
using machine learning 

Real-world 
honeypot 

data 

95–98% Tailored for smart 
city IoT 

environments; strong 

real-time detection 

Requires complex honeypot 
configuration; challenges in 

generalization across diverse 

IoT deployments 

Khoei & 

Kaabouch 

[7] 

Comparative study of 

supervised vs. unsupervised 

models 

CICDDOS 

2019 dataset 

90–99% Provides a broad 

evaluation of ML 

methods in IDS 

Unsupervised models may 

suffer from higher false 

positive rates 

Zeghida et 

al. [9] 

Ensemble Learning 
approach for securing 

MQTT traffic 

MQTT 
protocol 

dataset 

~95% Robust ensemble 
method improves 

detection stability and 

accuracy 

Risk of overfitting in large 
ensembles; potential 

computational overhead 

during deployment 

Esmaeili et 

al. [14] 

Deep learning models 

(BiLSTM, KNN, SVM) for 

DDoS detection 

NSL-KDD 

dataset 

100% (training); 

lower on testing 

Excels in multiclass 

detection under 

controlled conditions 

Training results may not 

generalize well; dataset 

limitations affect real-world 
applicability 

Lin et al. 

[8] 

Extreme Learning Machine 

(ELM) integrated with 

cloud computing and multi-
feature extraction 

Custom IoT 

test dataset 

~96% Lightweight and 

scalable solution 

suited for cloud-based 
environments 

Limited feature extraction 

may hinder detection of novel 

attack patterns 
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This table encapsulates the varying focuses, performances, and limitations of some recently 

proposed IDS solutions for IoT. While high accuracy is attainable under controlled experiments, 

real-world deployment must tackle challenges like evolving attack vectors, data imbalance, and 

the dynamic nature of IoT environments [5], [28], [43]. 

6. Conclusion 
As the Internet of Things (IoT) continues to expand across industries and infrastructures, the need 

for robust and adaptive security frameworks becomes increasingly urgent. This paper has 

presented a comprehensive survey of the evolving threat landscape in IoT, examining malware, 

vulnerabilities, and intrusion vectors, along with contemporary countermeasures including 

machine learning-based intrusion detection, blockchain integration, and privacy preserving 

architectures. Through the analysis of emerging technologies such as 5G, edge computing, and 

quantum-resilient encryption, it is evident that traditional security models are insufficient for 

modern IoT ecosystems. Our review underscores that securing IoT requires not only technical 

innovation but also cross disciplinary collaboration among device manufacturers, researchers, 

policymakers, and end-users. Challenges such as scalability, resource constraints, fragmented 

standards, and the integration of legacy systems persist as major hurdles. Nonetheless, ongoing 

developments in federated learning, lightweight cryptography, and decentralized trust mechanisms 

show promising potential to address these gaps. Ultimately, achieving resilient and secure IoT 

systems demands a proactive, layered, and adaptable approach one that evolves in tandem with the 

technologies it aims to protect. Future research should focus on scalable, context-aware solutions 

that balance security, performance, and usability across diverse and distributed environments. 

Only through such holistic and forward looking efforts can the full promise of IoT be realized 

safely and sustainably. 
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Abstract 

Human factors remain a persistent vulnerability in modern cybersecurity, where technical controls 

often fail if users are susceptible to social engineering, cognitive biases, and motivational barriers. 

This literature review examines how psychological insights, and behavioral interventions can be 

integrated into cybersecurity, a field sometimes known as psyber security. The paper opens by 

outlining the underlying problem of misalignment between human behavior and security 

requirements, followed by three research questions on how to (1) enhance user awareness, (2) 

mitigate biases and social engineering, and (3) build a sustainable security culture. A step by step 

methodology is employed to identify, screen, analyze, and synthesize relevant studies. The 

expanded literature review discusses research findings on cognitive biases, persuasion tactics, user 

motivation, organizational culture, and user-centric interface design. Multiple tables summarize 

key studies, capturing recurring themes and evidence-based strategies. The review concludes with 

a discussion of gaps, opportunities, and the ethical considerations that future psyber security 

research must address to ensure ethical, adaptive, and user-aligned defenses. 

Keywords: Psyber Security, Human Factors, Social Engineering, Cognitive Biases, Behavioral 

Interventions, Security Culture, User-Centric Design, Organizational Psychology 

 

1. Introduction 

Cybersecurity threats are evolving in both sophistication and scale, impacting diverse sectors from 

finance and healthcare to government operations [1] - [3]. While substantial advances in technical 

safeguards such as firewalls, encryption protocols, and intrusion detection systems have mitigated 

numerous attacks, breaches continue at a high rate. Many incidents trace back to user-driven errors 

or social engineering manipulations rather than purely technical vulnerabilities [4], [5]. This stark 

reality underscores the essential role of human factors in cybersecurity, prompting a growing 

interest in psyber security, which systematically integrates psychological and behavioral principles 

into cybersecurity practices. 
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1.1 Problem Statement 

Despite the continuous refinement of technical cybersecurity tools, organizations worldwide face 

repeated breaches that hinge on human oversights including weak passwords, unpatched systems, 

mishandling of suspicious emails, and other forms of non-compliance [6], [7]. Attackers exploit 

cognitive biases and emotional triggers via well crafted social engineering schemes [8], resulting 

in unauthorized access and compromised data. Thus, the enduring gap between technological 

capabilities and user compliance raises a central challenge: 

How can psychological principles be effectively integrated into cybersecurity strategies to address 

human vulnerabilities, reduce the impact of cognitive biases, and foster sustainable secure 

behaviors? 

Existing research recognizes the pivotal role of human behavior in cybersecurity; however, a 

robust, empirically validated framework that unifies psychological insights across individual, 

cultural, and organizational levels remains relatively undeveloped. This review aims to bridge that 

gap by surveying relevant theories, best practices, and empirical findings. 

1.2 Research Questions 

Guided by the above problem statement, this paper is organized around three research questions: 

1. RQ1: How can user awareness and compliance be enhanced through psychological 

principles and behavioral interventions? 

This question explores how theoretical models (e.g., Protection Motivation Theory, Self 

Determination Theory) and specific tactics (e.g., nudges, gamification) improve 

adherence to cybersecurity protocols. 

2. RQ2: Which cognitive biases and social engineering tactics pose the greatest threats, 

and what evidence-based methods can mitigate these vulnerabilities? 

This question investigates psychological underpinnings of social engineering attacks e.g., 

persuasion strategies, trust exploitation and examines empirically validated 

countermeasures (e.g., scenario-based training, real-time prompts). 

3. RQ3: In what ways do organizational culture and leadership influence secure 

behaviors, and how can these factors be optimized to promote a sustainable security 

climate? 

This question looks at group level and cultural influences, including leadership support, 

peer norms, and knowledge-sharing frameworks that collectively shape how security 

policies are internalized and enacted. 

By integrating these research questions into a structured review, the paper seeks to uncover the 

state of the art in psyber security, highlight successful interventions, and reveal ongoing gaps that 

warrant deeper investigation. The subsequent sections detail the methodology employed and 

present a comprehensive analysis of the relevant literature. 
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2. Methodology 

A transparent and rigorous methodology is critical to generating a credible and comprehensive 

literature review. This section describes a step by step approach used to identify, screen, and 

synthesize relevant studies in cybersecurity, psychology, human computer interaction, and related 

fields. 

2.1 Step 1: Scope Definition and Keywords 

The research began by defining the scope to include peer-reviewed journal articles, conference 

proceedings, and reputable white papers addressing human aspects of cybersecurity. Primary 

databases IEEE Xplore, ACM Digital Library, Scopus, and Web of Science were searched using 

keywords such as “cybersecurity,” “human factors,” “cognitive biases,” “social engineering,” 

“information security awareness,” and “psyber security” [9]. 

2.2 Step 2: Screening and Eligibility 

Abstracts were reviewed to exclude articles that did not focus on user or psychological dimensions 

of cybersecurity. Studies emphasizing purely technical solutions without user centric or behavioral 

components were omitted to retain behavioral and organizational emphasis. 

2.3 Step 3: Coding and Thematic Analysis 

All eligible articles were imported into a reference management tool. A coding template captured 

the following attributes: 

• Publication details (author, year, venue) 

• Topic focus (cognitive biases, social engineering, organizational culture, etc.) 

• Theoretical framework (e.g., PMT, SDT, nudge theory) 

• Methodological approach (e.g., quantitative, qualitative, mixed) 

• Key findings and recommendations 

Common patterns, contradictions, and notable gaps were identified through iterative comparison, 

which facilitated the formation of thematic categories aligned with the research questions. 

2.4 Step 4: Synthesis and Quality Assessment 

In the final step, the coded data were synthesized to map convergent and divergent findings. 

Studies with robust methodological designs, larger sample sizes, and strong theoretical grounding 

received priority. Where conflicting results arose, possible reasons (e.g., cultural context, 

participant variability, different threat models) were scrutinized. 

This four step methodology allowed for a systematic examination of the interplay between 

psychology and cybersecurity. The resulting thematic framework underpins the Literature Review 

in Section 3, which is further reinforced by tabular summaries of the analyzed works. 
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3. Literature Review 

This section provides a comprehensive overview of key studies examining human factors in 

cybersecurity. It is divided into five subsections, reflecting major thematic areas cognitive biases, 

social engineering, motivation and behavior, organizational culture, and user centric design. Each 

subsection opens with a brief orientation, followed by in-depth discussions of relevant research. 

Tables are included to summarize and compare findings from multiple studies, offering readers a 

structured view of recurring themes and evidence-based strategies. 

3.1 Cognitive Biases and Decision-Making in Cybersecurity 

Research on cognitive biases reveals that many securities lapses stem from overconfidence, 

anchoring, or confirmation bias [10], [11]. Overconfidence can cause individuals to dismiss 

security warnings, believing themselves too savvy to be deceived, while anchoring leads users to 

trust superficial markers of legitimacy (e.g., brand logos or disclaimers) [12]. Under time pressure, 

biases such as urgency and availability can further exacerbate errors in judgment, allowing 

attackers to exploit emotional triggers [13]. Table 1 provides illustrative examples of how cognitive 

biases manifest in cybersecurity contexts and references studies that have attempted to quantify 

their impact. 

Table 1. Summary of Key Studies on Cognitive Biases in Cybersecurity 

Study 

(Authors, 

Year) 

Focus Methodology Key Findings 

Ceric & 

Holland 

(2019) [10] 

Impact of cognitive 

biases on threat 

anticipation and 

response 

Empirical survey 

& literature 

review 

Identifies that overconfidence and anchoring 

significantly impair threat detection and risk 

evaluation in cybersecurity contexts. 

Hadnagy 

(2010) [13] 

Exploitation of human 

vulnerabilities through 

social engineering 

Case studies and 

qualitative 

analysis 

Details how attackers manipulate trust and 

emotional triggers to bypass technical defenses, 

underscoring the need for human-centric 

countermeasures. 

Rogers 

(1975) [16] 

Protection Motivation 

Theory (PMT) as a 

predictor of secure 

behavior 

Theoretical model 

development 

Demonstrates that higher perceived threat and 

self-efficacy lead to greater adoption of 

protective behaviors, forming a foundation for 

behavioral cybersecurity interventions. 

Ryan & Deci 

(2000) [17] 

Intrinsic and extrinsic 

motivational factors in 

behavioral compliance 

Theoretical 

framework review 

Reveals that users’ need for autonomy and 

competence is critical to sustaining secure 

practices over time. 

Singh et al. 

(2023) [35] 

Cognitive factors in anti-

phishing training 

effectiveness 

Experimental 

study 

Shows that targeted training interventions can 

improve users’ ability to discriminate between 

legitimate and phishing attempts, reducing 

susceptibility to attacks. 
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Collectively, these studies underscore the pivotal influence of cognitive biases in cybersecurity 

outcomes, demonstrating the need for interventions designed to mitigate their effects. While 

training can reduce bias to some extent, fatigue sets in if interventions remain static. This highlights 

a gap in adaptative, or personalized training strategies aligned with RQ2. 

3.2 Social Engineering Tactics and Mitigation Strategies 

Social engineering attacks exploit emotional levers such as trust, fear, or authority, often bypassing 

technical safeguards [18], [19]. Attackers apply Cialdini’s principles of influence authority, 

reciprocity, social proof, scarcity, and consistency to elicit user compliance with malicious requests 

[20]. Table 2 lists some influential works on social engineering tactics and related 

countermeasures. 

Table 2. Representative Studies on Social Engineering Tactics 

Study 

(Authors, 

Year) 

Approach Key Insight Suggested Countermeasure 

Mitnick & 

Simon (2003) 

[4] 

Narrative case studies of 

real-world social 

engineering attacks 

Demonstrates how human 

manipulation (e.g., exploiting 

trust and authority) can bypass 

technical controls 

Implement comprehensive 

training programs with 

simulated attacks 

Hadnagy 

(2010) [13] 

Qualitative analysis of 

social engineering 

techniques 

Highlights that attackers exploit 

emotional triggers and cognitive 

shortcuts to induce security lapses 

Use scenario-based simulations 

and periodic refresher training 

Hong (2012) 

[11] 

Review of phishing 

trends and behavioral 

vulnerabilities 

Shows that phishing leverages 

urgency and scarcity biases to 

compel risky user behavior 

Deploy adaptive, context-aware 

warning systems and multi-

factor authentication 

Dimkov et al. 

(2010) [15] 

Empirical pen-testing 

using social engineering 

methods 

Finds that direct human 

interactions can easily override 

technical safeguards when 

verification is lax 

Enforce strict verification 

protocols and adopt robust 

multi-factor authentication 

This body of research suggests that repetitive or poorly contextualized training can result in alert 

fatigue, diminishing the protective benefits of user education. Tailored approaches encompassing 

emotional intelligence, scenario-based simulations, and dynamic messaging show promise in 

sustaining engagement and building user resistance to evolving social engineering ploys. 

3.3 Motivation, Behavioral Interventions, and User Awareness 

Moving beyond social engineering, this subsection addresses the intrinsic and extrinsic 

motivations driving user compliance. Protection Motivation Theory (PMT) posits that individuals 

evaluate threat severity, vulnerability, response efficacy, and self-efficacy before adopting 

protective behaviors [25]. Meanwhile, Self-Determination Theory (SDT) centers on the need for 

autonomy, competence, and relatedness [26]. Combining these frameworks can clarify why some 

users adhere strictly to best practices while others remain indifferent. Table 3 summarizes seminal 

work and recent advancements in leveraging motivation for cybersecurity. 
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Table 3. Key Studies on Motivation, Behavioral Interventions, and User Awareness in Cybersecurity 

Study (Author, 

Year) 

Theoretical 

Basis 

Findings Implication 

Rogers (1975) [16] PMT Perceived threat & self-efficacy → stronger 

protective acts 

 

Highlight efficacy in user 

education 

Ryan & Deci (2000) [17] SDT Autonomy, competence, relatedness drive 

sustained behavior 

Allow user control & feedback in 

security tasks 

Siponen & Vance (2010) 

[18] 

Neutralization/PMT Users rationalize policy non-compliance unless 

perceived cost is high 

Emphasize tangible consequences 

Renaud & Zimmerman 

(2017) [19] 

Nudging theory Nudges boost password strength but can backfire 

under certain conditions 

Design carefully to avoid “nudge 

fatigue” 

 

These studies underline that motivational factors are integral to forming lasting secure habits. 

Harnessing theoretical insights from PMT, SDT, and nudge theory can refine user training and 

policy design, ensuring that cybersecurity requirements resonate with genuine user needs and 

perceptions. This outcome directly addresses RQ1 by delineating how behavioral interventions 

might sustain or erode user compliance. 

3.4 Organizational Culture, Leadership, and Security Climate 

Effective cybersecurity is not just an individual pursuit; it thrives in an environment shaped by 

leadership commitment and organizational norms [31]. Leadership support manifested through 

explicit endorsement, allocated resources, and frequent communication often correlates with 

higher policy adherence [32]. Table 4 lists some key studies emphasizing how culture and 

leadership transform the security climate within organizations. 

Table 4. Research on Organizational Security Culture and Leadership 

Study 

(Authors, 

Year) 

Context Key Observations Outcome/Recommendation 

Solomon & 

Brown (2021) 

[21] 

Enterprise security 

culture 

Found that strong leadership 

commitment and clear communication 

foster higher employee compliance. 

Advocate for top–down modeling of secure 

behaviors and regular briefings. 

Crossler et al. 

(2014) [22] 

BYOD policies and 

organizational 

compliance 

Demonstrated that well–defined policies, 

when endorsed by leadership, 

significantly enhance compliance rates. 

Align security guidelines with organizational 

norms and enforce policies. 

Pfleeger & 

Caputo (2012) 

[23] 

Behavioral science in 

cybersecurity risk 

management 

Revealed that peer norms and group 

identity heavily influence employees' 

adherence to security practices. 

Promote team–based accountability and group 

training to strengthen culture. 

Parsons et al. 

(2010) [24] 

Human factors and 

security environment 

Noted variability in how security culture 

is defined, indicating that inconsistent 

practices undermine efforts. 

Develop standardized frameworks to integrate 

technical controls with human factors. 

 

These findings highlight that building a sustainable security climate depends on top-down 

advocacy, peer-based reinforcement, and consistent resource allocation. Leadership can catalyze a 

shift from mere compliance to shared responsibility, aligning with RQ3 by illustrating how culture 

and norms shape security attitudes at scale. 
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3.5 User-Centric Security Design and Usability 

Finally, a significant segment of literature in human–computer interaction (HCI) underscores that 

usability is a cornerstone of cybersecurity compliance [37]. If multi-factor authentication or 

password policies are excessively complex, users often circumvent them, creating fresh 

vulnerabilities [38]. Conversely, user-centered designs minimize friction, automating secure tasks 

wherever feasible [39]. The studies in Table 5 detail approaches to incorporate usability into 

security features. 

Table 5. Studies on User-Centric Design and Usability 

Study 

(Authors, Year) 

Design Focus Key Insights Security Benefit 

Sasse & Flechais 

(2017) [40] 

Usable Security Emphasizes designing systems that accommodate 

human limitations rather than idealized users. 

Reduces errors and increases 

acceptance of security controls. 

Florêncio & Herley 

(2011) [41] 

Attack Path 

Discrepancies 

Reveals a gap between typical user interactions and 

actual attack vectors, suggesting misalignment. 

Encourages adaptive, context-aware 

authentication methods. 

Beautement et al. 

(2008) [42] 

Compliance 

Budget 

Finds that users have a limited “compliance 

budget”—excessive friction drains their willingness 

to comply. 

Minimizes frustration and preserves 

user engagement in security tasks. 

Blythe & Coventry 

(2015) [43] 

Security Interfaces Suggests that tailoring interfaces to users’ expertise 

levels enhances secure behavior. 

Improves usability and promotes 

alignment with individual skill sets. 

 

As these studies illustrate, security designs must be accessible, context-aware, and minimally 

intrusive. These principles bridge the gap between user convenience and robust defense, 

reinforcing that a careful blend of technical and psychological considerations leads to higher 

compliance and fewer workarounds. 

In summary, the literature reveals that cognitive biases, social engineering tactics, motivational 

frameworks, organizational culture, and usability considerations collectively define the human 

dimension of cybersecurity. The research points toward adaptive and user-centered solutions as 

the most promising avenues for reconciling technical controls with actual user behaviors 

addressing all three research questions and paving the way for further innovations in psyber 

security. 

4. Discussion of Gaps and Opportunities 

The research consolidated in Section 3 underscores the multifaceted nature of psyber security, 

merging insights from cognitive psychology, social engineering studies, motivational theories, 

organizational behavior, and user-centric design. Despite this breadth, certain gaps and 

opportunities persist. Many interventions produce short-term improvements, yet their long-term 

sustainability and generalizability remain uncertain. Moreover, the ethical and privacy 

implications of personalized, data-driven interventions warrant deeper scrutiny. This section 

provides a structured evaluation of these challenges and potential avenues for advancing psyber 

security. 
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4.1 Gaps in Current Literature 

4.1.1 Limited Longitudinal Research 

While numerous studies document immediate gains in user compliance after awareness campaigns 

or training sessions, longitudinal data is sparse [44]. For instance, certain training programs 

demonstrate up to a 50% reduction in phishing click-through rates within a few weeks, but little is 

known about whether these effects endure beyond three to six months. Researchers frequently 

measure compliance in “snapshot” intervals, neglecting potential security fatigue or habituation 

effects over time. 

4.1.2 Cultural and Contextual Variability 

Cybersecurity behaviors and perceptions can be strongly influenced by cultural norms, 

organizational structures, and leadership styles [45], [46]. However, many studies rely on samples 

from a single region or industry (e.g., Western corporate environments). This lack of cross-cultural 

data hampers the applicability of recommended interventions in global or multi-branch 

organizations. For instance, culturally based attitudes toward authority or privacy could 

significantly modify how employees respond to social engineering attacks or mandatory security 

policies. 

4.1.3 Ethical and Privacy Concerns 

Personalized and data-intensive approaches such as real-time behavioral nudges may increase 

efficacy but also raise privacy and ethical dilemmas [47]. Questions arise regarding data 

ownership, consent, and potential overreach if organizations constantly monitor user behavior. 

Implementing transparent, user consented data collection can mitigate these concerns, yet 

frameworks for balancing security imperatives with individual autonomy remain underdeveloped. 

4.1.4 Lack of Adaptive and Personalized Training 

A one-size-fits-all approach to cybersecurity education may not suffice in highly diverse or 

evolving threat landscapes. Although research suggests that adaptive training systems in which 

content evolves based on user performance or risk profiles could yield higher compliance, real 

world examples remain limited [48]. Developing machine learning models that dynamically 

tailored security prompts holds promise but requires robust datasets and consistent evaluation 

metrics. 

Table 6. Key Gaps Identified in Psyber-Security Literature 

Gap Description Example 

Reference 

Limited Longitudinal 

Data 

There is a lack of studies examining the sustained effects of behavioral interventions 

over extended periods. 

[44] 

Cultural and Contextual 

Variability 

Many studies are limited to a single region or industry, resulting in inadequate cross-

cultural validation of training programs. 

[45], [46] 

Ethical and Privacy 

Concerns 

Insufficient frameworks exist for managing data governance and obtaining informed 

consent in personalized, data-intensive interventions. 

[47] 

Lack of Adaptive 

Training 

Few real-world implementations of adaptive, context-aware training systems are 

available, limiting their long-term efficacy. 

[48] 
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Identifying these gaps clarifies why promising interventions may stall when scaled across different 

user populations or sustained over time. Addressing these limitations forms a critical next step in 

refining the psyber security landscape. 

4.2 Opportunities for Advancement 

4.2.1 Emphasis on Long-Term Behavior Change 

To overcome short-lived improvements, future research should embed longitudinal methodologies, 

tracking user engagement and threat detection accuracy for at least 6 to 12 months post training. 

Integrating booster sessions or refresher modules at regular intervals could bolster knowledge 

retention. Researchers might also investigate the threshold at which additional training or repeated 

phishing simulations become counterproductive due to fatigue. 

4.2.2 Cross-Cultural and Sector-Specific Customization 

As organizations expand globally, customizing cybersecurity interventions to local norms and 

languages can significantly improve effectiveness [45]. This approach can be extended to different 

sectors healthcare, finance, government each of which faces distinct regulatory and operational 

constraints. Interdisciplinary teams (involving local cultural experts, HCI specialists, and 

cybersecurity professionals) could develop and test context-specific training modules, gathering 

comparative data to refine best practices. 

4.2.3 Ethical Frameworks for Personalization 

Appropriate ethical guidelines must accompany sophisticated methods of data-driven security. 

Developing consent based models where employees explicitly opt in to certain forms of behavioral 

monitoring could foster transparency and trust. Additionally, incorporating user feedback loops 

allowing individuals to adjust or opt out of specific nudges might balance organizational security 

goals with personal autonomy. Future work could explore how these frameworks affect user 

attitudes, compliance, and the overarching security climate [47]. 

4.2.4 AI-Driven Adaptive Systems 

Integrating machine learning could allow real-time adaptation of training content and security 

prompts based on user behavior and threat intelligence. Systems might analyze user interaction 

patterns to issue tailored nudges or highlight relevant scenarios, thereby improving the timeliness 

and personal relevance of interventions [48]. Nonetheless, robust evaluation methods are necessary 

to verify that adaptive algorithms do not inadvertently introduce biases or misclassifications that 

compromise security and user trust. 

Table 7. Potential Opportunities and Proposed Approaches 

Opportunity Proposed Approaches Potential Benefits Reference 

Long-Term Behavior 

Change 

- Implement longitudinal studies (6–12+ months) 

and periodic refresher sessions 

- Sustains high security awareness; 

mitigates training fatigue 

[44] 

Cross-Cultural 

Customization 

- Develop localized training content and sector-

specific guidelines; conduct collaborative pilot 

tests 

- Enhances relevance and improves 

user engagement across diverse 

settings 

[45], [46] 

Ethical Frameworks for 

Personalization 

- Design consent-based monitoring systems with 

transparent user feedback loops 

- Builds trust and balances security 

needs with individual privacy 

[47] 

AI-Driven Adaptive 

Systems 

- Utilize ML-based user segmentation, real-time 

risk scoring, and customized nudges 

- Provides timely, personalized 

interventions that adapt to evolving 

threats 

[48] 
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Pursuing these opportunities could significantly extend the impact of psyber-security measures. 

Longitudinal designs and cultural adaptations promise greater sustainability and global 

applicability, while ethical frameworks and AI-driven personalization safeguard user trust and 

adapt to emerging threats. 

4.3 Synthesis and Path Forward 

Taken together, the gaps and opportunities detailed above illustrate both the complexity and the 

potential of psyber security. While there is growing consensus on the efficacy of user-centric and 

behaviorally informed solutions, inconsistencies in duration, cultural reach, and ethical 

governance still impede universal adoption. Closing these gaps requires collaboration among 

cybersecurity experts, behavioral scientists, policy makers, and industry stakeholders. Establishing 

rigorous long-term research, embracing cultural diversity, and formalizing ethical protocols for 

personalization and data management emerge as top priorities. With these pillars in place, psyber 

security can transition from promising pilot studies to sustained, scalable applications that 

effectively counter ever evolving cyber threats while respecting user rights and contexts. 

5. Conclusion and Future Directions 

This paper has provided a comprehensive literature review on how psychological and behavioral 

insights can be integrated into cybersecurity to address longstanding human vulnerabilities. 

Organized around three key research questions, the review has examined the roles of cognitive 

biases, social engineering, user motivation, organizational culture, and usability in shaping security 

outcomes. In conclusion, the literature consistently demonstrates that targeted behavioral 

interventions (e.g., nudges, gamification), scenario based training, and user centric design can 

reduce susceptibility to social engineering and enhance policy compliance. However, the evidence 

also highlights the fragility of these improvements, particularly under repeated exposure, cultural 

shifts, or organizational inertia. Future work must investigate long term effectiveness, explore 

cross-cultural generalizability, and refine ethical frameworks for personalizing interventions. 

Ultimately, psyber security underscores that human factors are not peripheral but central to 

effective cyber defense. By continuing to refine theoretical models, leverage adaptive 

technologies, and cultivate supportive organizational cultures, cybersecurity practitioners can 

ensure that technical mechanisms and human behaviors evolve in tandem resulting in resilient 

defenses for an ever-changing threat landscape. 
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Abstract 

This paper explores a semester-long, project-driven approach to teaching Software 
Requirements and Architecture, aligned with MSOE's Common Learning Outcomes 
(CLOs), including Communication, Collaboration, Critical Thinking, Curiosity, and 
Integrated Learning. Students work in teams to address real-world problems, iteratively 
developing a comprehensive requirements document. Weekly assignments incorporate 
stakeholder interviews, persona creation, use case modeling, and prototyping, fostering 
both technical and professional skills. The iterative framework emphasizes critical 
thinking, effective communication, and teamwork while refining system designs and 
documentation. The course culminates in detailed requirements artifacts and a 
professional presentation. This approach prepares students for industry challenges by 
integrating technical expertise with essential soft skills, offering a replicable model for 
engineering education. 
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Introduction 

In the evolving landscape of software engineering, professionals are increasingly 
expected to balance technical expertise with critical non-technical skills such as 
collaboration, communication, and critical thinking. Engineers must navigate complex 
problem domains, gather requirements from diverse stakeholders, and synthesize 
technical and user-centered perspectives into actionable designs. To prepare students for 
these multifaceted demands, engineering education must provide not only technical 
training but also opportunities to develop the professional competencies essential for 
success in real-world environments. 

This paper presents a semester-long, project-driven approach to teaching Software 
Requirements and Architecture, designed to align with the Milwaukee School of 
Engineering (MSOE) Common Learning Outcomes (CLOs)[1] that are a collection of 
outcomes based on the Entrepreneurial Mindset[2]. The course serves as a practical 
framework for students to learn both technical and professional skills by engaging in 
iterative, hands-on activities centered on a self-selected, real-world project. Student teams 
identify a software project they wish to develop, investigate its problem domain, and 
iteratively construct a comprehensive requirements document. Along the way, they gain 
experience with industry-standard practices such as stakeholder interviews, persona 
creation, use case modeling, prototyping, and requirements validation. 

The course is structured to align with MSOE’s CLOs, embedding professional skills into 
every stage of the curriculum. Students Collaborate Successfully as they work in teams to 
conduct research, brainstorm solutions, and synthesize their findings into cohesive 
deliverables. Communicating Effectively is emphasized through written artifacts, such as 
requirements documents and glossaries, as well as oral presentations tailored to audiences 
with varying levels of technical expertise. By exploring problem domains, identifying 
stakeholder needs, and crafting creative solutions, students Exhibit Curiosity while 
refining their understanding of the broader context of software engineering challenges. 
Think Critically is embedded throughout the course, as students analyze competing 
requirements, evaluate trade-offs, and prioritize features. Finally, Integrative Learning is 
fostered as students draw upon their knowledge from prior coursework and 
interdisciplinary perspectives to address complex, real-world problems. 

This approach is designed not only to reinforce the technical foundations of software 
requirements engineering but also to prepare students for the collaborative, adaptive, and 
communicative challenges they will encounter in industry. Each week of the semester 
builds upon the last, creating a cohesive learning experience that scaffolds technical and 
non-technical skill development. By giving students the autonomy to select their own 
projects and work iteratively toward a final solution, the course immerses them in the 
complexities of real-world software engineering, ensuring they graduate with a balance of 
practical expertise and professional acumen. 
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The remainder of this paper outlines the structure of the course, detailing its alignment 
with CLOs, the iterative nature of its assignments, and the observed outcomes. Through 
this case study, we provide a replicable model for integrating technical and professional 
skills into software engineering education. 

Technical Outcomes 

Starting the project, I expected to spend my time refining and updated existing 
assignments as well as building new assignments and their outcomes to more explicitly 
align with the defined CLOs. The course was initially written with outcomes defined by 
the Software Engineering Body of Knowledge (SWEBOK)[3] in mind along with several 
textbooks by Karl Weigers[4][5], and while there is a good deal of overlap, the 
assignments were primarily focused on the technical application of techniques and 
coverage of topics. The students will, over the course of the term, develop a software 
project of their choosing from the ground up, starting with identifying a current need in 
the software landscape, then defining the scope of their project, the stakeholders, and the 
overall objectives before diving into requirements elicitation and analysis, functional and 
non-functional requirements development and requirements validation. Each week the 
students will work in a project group to further the project, and by the end of the term, 
they will have built a basic prototype that shows a very minimal amount of functionality.  

Identifying CLOs 

My initial goal for this project was to identify ways that I could encourage critical 
thinking into the course. The structure of the course had changed slightly with the 
conversion to semesters from trimesters, which we had just undergone in the previous 12 
months, and I felt finding ways to emphasize deeper engagement with the material could 
be an important improvement for the course. What ended up happening was not only did 
I find plenty of opportunities to integrate critical thinking as an outcome for many of the 
activities in the course, during my analysis of the material I found many of the other 
CLOs were also present and I was able to build out my assignments to include a number 
of CLOs, as shown in Figures 1 & 2.  
I ended up spending much of my time analyzing the project, looking at each activity the 
students were asked to perform and determining a) if there were CLOs embedded in the 
work and b) if not, could there be some in a way that would improve the overall 
assignment. Obviously not every part of every assignment could be linked to a CLO, but 
I then went through the first nine weeks of the course and worked through the 
assignments and exercises, rewriting and updating many of the assignments and their 
rubrics, changing the technical deliverables slightly to allow me to assess the assignments 
with a focus on the CLOs. As an example, changing a rubric item description from “Each 
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persona embodies a specific user class” to “Each persona embodies a specific user class 
and is serious, believable, with their own motivations and attitudes towards the project” 
to ask the students to exhibit curiosity and embrace diversity without explicitly saying 
“And here you will embrace diversity by...”. In the end, the course had the same basic 

3

Week Assignment Outcomes (see Fig 2)
1 Lab 1 - Business Objectives 1, 2, 5, 6, 7
1 Exercise 1 - Stakeholder Identification 1, 2, 4, 5, 6, 7
2 Lab 2 - Project Kickoff 1, 2, 5, 6, 7
2 Exercise 2 - Persona Creation 1, 2, 4, 5, 6, 7
3 Lab 3 - Project Scope and Priorities 1, 2, 4, 5, 6, 7
3 Exercise 3 - Interviewing 1, 2, 5, 6, 7
4 Lab 4 - Requirements Elicitation 1, 2, 3, 4, 5, 6, 7
4 Exercise 4 - Deriving Use Cases 1, 2, 5, 6, 7
5 Lab 5 - Formalize Use Cases 1, 2, 4, 5, 6, 7
5 Exercise 5 - Writing Functional Requirements 1, 2, 6, 7
6 Lab 6 - Peer Presentation 1, 2, 6, 7
6 Exercise 6 - Identifying Data 1, 2, 6, 7
7 Lab 7 - Presentation Critiques and Data Modeling 1, 2, 5, 6, 7
7 Exercise 7 - Quality Attribute Prioritization 1, 2, 5, 6, 7
8 Lab 8 -Non-Functional Requirements 1, 2, 5, 6, 7
8 Exercise 8 - Requirement Validation 1, 2, 5, 6, 7
9 Lab 9 - Validation Inspection 1, 2, 5, 6, 7
9 Exercise 9 - Validation Implementation 1, 2, 5, 6, 7

Fig. 1 - Assignment Common Learning Outcome (CLO) Mappings

Mapping CLO Definition
1 Collaborate 

Successfully
Work constructively with others towards a common goal

2 Communicate 
Effectively

articulate and explain complex ideas clearly across a range of 
media and audiences

3 Demonstrate 
Ethical 
Understanding,

Engage in independent ethical inquiry on pressing ethical 
challenges and foster ethical behavior in personal and 
professional life

4 Embrace 
Diversity

Demonstrate inclusivity toward others, pursuing intercultural 
understanding and exploring ways to address historical or existing 
barriers to social equity

5 Exhibit Curiosity Practice open-minded intellectual inquiry, creative exploration, 
and engagement with different perspectives

6 Think Critically Apply sound principles of critical or analytical reasoning and 
evaluation of evidence

7 Integrate 
Learning

Synthesize and transfer learning across new contexts to address 
complex problems through program-level courses, Raider Core 
courses, co-curricular activities and senior/capstone projects

Fig. 2 - CLO Mappings and Definitions
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activities as before, with a few exceptions, but the ways in which the assignments were 
presented and assessed had a more prominent focus on the CLOs. 
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Course Assignments 

I had initially chosen “Think Critically: Apply sound principles of critical or analytical 
reasoning and evaluation of evidence” as the CLO I was targeting, as it seemed to me to 
be the most obvious choice where I could make the most impact. Every week we were 
asking the students to do more than just surface-level assessment of their data, and 
finding ways to foster and encourage deeper thinking and engagement would improve the 
student outcomes. As mentioned above, the project expanded to include many of the 
CLOs across a number of assignments. 

I developed multiple lectures, activities, and assessments for students for this project.  
Figures 1 & 2 show the weekly content and the CLOs that they map to and their 
definitions as described by the institution. The sequence of assignments was designed to 
walk the students through the various stages of designing a software project with 
scaffolding exercises, done in groups and during class time,  to give them practice on a 
small scale of what they will then do for their project. While each week has a specific 
focus, the continuing project is constantly updated and improved using the tools and 
techniques learned in the previous weeks and students will need to look at their projects 
from multiple perspectives to be successful in defining a complete requirements 
document for their application. 

The process of working through the assignments and determining how the technical work 
the students were doing could relate to the various CLOs was quite instructive. You 
always want the students to be curious and this critically, but going through each activity 
and assignment throughout the process and doing my own critical thinking and asking 
“What do we want them to demonstrate here?” showed me both how to better appraise 
the submissions as they came in and how to better explain certain concepts and technique 
in lecture. An example of this was when describing what a Persona is to the class, after 
identifying all the CLOs that relate to that task (2, 4, 5, 6, 7) I was able to better explain 
what it meant to have a serious, effective Persona by discussing how Curiosity and 
thinking consciously about Diversity really drive the creation of a believable user. 
Previously, I would focus on Communicating and Thinking Critically, but not get them 
thinking about how they would imagine someone different from themselves would think 
and feel in the same situation. Then, when the submission would come in, I would start 
by looking at the Persona’s motivations and attitudes to see if they really did consider 
these ideas in their work. Assessment would often proceed in a similar manner, where 
once the technical competencies were checked, I would go through each identified CLO 
and see how well the students demonstrated the outcomes in their work. Below is a brief 
summary of several assignment and exercise in the nine week requirements sequence and 
the identified CLO’s that map to each with an explanation of the CLOs relationship to the 
assignment. A complete list of all the assignments and CLO mappings is available in a 
project card at Engineering Unleashed (link in the Final Thoughts section at the end of 
the paper) 
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Week 1 

Assignment: 

The first week asks them to look critically at a website (my.msoe.edu) and recommend 
changes to modernize and update the site, making it more useful for staff and students 
alike, justifying their recommendations by identifying the benefits the school will realize 
through these improvements.  

CLOs: 

Collaborate Successfully: Although the assignment is framed individually, it inherently 
involves collaboration with, or at least some form of empathizing with, stakeholders, 
such as understanding the administration’s needs and aligning project objectives with 
broader institutional goals. Further, as it is performed in a group setting, it also develops 
teamwork and negotiation skills.  

Communicate Effectively: Students must clearly articulate business requirements and 
objectives in a structured, professional manner. The inclusion of measurable acceptance 
criteria demonstrates effective written communication tailored to stakeholders who may 
have varying levels of technical expertise. 

Exhibit Curiosity: Exploring the existing my.msoe website and its workflows requires 
intellectual curiosity. Students will need to go beyond surface-level observations to 
identify what about the  website's functionality can or should be altered to provide the 
same functionality while improving the user experience. 

Think Critically: This assignment requires students to analyze the current website, 
evaluate its strengths and weaknesses, and develop well-reasoned business requirements 
and objectives. Critical thinking is essential to identify user needs, workflows, and gaps 
in functionality while proposing practical solutions to meet these needs. 

Integrate Learning: To successfully complete this assignment, students must synthesize 
knowledge from multiple areas of study, such as software engineering, business analysis, 
and user experience design. This integrative approach ensures that solutions address both 
technical and organizational needs. 

Exercise: 

The exercise introduces the concept of a project stakeholder and has the students identify 
as many possible stakeholders for a software project as they can, encouraging them to 
dive deeper and find stakeholders that may be less obvious. 

CLOs: 
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Collaborate Successfully: This exercise emphasizes teamwork as students work in groups 
to brainstorm and identify a comprehensive list of stakeholders. Collaboration requires 
active participation, listening, and integrating diverse perspectives to ensure the list is 
thorough and representative. 

Communicate Effectively: Students must document their findings in a clear and organized 
manner, ensuring the list of stakeholders is easily understood and actionable. Sharing 
their insights with the class further develops their verbal communication skills. 

Embrace Diversity: Identifying disparate stakeholders with distinct motivations and 
goals, especially ones with different perspectives and opinions, fosters an appreciation for 
diverse user needs. This CLO is particularly relevant as students consider stakeholders 
from different backgrounds, experiences, and technological competencies. 

Exhibit Curiosity: The exercise encourages curiosity about the broader ecosystem of an 
LMS, prompting students to explore and consider diverse perspectives, from 
administrators and faculty to students and IT staff. 

Think Critically: Identifying stakeholders involves analyzing the project’s scope and 
functions to determine who has a vested interest or is affected by the new LMS. Students 
must critically evaluate various roles and relationships within the system to ensure all 
relevant stakeholders are included. 

Integrate Learning: Students apply their understanding of stakeholder analysis and 
systems thinking, connecting insights from coursework to a practical, real-world 
scenario. This integration ensures their analysis is grounded in practical considerations. 

Week 4 

Assignment: 

Week four has the students beginning their requirements document by transferring much 
of what was defined in their Vision and Scope document to their Software Requirements 
Specification as well as building use cases for some of the features they identified. They 
will also be preparing two interview plans for two different types of stakeholders: 
technical and non-technical. 

CLOs: 

Collaborate Successfully: Working as a team is critical to planning and conducting 
workshops, preparing stakeholder interviews, and documenting elicitation results. 
Collaboration is also essential for managing roles, coordinating schedules, and ensuring 
the quality of deliverables. 
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Communicate Effectively: Students must develop clear workshop agendas, draft well-
structured interview plans and questions, and produce detailed notes and use case write-
ups. 

Demonstrate Ethical Understanding: Planning and conducting interviews, particularly 
with non-technical stakeholders, requires sensitivity to ethical considerations, such as 
respecting participants' time and perspectives, and ensuring the confidentiality of 
recorded interviews. 

Embrace Diversity: Engaging with stakeholders from different backgrounds, including 
non-SE/CS/CE students, encourages students to consider diverse user needs and 
perspectives. This helps foster inclusivity and broader thinking in their requirements 
efforts. 

Exhibit Curiosity: The assignment encourages students to explore the problem domain 
and understand system features in depth. This involves asking insightful questions and 
being open to new ideas during workshops and preparing the interview questions and 
structure. 

Think Critically: Students must analyze information gathered during workshops, connect 
it to system features, and refine their understanding of the problem domain. Critical 
thinking ensures that their use cases and system features are meaningful and actionable. 

Integrate Learning: The assignment requires synthesizing knowledge from various areas, 
such as project management, stakeholder analysis, and system design, to create 
comprehensive SRS sections and elicitation artifacts. This integration supports a holistic 
approach to software requirements. 

Exercise: 

The exercise gives the students an opportunity to work together to construct a formal use 
case for a user interaction with a system. In small groups they produce a draft of a use 
case, then as a class we use ideas from all the groups to build a more complete use case. 
They will also identify business rules that will affect the way the program executes. 

CLOs: 

Collaborate Successfully: Students work in small groups to draft Use Cases and then 
contribute their ideas to a larger class discussion. This collaboration fosters teamwork, 
shared understanding, and collective improvement of the deliverable. 

Communicate Effectively: Writing Use Cases requires clear articulation of the normal 
flow, alternate flows, and business rules. Sharing and discussing ideas with the class 
further emphasizes the importance of effective communication in both written and verbal 
forms. 
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Exhibit Curiosity: Developing a Use Case involves exploring the problem domain and 
understanding the intricacies of the system's behavior. Students must ask questions and 
consider multiple perspectives to create comprehensive and accurate scenarios. 

Think Critically: Students must analyze the problem, consider potential variations in the 
system's behavior, and ensure the Use Case is logical and aligns with existing business 
rules. 

Integrate Learning: Creating Use Cases involves integrating knowledge of system 
modeling, stakeholder needs, and business rules. Students must synthesize these elements 
to produce a cohesive and usable artifact. 

Week 7 

Assignment: 

Week seven has the students first watching their peers presentations and writing critiques, 
which will serve both as feedback to the presenting groups and reflection by the critic as 
to how their presentation compares to that of their peers. The remainder of the week they 
will be deriving functional requirements from the use cases they built over the previous 
weeks and documenting them with references to where they were derived from. They will 
also complete their data model and have documented all of the data that the features they 
are designing will use and define how the data will be displayed and/or accessed by the 
program. Finally, they will create several prototypes showing the vision of their final 
product. 

CLOs: 

Collaborate Successfully: The assignment involves teamwork to develop functional 
requirements, data requirements, and prototype as well as the execution of the 
presentations. Effective collaboration is necessary to combine diverse ideas, ensure 
clarity, and distribute tasks among team members. 

Communicate Effectively: Critiquing student presentations requires the ability to 
articulate constructive feedback. Additionally, documenting functional and data 
requirements, as well as creating prototypes, demands clear communication for both 
technical and non-technical audiences. 

Exhibit Curiosity: Students demonstrate curiosity by exploring different ways to improve 
their system's functionality through thoughtful analysis and creative prototype design.  

Think Critically: Developing functional requirements based on previous elicitation and 
analysis, defining data models, and identifying reports require students to critically 
evaluate their use cases and ensure the requirements align with the system's goals and 
constraints. 
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Integrate Learning: The assignment integrates knowledge of requirements elicitation, 
system design, and user interaction through functional requirements, data modeling, and 
prototype creation. It challenges students to connect these elements into a cohesive 
representation of their system. 

Exercise: 

The exercise this week has the students identify non-functional requirements (also known 
as quality attributes) of their system and prioritize them based on the needs of the 
stakeholders and alignment with the overall vision of the project. They will debate the 
importance of each of the various categories of quality attributes and through a series of 
head-to-head comparisons, developing a matrix where each category is compared to 
every other category, generating rankings for each category. 

CLOs: 

Collaborate Successfully: Students must work together to debate, compare, and prioritize 
quality attributes, requiring effective teamwork and constructive discussion to reach a 
consensus. 

Communicate Effectively: The exercise involves articulating arguments for the 
importance of specific non-functional requirements and justifying their prioritization, 
requiring clear communication within the group. 

Exhibit Curiosity: Exploring the implications of different quality attributes and 
understanding their impact on the system demonstrates intellectual curiosity and a desire 
to optimize the system’s performance.  

Think Critically: Evaluating the relevance and significance of different quality attributes 
involves critical thinking to ensure that the prioritization aligns with stakeholder needs 
and the project's vision. 

Integrate Learning: This exercise requires students to integrate knowledge of stakeholder 
priorities, system design principles, and project goals to determine the most critical 
quality attributes for the system. 

Assessment 

The goal of this sequence of assignments is to have students, working in teams, return 
each week to the same large problem and, in an iterative fashion, build a solution to a 
complex problem through continuously looking critically at their current solution from a 
variety of viewpoints and priorities. Over the course of the nine weeks, they will start 
with the germ of an idea and develop it into a requirements document that will be used in 
the remainder of the course to implement a portion of the system they designed.  
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Throughout this project, I learned that students don’t need much encouragement to think 
critically when given some form of starting point. They needed very little supervision 
once given a problem to tackle and some scope to work under.  Having specific activities 
that exercise and have grading criteria related to critical thinking also help emphasize the 
importance of the skills for students.   

I shared my lectures, labs, exercises, and other related materials from this project with the 
other faculty that will be teaching the course with me next fall and it will be the expected 
content for the course going forward. There is a second portion of this course related to 
architecture and implementation that would benefit from this same approach of 
identifying CLOs and adjusting the deliverables and grading criteria to highlight them.   

Assessing critical thinking and curiosity is a difficult task. It is often easier to identify 
when students are not critically thinking than when they are, with shallow or incomplete 
documentation or justifications in their reports. My approach was to look at their work 
holistically across the term and identify where the students demonstrated deeper 
understanding of their work as they iterated through their project in addition to the 
discussion we had during the class exercises.  

An example of this would be in the Week 5 lab assignment where the students have the 
following goals: 

• Interview two stakeholders of the project to identify project needs 

• Develop two detailed personas (imaginary stakeholders) 

• Identify the Stimulus/Response pairs for the business events selected from the 
previous week 

• Write five formal Use Cases based on prior research and interview results 

The rubric would have the technical requirements (formatting, the contents of each Use 
Case, how the S/R pairs should be written, etc) to ensure the students are on track and 
understand what they need to accomplish. When grading the assignment, each of the 
CLOs that have been mapped to it are used to determine how successful they were at 
completing their tasks. 

• Collaborate Successfully is baked into this assignment. There is too much for just 
one or two students to complete within the week timeframe. All members of the 
group are required to participate in the interviewing process, assigned roles, and 
the artifacts for each role will be submitted. Additionally, they will need to 
schedule and execute two separate team workshops to construct their Use Cases. 

• Communicate Effectively comes into play in various places in this assignment. 
The interviews themselves (which are recorded) need to show the students 
actively listening to the responses of their interviewees and asking thoughtful 
follow-up questions. If they simply ask their pre-written questions or do not 
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effectively explain what the purpose of the interview is, or what the goal is (what 
they are trying to learn) it will be considered insufficient. 

• Embrace Diversity comes in with the creation of their Personas. A Persona is a 
detailed description of a type of user of the system. In order to be useful, a 
Persona needs to be as realistic as possible, with motivations, personality, and 
attitudes as well as technical needs. The two Personas they create must be 
different in their needs of the system, and the students must demonstrate a good 
degree of empathy and understanding of people other than themselves to create a 
satisfactory Persona. Shallow or unserious Personas are not acceptable. 

• Exhibit Curiosity will show in the interviews and the type of questioning they 
have in response to the answers they get, in the Personas they create and how 
they approach different attitudes and the motivations behind those attitudes, and 
in trying to understand stakeholder needs beyond the minimum technical 
requirements of a piece of software, such as identifying alternate techniques and 
pathways to accomplish the same goals and allowing the software to be used in 
different ways by different user types. 

• Think Critically is assessed in the Use Cases. They will need to construct a 
starting “Normal Flow” of their program, based on how a typical interaction 
between the system and user would go, identifying each step of the process, each 
Stimulus/Response pair, what the user provides, what the system does, what the 
system displays to the user, etc. Then they will need to look beyond the typical 
workflow and identify alternate paths the interaction might take, including seeing 
possible mistakes or errors, more specific interactions (such as logging into a 
kiosk at an airport to check in, does the user have a Frequent Flyer number> 
What about TSA-Pre? Are they checking bags? Do they have any disabilities that 
will change the way the information is presented, etc). In order to actually 
complete their Use Cases, a lot of thought and effort needs to be put into them. 

• Integrate Learning is crucial in this assignment. They have spent 4 weeks 
learning various techniques on how to decompose their program into discrete 
events and have gathered a lot of information from their earlier research, their 
interviews, and their team workshops. Now they need to take all of that, 
combined with their knowledge of software systems and build detailed 
documentation on how to implement an application that will satisfy all the needs 
of the different stakeholders. Everything they have documented up until now, 
including the notes from their workshops, should all be present in the Use Cases 
that they write. 

The rubric that I supply to the students do not have all of this detail in them, and it was a. 
conscious choice to limit the rubrics to just the technical requirements. I struggled with 
this decision, because on one hand explicitly describing my expectation of follow-up 
questions in the interviews , for example, would tell the students what they should be 
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doing and be helpful in them understanding how I would be grading them. But the goal of 
this class is for the students to take ownership of their project, see all the complexities a 
real software project has through their own discovery and experiences, and treat it as 
something they would be presenting to the world. Part of that is them showing the 
maturity to perform their tasks as well as they can and take the project seriously 
intrinsically rather than me telling them “how much work” they should put in and them 
doing just enough to check off each item in the rubric. Additionally, as each team will 
have a very different project, the details of how much is sufficient for each portion of the 
project varies significantly. I do have language in each rubric about some of these 
expectations (i.e. Each persona is serious, believable, and embodies a specific user class) 
but it is up to the students to understand what that means for their project. I give a good 
amount of feedback to them during lab meetings and in assignment feedback in the first 
few weeks of the project development so they see how comprehensive their project needs 
to be and set expectations so they know that they will need to engage in the material to be 
successful. I have included an example of a team’s submissions as an addendum to 
illustrate the type of work the students were submitting 

Final Thoughts and Reflection 

My activities and materials have been shared on EngineeringUnleashed.com: https://
engineeringunleashed.com/card/edit/4684 

I found this project to be quite useful for me as a way to highlight and focus on the 
different skills  we are trying to teach our students. Software Requirements and 
Architecture is a technical course that focuses more on many of the non-technical “soft” 
skills that are critical for the success of our students, and being able to identify for each of 
the assignments we give them what specific outcomes we expect them to take away 
changed the way I presented and assessed the material.   

How did the students respond to the new material and approach? after running the course 
this past term, I can’t say it was radically different as, after all, the overall contents of the 
course remained the same. But what I did notice was the different conversations I was 
having with the students regarding their projects and small details in assignments that 
showed me this group of students were thinking about their project with a little more 
depth than previous years.  

Towards the end of the project, when I was talking to one group about changes they made 
to their Use Cases, they would refer to needs of their Persona (Bob) as if he were a real 
person. They had altered the way they handled a few alternate flows because Bob, who 
had a specific reason to use the software that was not part of their normal flow of events, 
would have had to perform several extra steps each time he used the system the way they 
had it written up. So they “listened” to Bob and created an alternate flow within the use 
case that addressed his needs with some change that could be stored as a user 
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configuration so Bob would only need to perform the extra work once. The fact that they 
were paying attention to and empathizing with their virtual user and putting in the effort 
to come up with a creative solution to address his needs was not something I had 
explicitly seen in previous years.  

A similar thing happened in a different group where there was a sensitive issue that arose 
regarding gender identification that was actually quite relevant to their application. In 
their requirements, they made several minor changes to their work flow and wording that 
addressed the issue. In previous years this kind of detail wouldn’t have been identified, 
let alone addressed in a simple, effective manner. How much of that is the cultural 
sensitivity of this group, I’m not sure, but seeing it manifest into their work is one of the 
goals I had for the project, so I was pleased. 

One of the things that I learned through this process that I am hoping will be evident to 
the other instructors using this approach is how useful it is to identify these outcomes and 
how using a CLO, such as Think Critically, when grading actually makes it clearer what 
should be considered acceptable. Tying the CLOs to specific items clearly identifies what 
that part of the assignment is trying to assess and the technical content can be looked at 
through a different lens, beyond does it work or does it conform to the required format. 
The example I like to use when talking to other faculty about this is when reading a 
team’s Use Case, you can start by verifying that all the standard parts of a Use Case are 
present and that everything is technically sound. But then, if you want to determine if the 
Use Case actually does capture the entirety of the event it is describing, look at it through 
the Think Critically lens. Where is the evidence they used? Is everything that they 
captured and identified present in their work? Are there edge cases they missed that their 
evidence suggests? Then look through the Exhibit Curiosity lens. Does this satisfy all the 
user classes or does it ignore the needs of some? And so on 

All of this kind of detail can’t be captured in a rubric without a lot of additional 
explanation, or the rubric itself would be pages long. But when framed as check the 
boxes for the technical merit, which is fast and can be automated in some cases, then take 
a look at each of these items through the CLOs they are associated with, it provides a 
simple framework for faculty to follow for assessment. It does require a good deal of 
experience and expertise in the subject, which should be the case, but being able to point 
to how it makes grading large projects like this approachable and manageable is 
something I took away from this project and something I hope other faculty will 
understand and embrace, as well. 
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AI Plays Ultimate TicTacToe 
Tic tac toe is a classic game that many Americans grew up playing. However,  the game is solved. 

‘Solved’ meaning if you start first and you know the solution you can’t lose the game. Ultimate tic tac toe 
takes a tic tac toe board and places a tic tac toe board in each square. Depending on the square placed on 
the inner tic tac toe board determines which outer square the opponent can place their next move. I am 
inspired to improve upon the existing ultimate tic tac toe AI. There’s room for improvement due to 
ultimate tic tac toe's complexity and the fact that it’s difficult to determine the impact of the moves when 
there are low amounts of squares filled. 

since the creation of the Phil Chen's AI there has been a change to how we think about 
the variant of ultimate tic tac toe.Guillaume Bertholon discovered a forced win where the starting 
player can always win. We can have one of two ways of looking about this either 
the AI we can create will implement the winning pattern of moves when it's first or our AI 
can solve a new ultimate tic-tac-toe that doesn't have this forced win. 
In the case of the winning pattern there will be an even split against any opponent  
assuming both players know the winning strategies making it uncompetitive. 
there is a variant of ultimate tic tac toe that will solve this issue. This variant proposed by Justin 
Diamond solves this issue by playing the same game but the first four moves are decided for 
you. This variant was chosen because it kept its limited number of moves. In our new variant 
The upper bound for the amount of choices in any game is  

O(9 ^7 * 8 ^ 9 * 7 ^ 9 * 6 ^ 9 * 5 ^ 9 * 4 ^ 9 * 3 ^ 9 * 2 ^ 9) or O(1.347045536 * 10^48). 
The upper bound for the variant of tic tac toe where when placed in a mini board that is already 
won is the size of O(9 ^6 * 75!) or  O(1.31845946 * 10 ^115). You can see the amount of nodes 
in a decision tree in the variation of ultimate tic tac toe I choose is much smaller. This Should 
increase the performance of our bots. 
 
​ The bots used during our research are variations of Minimax and Monte Carlo Tree 
Search. The Original Implementations of which are provided by a research study done by CHEN, 
Phil, Jesse Doan, and Edward Xu. Minimax AI uses an evaluation function to determine who is winning on 
a board then will make the move that results in the best score after seeing a certain number of moves.  

Monte Carlo Tree search or MCTS for short uses randomness to calculate the average win rate of 
each move. First it picks a move,  typically a move that is the result of a move that has a higher win rate. 
Then they will calculate the result of that game using random moves and add the result to the average to 
the move and all following moves. After the desired amount iterations is reached the move with the 
highest average win rate is made 
 
 
 
Original results of P Chen Study: 
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CHEN, PHIL, JESSE DOAN, and EDWARD XU. "AI AGENTS FOR ULTIMATE TIC-TAC-TOE." (2018). 
 
Result after we changed the game by having the first four moves being random: 

 
There is  an improvement of both mcts and minimax agents; this is unexpected because 
random remains unchanged because random already made random moves in the beginning. 
Random moves were supposed to disadvantage mcts and minimax with these two facts 
combined would expect a decrease in win rate. Through This observation we can determine that 
in the original  variation the ai ws making moves that were worse than randomly placing. 
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“We also created a hybrid agent between Minimax and MCTS. Because the board is sparse at 
the beginning of the game, we predicted that Minimax would be unable to distinguish between 
the utility different moves and that MCTS would be faster and more effective. Towards the later 
stages of the game, we predicted that Minimax would be more effective at finding optimal 
moves.” 
 
 
CHEN, PHIL, JESSE DOAN, and EDWARD XU. "AI AGENTS FOR ULTIMATE TIC-TAC-TOE." (2018). 
And with our observation we can say that minimax is not only worse than mcts but also worse 
than a random move. The  
 
 
Our first experiment to improve monte carlo tree search is to increase the number of random 
games that our agent plays until it decides which move is best and takes it. This number was 
100 and will now be 1000. 
 
The original MTCS performed like this graph: 
 
Win Rate first and win rate second refer to the wins and ties  * 0.5 total going first and second 
and win rate is adjusted for how many total you can have 
 

 
 

 
The win rate increased by .9 % against random this expected mcts with 100 playouts was 
already very good against  random so there's not much more to improve 20% against minimax. 
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And Importantly the MCTS with 1000 playouts scored 83.7% of the possible points against 
MCTS with only 100 playouts. The more the game plays the better picture MCTS gets and the 
more likely they are to make the best moves and win. It’s possible that further increasing the 
playouts will show continued improvements to performance.  
 
 
 

 
 
 
 
 
Increasing a playout is a mostly linear operation being O(log n * n) due to the backpropagation 
done after simulating the game. The majority of the run time mcts spent was on simulating 
games and that increased linearly as depth increased so as I doubled the amount of playouts 
the time it took to play also doubled.   
 
Phil Chen’s original evaluation function was whoever had the most boards won is currently 
winning. But for the early section of the game there are no boards won so minimax makes no 
attempt to evaluate any differences there are in player’s positions .  
​ For my first attempt I borrow heavily from Bichot and Lilan’s work to inspire the bot I 
have created. In Bichot and lilan’s reward function three key elements are used when evaluating 
a player’s position one:  

●​ Which type of square do you have? Squares have different numbers of win opportunities 
depending on the position. The center square has the most with four, the corners have 3 
and the edges have only two. 

●​  Do you have any two squares in a row with an empty space to win? This is important in 
both the larger and smaller squares. Players must have two in a row to complete the tic 
tac toe 
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●​ The value of a smaller square depends on the value of the bigger square it’s placed in. 
Players get only one big square they are to place in but this important element is best 
used when depth is added to the minimax tree. This way you can determine not just the 
best square in a board but avoid sending opponents to the best square in the big board.  

After recreating the reward function it’s time to test it against the original. 
​ results: 
 

 
 
 
As you can see there is hardly a difference between the new minimax and the old minimax. 
This is possible due to the shared desire to win more big boards that means the rest of the 
reward function gives no extra advantage. It’s also possible that some strategies are wrong and 
misdirect the AI while others are steering in the right direction. And a combination of these two 
strategies equates to a neutral change.  
 
 
 
Players of this variant of ultimate tic tac toe have at least one move to guarantee success. This 
move is where you send an opponent to square that is already won so the opponent is forced to 
make a move that does nothing. As long as they can't do the same we are effectively plus one 
move over them. Setting up something like this is certainly possible and an effective way to do 
this is to have the move that would win the square for you, empty. Once you are placed in that 
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square once again you both take the board and force the opponent into the same square you 
just won. 

 
The new minimax is better by a small insignificant fraction if we take the average of all matchups 
to be the statistic that best shows which ai performs the best. Move taking minimax only 
evaluates differently in specific scenarios. These scenarios I thought would come up enough to 
produce a result that's different but it’s not relevant enough to improve performance. 
 
 
 
 
All players use a depth of two to evaluate moves increasing the depth could have the minimax 
improve its performance and possibly two minimax that have similar performance could change 
and one could perform better than the other. Previously our move taking minimax performed 
better than minimax by a small margin but after increasing the depth of both the original 
minimax does better. The depth increase clearly allowed the minimax player to pick a better 
move based off what the result will be in the future. 
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Adding a feature was an insignificant change. Let's try to remove a feature. One feature to 
remove that could give an AI a more clear direction is the fact the individual squares within the 
big square have value based on the squares position. The confusing part of this feature is when 
you consider that placing a piece in a more valuable square means the opponent will be sent to 
a more valuable square. Sometimes this can result in equal actions meaning the AI will take the 
first available one. In this iteration the AI player will prioritize sending the player to the worst 
square instead of picking the best available square. This priority of not risking the most 
important big square is why I named it Less Risky. Less Risky Did the best between the three 
minimax strategies but it’s not a large difference. 
 
 
 
The next logical strategy to try is more risky where the ai player does not value where the big 
square that it’s sending to it is and will instead make the best moves within the square it can 
place in. More risky will still avoid giving opponents opportunity to win big squares or prepapare 
a two in a row. Sparse is a strategy where testing along side more risky. This strategy is unique 
because it prioritize having more squares with at least one square over  winning those squares, 
meaning that it will attempt to send opponents to squares they are already in. The strategy is to 
mimic The strategy described by Bertholon. Of course the automatic is no longer feasible but 
sparse strategy will lower the number of squares its enemy can win and lower the number of 
options the opponent can place. You would expect a unique result from sparse due to it being 
the first to not prioritize big squares but sparse had results similar to the other minimaxs. The 
results of the average were even closer. All minimax strategies both won against a different 
minimax strategy and lost against a different strategy. This was the closest the minimax 
strategies have scored against each other.  
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Presentation Outline 

Web Scraping IMDB Site with Python - A ChatGPT Proof Assignment! 

1. Introduction 
• Briefly discuss the topics taught in the Applied Python Course 
• What is web scraping and the importance of it in the field of data science and 

information retrieval.  

2. Overview of the Assignment 
• Scraping IMDB Top 250 movies 
• Extract actor names and compute total number of appearances 
• Only display the top 10 actors with most appearances 

3. Key Skills Learned 
• Traversing & parsing complex HTML 
• Extracting structured data from unstructured pages 
• Critical thinking in web scraping 

 
4. Tools & Technologies Used 

• Python dictionary, sorting, lambda function 
• BeautifulSoup library for parsing HTML 
• Requests for fetching web content 
• JSON for structured data storage 
• Regular expressions for pattern matching 

5. Overview of Web scraping using Python BeautifulSoup library 
• Demonstrate how to use BeautifulSoup library to perform web scraping 
• Provide examples on different HTML tags and attributes 
• Extract simple data from different HTML tags and attributes 

 
6. What Aspects Make this Assignment Challenging? 

• Structured and Unstructured HTML data  
• Missing pattern consistency in movie HTML structure 
 

7. Why This Assignment is "ChatGPT-Proof"? 
• AI models struggle with dynamic website structures 
• Unable to analysis backend of a website  
• Demonstrate ChatGPT solution  

8. Discuss Solution 1 
• Uses Selenium to load the IMDb Top 250 page dynamically before scraping. 
• Extracts movie links from the page using BeautifulSoup. 
• Sends a new request to each movie page separately to extract actor names.  
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9. Discuss Solution 2 
• Uses IMDb’s structured JSON-LD data instead of HTML parsing. 
• Directly extracts movie details from <script type="application/ld+json">, avoiding 

unnecessary HTML parsing. 
• Uses Counter() from collections for actor frequency instead of a dictionary. 

 
10. Learning Outcomes 

• Strong grasp of web scraping fundamentals 
• Practical use of Python dictionaries, JSON, lambda functions 
• Prepares students for real-world data extraction & automation 

 

126



 
 

An Overview of Gender and Political Biases in LLMs 

 

 

Jared B. Jones  

 Department of Computer Science 

Baylor University 

Waco, TX 76710 

jared_jones2@baylor.edu 

Naeem Seliya, Emily M. Hastings, 

 Benjamin T. Fine 

Computer Science Department 

University of Wisconsin-Eau Claire 

Eau Claire, WI 54701 

seliyana@uwec.edu 

hastinem@uwec.edu 

finebt@uwec.edu 

 
 

 

Abstract 
 

As the public increasingly relies on Large Language Models (LLMs) like GPT for 
information, and as students increasingly turn to these models for assistance in studying, 
the impact of their influence will rise. Thus, it becomes increasingly imperative to study 
what biases these models exhibit. We examine eleven studies to determine the political 
leanings and the prevalence of gender stereotyping in GPT. Examinations reveal a 
progressive political bias with varying consistency based on language implementation. 
Current literature suggests GPT also exhibits gender biases, especially in the choice of 
adjectives, professions, and gender-based preferences. GPT often favors stereotypical 
roles or expressions and shows a tendency to assign higher scores or use more positive 
language when evaluating certain genders. It is likely all the aforementioned biases 
reflect the biases inherent in the training data. To mitigate these biases, we suggest 
training LLMs with diverse training data incorporating a balance of contrasting 
perspectives. 

 

 

127



1 
 

1 Introduction 

 

Bias is an inclination that affects the accuracy, credibility, and objectivity of information 
sources (Burkholder et al., 2022). One area where this inclination is particularly of note is 
the topic of politics. Political information often varies significantly based on the biases of 
its source leading its consumers with contrasting perspectives. As GPT grows as a source 
for political information both historical and current, its potential to exhibit its biases on a 
large population of individuals increases. This influence may result in the political 
perspective of users being shaped in part by the chatbot, resulting in a shift in perspective 
toward GPT’s political leanings (Rotaru et al., 2024). This shaping could lead students to 
develop a narrow and polarized understanding of the world while encouraging 
intolerance and close-mindedness (Powers et al., 2019). 

Gender bias exhibited in a source of guidance like GPT could also result in the 
perpetuation of stereotypes and attitudes that marginalize, and disadvantage individuals 
based on their gender (Ellemers et al., 2018). The impact of bias is especially important 
to consider for groups of the population such as students. For this demographic, bias 
could influence self-esteem and career aspirations while confining students to narrow 
expectations and reducing equality (Frawley, 2005).  

To help provide further context for this issue, we conducted a literature review seeking to 
answer the following questions: (1) What are the political leanings of GPT? and (2) To 
what extent is gender stereotyping prevalent in GPT? We review literature to examine 
studies conducting political orientation tests on GPT to understand its political biases. In 
addition to political bias, we analyze how GPT might exhibit gender bias by varying 
word choice based on gender, such as assigning traits or characteristics that are consistent 
with stereotypes. We looked at how different linguistic versions of GPT perpetuate both 
gender and political bias.   

We conclude that GPT tends to assign phrases, words, and professions in line with gender 
stereotypes. GPT also appears to have a consistent left-wing political bias. There is also 
evidence to suggest that GPT varies its political claims and objectivity based on the 
language version of GPT (Kuznetsova et al., 2023; Zhou & Zhang, 2023). These biases 
likely originate from the biases in GPT’s training data (Agiza et al., 2024). To mitigate 
biases, we suggest training LLMs on more balanced and representative data. 
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2 Related Work 

 

Several types of biases have been examined in large language models (LLMs), including 
political, gender, racial, national, linguistic, religious and more. Hu & Rangwala (2020) 
find bias against male and African American students in machine learning models used in 
educational settings for tasks such as predicting at-risk students. Similarly, Zhang et al. 
(2023) prompted GPT for music and movie recommendations without providing sensitive 
information and contrasted with recommendations that include sensitive information like 
gender and race. The study showed that GPT was unfair by varying recommendations 
based on this information. Additional studies have found evidence of gender bias in 
LLMs generally (Seo et al, 2022, Zhang & Zhou, 2024). There is also evidence to suggest 
the presence of linguistic bias: LLMs provided lower scores for German speakers than 
Japanese speakers compared to scores given by human evaluators using a rubric covering 
aspects of language proficiency, including delivery, language use, and content (Ohi et al., 
2024; Loukina et al., 2019). GPT may also vary positive associations based on race and 
religion (Nadeem et al., 2020). There is further evidence that GPT may predict an 
individual’s nationality based on positive or negative traits and adjust recommendations 
depending on nationality (Zhang et al., 2023; Kamruzzaman et al., 2023).  

Large language models reflect the content of their training datasets (Agiza et al., 2024). 
These datasets typically represent the most prominent narratives, regardless of whether 
less represented counternarratives are factually correct (Weidinger et al., 2021). In 
addition to narratives, datasets may overrepresent certain demographics, perspectives, or 
ideologies while underrepresenting or excluding others (Bender et al., 2021). Research 
suggests that the alteration of biases in an LLM’s training data will be reflected in the 
LLM. Agiza et al. (2024) curated LLM training data to deliberately produce left-leaning 
and right-leaning chatbots and measured political orientation using the Political Compass 
Test. Han et al. (2024) produced altered datasets for GPT-2 to reduce responses that 
exhibit stereotypes. The authors used the StereoSet intrasentence dataset (Nadeem et al., 
2024) to measure the presence of responses that exhibited stereotypes (SS) and language 
modeling score (LMS) (Nadeem et al., 2024) to measure the presence of meaningful 
associations in responses. One of the datasets produced for GPT-2 lowered SS and only 
slightly lowered LMS (Han et al., 2024). 

In this review, we extend this body of prior work by identifying trends related to gender 
and political bias in GPT and providing potential measures to minimize their impacts.  
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3 Scope of our Review Study 

 

In accordance with GPT-2’s recent release in 2019, this literature overview covers 
research published from 2020 through 2024. We selected research that prompted GPT 
with questions from political tests. Secondly, we selected papers that studied the accuracy 
of GPT political claims. This included both papers that studied the topic generally and 
ones that held a special emphasis on low-resource language versions of GPT. This paper 
also covers the presence of gender stereotyping in GPT; specifically, we focused on 
research works that studied the prevalence of gender stereotypes in word choice. We 
excluded studies that focused on bias in GPT in other areas besides political and gender 
bias. We also excluded studies that focused on other LLMs besides GPT.  
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Ref. Bias Found Methodology Measurement 
[6] Gender and cultural 

bias in interview 
evaluations 

Using LLMs to grade 
interviews with variable 
gender and culture 

Comparative analysis of 
grades across cultural and 
gender groups 

[8] Gender-occupation 
biases 

Word Embedding 
Association Test 

Analyzing translation 
outputs for pronoun usage 

[11] Attribute favoritism 
based on gender 

SAI and ASA fill-in-
the-blank sentences 

Conditional likelihood 
changes in LLM responses 

[12] Differing of veracity 
based on language 
version of GPT 

Response examination 
of socio-political 
statements 

Accuracy and consistency 
in determining statement 
veracity 

[16] Biases consistent with 
stereotypes 

Developed the Context 
Association Test (CAT) 
to measure biases. 

CAT score to quantify how 
close a model is to an ideal 
unbiased language mode 

[20] Left-leaning bias in 
political orientation 

Administration of 
political orientation 
tests to GPT 

Scores from political 
orientation tests 

[22] Left-leaning and 
libertarian bias in 
political orientation 

Administration of the 
political compass test 
and questionnaires for 
G7 member states 

Scores from political 
orientation tests 

[24] Variation in positive 
characteristics based on 
differing pronouns 

Probed ChatGPT with 
open-ended prompts in 
English and German 

Analysis of word usage in 
GPT generated responses 

[26] Presence of gender 
stereotypical language 
and style in GPT 
responses 

Context-Less 
Generation and 
Context-Based 
Generation 

Odds Ratio for word 
frequency. T-tests for 
stylistic differences 

[27] Bias toward political 
viewpoints differing by 
language version of 
GPT. 

Examination of GPT 
generated responses to 
political and natural 
science questions 

Contrasted Chinese and 
English GPT responses of 
political and natural science 
questions 

[28] Differing 
recommendations based 
on gender 

Examination of GPT 
generated 
recommendations for 
movies and music 

Utilized Sensitive-to-
Neutral Similarity Range 
and Sensitive-to-Neutral 
Similarity Variance to 
measure unfairness 

Table 1: Summary of Literature Findings 
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4 Review of Select Literature (Gender Bias) 

 

Here we describe the findings of our literature review. See Table 1 for a summary of these 
findings. In this section, we review the perpetuation of gender stereotypes in GPT. 
Nadeem et al. (2020) produced a model for large language models like GPT2 to contrast 
bias with the ability to make meaningful associations. The authors noted a strong 
correlation between a language’s ability to make meaningful associations and the 
prevalence of bias, suggesting that an LLM’s proficiency increases its tendency to exhibit 
stereotypes. However, they asserted that GPT-2 achieved a favorable balance, exhibiting 
low bias in categories such as gender bias while demonstrating a high capacity for 
forming meaningful associations.  

Wan et al. (2023) showed that GPT-generated reference letters for males had higher 
occurrences of male-stereotypical words and significantly higher levels of formality, 
positivity, and agency, while female letters had higher occurrences of female-
stereotypical words and communal phrases.  

De Nadai (2024) created 200 personas across 4 cultural groups (West African, East Asian, 
Middle Eastern, and Anglo-Saxon), each containing 25 males and 25 females. The author 
asked GPT to grade interview responses in the context of a software engineering position. 
The questions and descriptions of the job and recruiter were constant; the applicant’s 
gender and name (implying a cultural group) were variable. GPT gave males and people 
with Anglo-Saxon names lower interview grades compared to females and other cultural 
groups. 

Moreover, Kamruzzaman et al. (2023) measure subtle bias in LLMs using two prompt 
types: stimulus-to-attribute inference (SAI) and attribute-to-stimulus association (ASA). 
SAI involves providing a stimulus and asking the language model to infer a related 
attribute by choosing between positive, negative, and neutral options. ASA involves 
providing an attribute and prompting the LLM to choose a specific stimulus from 
positive, negative, and neutral options. For SAI, one of the contexts is “He is BLANK 
and that’s why he is a first-year student at Hinds Community College” with options of 
“unimaginative,” “innovative,” “chummy.” For ASA, one of the contexts is “As a first-
year student he is energetic; he is from BLANK” with options of “Ivy tech community 
college,” “University of California, San Diego,” and “Wichita.” To analyze gender bias, 
the authors use differing pronouns. The authors find that GPT-4 exhibits a slight tendency 
to favor positive attributes and avoid negative ones for feminine pronouns, as opposed to 
masculine or non-binary pronouns. In Figure 1, we provide a visual recreation of this 
experiment. 
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Figure 1: Recreation of two conversations generated by ChatGPT (OpenAI, 2024); 
visualized using Adobe XD [30, 31]. 

Further research has been directed towards examining gender stereotypes in various 
languages within GPT. For example, Urchs et al. (2023) use neutral open-ended prompts 
to test for biases and discrimination in responses. The prompts are formulated with 
perspectives from female, male, and neutral personas in both English and German; there 
were at least 60 responses per prompt. The authors then examined the frequency of 
female-coded (i.e. words like "support" and "feel") and male-coded (i.e. words like 
"dominate" and "confident") to unveil the presence of gender stereotypes. 

When Urchs et al. (2023) prompted GPT about distinguished professors with research 
careers, it gave general answers regardless of perspective. However, when asked about 
specific fields of research, it created a wider field for female professors compared to male 
professors, especially in the German responses. The authors then asked GPT about the 
qualities of good professors. GPT stressed community more often for female 
perspectives. For male and gender-neutral perspectives, the responses more often 
emphasized research. In this category, female coded words were more often present in 
responses from female perspectives than male coded words were in responses from male 
perspectives. 

Low-resource languages are languages that lack adequate linguistic data to properly act 
as training data for an LLM. Ghosh and Caliskan (2023) studied gender bias in GPT in 
low resource languages: Bengali, Farsi, Malay, Tagalog, Thai, and Turkish. The authors 
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selected sentences to translate from English to a low resource language using GPT. The 
goal was to observe what type of pronouns GPT would utilize in the translated sentence. 
The authors looked for how GPT would assign genders to certain professions (teacher, 
engineer, etc.). Additionally, they looked for instances where gendered pronouns were 
used instead of non-gendered or gender-neutral pronouns. Particularly in situations when 
gender neutrality was crucial, the authors claim that GPT's gender bias in the translations 
had a poor effect on the translations' overall quality and accuracy. Moreover, the authors 
claim that GPT displayed gender bias by tending to associate certain professions more 
frequently with specific genders. For instance, professions like "nurse" and "engineer" 
were typically linked to female and male pronouns respectively.  

 

 

4.1 Review of Select Literature (Political Bias) 

 

Like gender bias, there is also evidence that GPT’s political objectivity varies with 
respect to different languages. Kuznetsova et al. (2023) study the performance of GPT 
and Bing Chat in assessing the accuracy of claims about political subjects across English, 
Russian, and Ukrainian. For predicting veracity of political claims, GPT was 79% 
accurate for English, 70% for Russian, and 68% accurate in Ukrainian and 81-86% 
accurate in detecting conspiratorial statements for all three languages. For detecting 
misinformation and disinformation, 50% of responses for Russian prompts and 38% for 
Ukrainian prompts were labeled as misinformation by GPT. The most common label 
(27%) for English was both misinformation and disinformation.  

Zhou and Zhang (2023) found significant differences between Chinese GPT and English 
GPT political sentiments. The authors prompt the models on political questions, fact-
based and opinion-based, related to issues between US and Chinese authorities, in 
addition to natural science questions to test the similarity between the models’ responses 
(consistency). The types of questions sorted from most to least consistent were U.S. 
opinion-based, natural science, U.S. fact-based, Chinese opinion-based, and Chinese fact-
based. Overall, the models showed 77.9% consistency for political questions. They also 
found significant differences between the two models’ sentiments when prompted about 
political questions about each country: The Chinese model reacted more negatively 
toward the U.S. related issues while the English model was more negative toward China-
related issues. 

Several studies have also been published on GPT’s political inclinations. Motoki et al. 
(2023) prompted political compass test questions to GPT. Then, the chatbot was 
prompted to either impersonate Democrats or Republicans. These results were then 
compared to answers to prompts with no impersonation. The results of the study showed 
that GPT aligned more closely with the Democrat impersonation. Similarly, the authors 
observed that GPT, when not impersonating, exhibited a significant positive correlation 
with simulated left-wing individuals: A Lula supporter and a Labor Party supporter. 
Lastly, GPT was asked to impersonate varying professions: economist, journalist, 
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businessman, professor, military, and government employee. Outside of the businessman 
profession, all showed a left-wing bias. 

Rutinowski et al. (2023) attempted to determine the political leanings of GPT through an 
evaluation of a political questionnaire based on the G7 member states and the political 
compass test (based on the United States). The results of the political compass test 
showed GPT having a progressive, libertarian political lean. However, the results of the 
political questionnaire positioned GPT only as progressive. The authors found that GPT 
had a progressive bias but a libertarian bias that was deemed insignificant. Rozado (2023) 
conducted 15 political orientation tests based on varying western countries on GPT to 
discover its political leanings and results of the tests consistently classified GPT as left-
wing and generally libertarian. It is possible that the varying degree of libertarian bias 
between the studies reflects differences in the political tests themselves. 

 

 

5 Discussion 

 

Existing literature suggests the presence of gender stereotyping in GPT, albeit with 
varying severity. It is probable this gender bias in word choice originates primarily from 
its training data (Han et al., 2024; Weidinger et al., 2021). Because the data likely 
originates from the internet broadly, the training data used for GPT likely incorporates 
the overrepresentations for genders in particular roles or attributes that are commonly 
seen in society. This overrepresentation would lead to the large language model also 
making similar gender associations when interacting with users. These gender 
associations would then lead to the LLM perpetuating gender stereotypes. Given that 
gender roles are often more strongly emphasized in developing countries (Akubue, 2001), 
gender bias would then especially be prevalent in LLMs in languages such as the ones in 
Ghosh et al. (2023).  

The prevalence of gender stereotyping in LLMs could create multiple negative 
influences. Firstly, it could create skewed perceptions of certain professions such as 
creating a narrative that nurses are only female, and engineers are only male. These 
perceptions could be particularly impactful on the career aspirations of students (Frawley, 
2005; Brown et al., 2016). Additionally, perpetuation of harmful stereotypes could 
influence discrimination against certain genders (Brown et al., 2016). According to 
Nygren et al. (2020), students are especially susceptible to influence. Thus, the spread of 
biased content could be particularly damaging to students. 

In addition to perpetuating gender stereotypes, LLMs also have the capacity to perpetuate 
particular political narratives. For instance, the current literature has shown GPT to have 
discrete political bias toward certain ideologies over others. This political bias could 
significantly affect users who rely on GPT as a source of political information, as the 
generative AI may provide responses that favor its own political inclinations. Therefore, 
the political perspectives of users have the potential to be shifted by GPT toward its 
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political leanings resulting in increased political support for the chatbot’s preferences 
(Rotaru et al., 2024). 

As with gender bias, these political biases likely primarily stem from the training data of 
the chatbot caused by most online political sources having a left-wing bias, reflecting that 
of GPT (Mitchell et al., 2014). This theory would explain why different language 
versions of GPT have different political biases: the training data that builds the political 
bias will vary based on language. 

Mitigating bias in LLMs such as GPT is crucial in preventing the propagation of biased 
information to users, especially students. However, mitigation tactics such as algorithms 
or fine-tuning could result in developer biases becoming a factor or lead to the 
propagation of anti-stereotypes. Nonetheless, more balanced training data could lessen 
the issues of bias in LLMs like GPT. Unlike the other examined studies with recent 
models of GPT, Nadeem et al. (2020) claimed that GPT-2 had a favorable balance of bias 
and effectiveness. The authors theorized this may be a product of GPT-2’s training data, 
Reddit, which they suggest provides the LLM with a diverse set of opposing 
perspectives. Therefore, we speculate that a potential mitigation strategy could be to train 
LLMs with diverse training data incorporating a proper balance of contrasting 
perspectives. 

In this paper, we specifically examined gender stereotyping and political bias within GPT. 
For future work, we suggest a similar analysis of additional biases in LLMs, such as 
linguistic, national, racial, and religious. Analysis of the training data and fine-tuning 
processes could also provide an understanding of how bias originates in LLMs. Along 
with research into the presence of bias, we suggest research into the effectiveness of bias 
mitigation strategies, such as diversifying training data. 

 

 

6 Conclusion 

 

Large language models like GPT have an increasingly significant impact on our society 
and students in the education system. Therefore, it is important to understand the 
presence of biases in LLMs due to the influence they possess. 

What are the political leanings of GPT? GPT appears to have a left-wing political 
leaning. The LLM consistently tested as progressive when political tests were conducted 
and identified with left-wing figures. GPT also varies its political biases across language 
versions.     

To what extent is gender stereotyping prevalent in GPT? GPT may respond to queries 
with answers that perpetuate gender stereotypes. GPT may also overrepresent genders in 
certain roles or professions, which may be especially impactful to students' career 
aspirations. 
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It is important to consider strategies on how to mitigate these biases. A potentially 
effective technique we plan to investigate is to diversify the training data to create an 
LLM with a more balanced set of perspectives. This plan would involve intentionally 
including a wide range of perspectives and viewpoints in the training data, especially 
ones that heavily contrast with one another, to produce an LLM with a more inclusive 
understanding. For further research, we plan to study the effectiveness of this and similar 
bias mitigation strategies. 
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Abstract—The rapid growth of AI technology has sparked
transformative innovations but also increased carbon emissions.
Recent research found that computer systems’ carbon emissions
are shifting from operational carbon to embodied carbon, but
they did not fully capture the rapidly evolving AI landscape.
Most recent research focused on operational carbon, neglecting
the long-term environmental impact of embodied carbon. We
found two gaps that persist in recent research. First, current
carbon modeling focused on Central Processing Units (CPUs),
neglecting the carbon modeling of Graphical Processing Units
(GPUs). Second, it focused on primary components, neglecting
significant contributions from peripheral components to the
embodied carbon. These neglects are critical given AI’s reliance
on GPUs. Thus, modeling GPUs’ carbon emissions can provide
comprehensive carbon quantification of AI models. To address the
aforementioned gaps, we propose a GPU-aware carbon modeling
tool that estimates GPU’s embodied carbon by considering
primary and peripheral components. Using this tool, we quantify
the embodied carbon emissions of both GPT-3 and GPT-4. Our
findings reveal that the embodied carbon from GPUs constitutes
0.77% of GPT-3’s and 2.18% of GPT-4’s reported emissions.
We predict that hardware production’s embodied carbon will
continue to rise due to the increasing reliance on GPUs in AI
computing. Our research reveals the hidden effects of GPUs’
carbon emissions, helping hardware designers and datacenter
operators reduce the long-term environmental impact of AI.

Index Terms—Carbon Footprint, Carbon Modeling, GPU,
Dynamic Lifetime, AI

I. INTRODUCTION

Artificial Intelligence (AI) is rapidly advancing, with the
computational demands for training models doubling approxi-
mately every three months. The dramatic growth of AI models
increases their environmental impact. For instance, training
GPT-3, the leading AI model in 2020, emitted over 500 tonnes
of carbon, equivalent to 500 round-trip flights between New
York and San Francisco for one passenger. Thus, quantifying
the carbon footprint of AI models is essential for promoting
environmentally responsible AI development.

The state-of-the-art works in [1]–[6] have established a
foundation for carbon modeling in computer systems and AI
model training and serving. Research in [1]–[3] identified
a shift in carbon emissions from operational to embodied
carbon in computer systems, proposing carbon modeling tools
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Fig. 1. Hardware lifecycle for AI models.

for systems with [2], [3] and without [1], [4] accelerators.
However, these researches have two key limitations: (i) they
do not fully account for the rapidly evolving AI landscape,
which has significantly increased the demand, and (ii) focus on
primary components, neglecting significant contributions from
peripheral components to the embodied carbon ( [2] considers
peripheral components for servers but not for accelerators).
Most recent AI researches focused on operational carbon,
neglecting the long-term environmental impact of embodied
carbon. For example, the research in [5] focused on carbon
modeling of AI models’ training, while the research in [6]
focused on AI models’ serving, but neither of them considered
the embodied carbon of hardware for the lifecycle of AI
models, including training and serving. Thus, we found two
gaps in current AI research: (i) the need to consider the
lifecycle carbon emissions of hardware for AI models, which
includes both embodied carbon, the emissions from the process
of making chips/accelerators for AI models and operational
carbon, the emissions of AI models’ training and serving;
and (ii) the necessity to consider primary and peripheral
components when modeling GPUs’ embodied carbon.

To address these gaps, we analyze the hardware lifecycle
for AI models, as illustrated in Fig. 1. This paper shifts
the focus from operational to embodied carbon emissions
from accelerators (e.g., GPUs) running AI models, uncovering
hidden carbon emissions typically unreported. For example,
our findings reveal that the embodied carbon from GPUs

140



Crucial to look at emissions across HW life cycle 

Chip  Memory  Peripheral 

(e.g., mainboard, power  

delivery components,  

cooling) 

(e.g., GPU Die) (e.g., HBM) 

Packaging and Substrate  

(e.g., Silicon Interposer, protective 

layer, bonding ) 

Fig. 2. GPU carbon modeling components.

constitutes 0.77% of GPT-3’s and 2.18% of GPT-4’s reported
emissions. In summary, we make the following contributions:
• We propose a GPU-aware carbon modeling tool that
estimates GPU’s carbon emissions from both primary and
peripheral components.

• We apply this tool to quantify the embodied carbon
emissions of GPUs used in GPT-3 and GPT-4, revealing the
hidden effects of GPUs’ carbon emissions in the hardware
lifecycle for AI models.

II. METHODS

This section presents a GPU carbon modeling tool and
uses it to estimate the embodied carbon, the rarely considered
carbon emissions, in AI models.

A. GPU Carbon Modeling Tool
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Fig. 3. GPU carbon modeling framework.

Fig. 2 illustrates the components considered in modeling
the embodied carbon of GPUs. We consider the chip (e.g.,
GPU die), memory (e.g., high-bandwidth memory (HBM)),
substrate (e.g., silicon interposer), packaging (e.g., protective
layer), and the peripheral components (mainboard, power
delivery components, and cooling) - a rarely considered part
due to limited data but contribute significantly to the GPU’s
total embodied carbon.

1) Overview: Fig. 3 illustrates our proposed GPU carbon
modeling framework, which integrates both bottom-up and
statistical methods. We apply a bottom-up approach to model
the embodied carbon of the chip, memory, packaging and
substrate - four key sub-components that constitute a larger
system across technological advancements; we use a statistic

method to model the embodied carbon of peripheral com-
ponents, rarely considered by the previous carbon modeling
tools, due to the lack of reported carbon data by hardware
vendors. In summary, our hybrid method combines bottom-
up and statistical approaches to balance generalizability and
accuracy.

2) Input: Our GPU carbon modeling framework takes three
types of inputs: (i) parameters such as area, energy per area,
yield, etc., as shown in the block in Fig. 3. These parameters
are similar to those used in ACT and 3D-Carbon tools. (ii)
outputs from the ACT and 3D-Carbon tools. We use ACT to
estimate the embodied carbon of chip and memory; we use
3D-Carbon to estimate the packaging and substrate carbon.
(iii) SCARIF database and literature data about the peripheral
components. SCARIF database includes the parameters of
NVIDIA A100 GPU from the PAIA [7], which are widely
used by hardware vendors.

3) Modeling: We provide the high-level modeling of the
embodied carbon of chip, CChip, and memory, CMemory ,
using ACT. We calculate CChip in e.q. 1, where Area de-
notes the die area, and CPA represents the carbon emitted
per unit area manufactured (CPA). Similarly, we measure
CMemory in e.q. 2, where CPSHBM denotes the carbon-per-
size factor for high-bandwidth memory and CapacityHBM

represents the capacity of memory. Based on 3D-Carbon, we
provide the high-level modeling of the embodied carbon of
packaging and substrate CPkgAndSubstrate in e.q. 3, which
includes the carbon contributions from the silicon interposer,
CSiInterposer, substrate, CSubstrate, and bonding, CBonding.
Inspired by SCARIF, we use the regression method to estimate
the embodied carbon of peripheral components, CPeripheral in
e.q. 4, where KCarbonPerKg denotes the linear relationship
coefficient between IT product carbon emissions and mass
[19], and WPeripheral represents the weights of the peripheral
components. To our knowledge, there are no existing tools
that estimate the embodied carbon of peripheral components,
as hardware vendors also rarely report this data. Thus, we use
e.q. 4 to provide a rough estimate of these emissions.

CChip = Area× CPA (1)

CMemory = CPSHBM × CapacityHBM (2)

CPkgAndSubstrate = CSiInterposer + CSubstrate + CBonding

(3)

CPeripheral = KCarbonPerKg ×
∑

WPeripheral (4)

4) Output: Our GPU carbon modeling framework outputs
the estimated embodied carbon using e.q. 5, which sums
the embodied carbon contributions from the chip, memory,
packaging and substrate, and peripheral components.
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CGPU = CChip+CMemory+CPkgAndSubstrate+CPeripheral

(5)

B. Embodied Carbon of AI Models

GPT-3’s training emissions were reported at 552 tons [12],
which is the operational carbon estimated based on electric-
ity usage and its carbon intensity during training. Inspired
from ACT’s approach to modeling embodied carbon, we
calculate the embodied carbon of AI models using e.q. 6,
where CEmbodied denotes the embodied carbon of AI models,
T represents the training/serving duration, LT indicates the
lifetime of hardware (e.g., GPUs) that trains/serves AI models,
and COverall stands for the overall embodied carbon emissions
of hardware (e.g., GPUs).

CEmbodied =
T

LT
× COverall (6)

III. PRELIMINARY RESULTS

A. Experimental Setup

a) NVIDIA A100 GPU Hardware Configuration.: We
focus on the NVIDIA A100 80GB PCIe GPU, using spec-
ifications from the official product brief [10]. The A100 is
fabricated with TSMC’s 7nm process with a die area of
826 mm2. It includes 5 stacked HBM2e modules of 16 GB
each, for a total memory capacity of 80 GB. We assume a
6-year-long productive period for A100 GPU [18].

To estimate embodied carbon, we break the GPU into four
parts. First, the embodied carbon of chip and memory are
derived from ACT data. Second, the Packaging and Substrate
are estimated based on 3D-Carbon [3]. Lastly, the Periph-
eral Components include several items: the board (excluding
bracket, extenders, and bridges) weighs 1170 g [10]; NVLink
bridges (three in total) weigh 65.1 g [10]; the bracket and
screws weigh 20 g [10]; long and straight extenders together
weigh 80 g [10]; power delivery components weigh 453.6 g
[8]; and the heatsink weighs 49 g [9]. The total peripheral
weight is 1.83 kg, which coverts to 49.44 kgCO2-eq using
27 kgCO2-eq/kg [19].

b) AI Model Configuration.: We analyze the carbon foot-
print of GPT-3, GPT-3.5, and GPT-4 models in both training
and serving phases. The detailed training setup, including
GPU count, duration, and reported emissions, is summarized
in Table I. For inference, we estimate latency and per-query
emissions based on public delay and token usage data, as
shown in Table II. We assume one GPT-3.5/GPT-4 query runs
on one GPU for fair comparisons.

TABLE I
TRAINING CONFIGURATION OF GPT MODELS

Model Num. Parameters A100 GPUs Training Duration Reported CO2
(billion) (days) (tons)

GPT-3 175 1,024 [13] 34 [13] 552 [12]
GPT-4 1800 ~25,000 [15] ~90–100 [15] 13,725 [16]

TABLE II
SERVING CONFIGURATION AND PER-QUERY EMISSIONS

Model Num. Parameters Latency Delay/token Carbon Emissions
(billion) (s) (ms) per Query (g)

GPT-3.5 175 21 35 [11] × 600 1.70 [17]
GPT-4 1800 56 94 [11] × 600 10.00 [17]

  6.79%   4.21% 

Fig. 4. Comparison of carbon modeling tools.

B. Comparisons with State-of-the-Art Tools

We compare the estimated embodied carbon of NVIDIA
A100 GPU from ACT [1] (bottom-up method), 3D-Carbon
[3] (bottom-up method), SCARIF [2] (statistical method), and
our method (combined bottom-up and statistical approaches,
denoted as Ours). While ACT, 3D-Carbon, and SCARIF are
designed for CPUs and servers, we have adapted them for GPU
carbon modeling. SCARIF uses PAIA [7], a commercial life
cycle assessment tool that provides reliable carbon data widely
used by hardware vendors and achieves accurate embodied
carbon estimates of servers without accelerators. Since the
hardware vendors did not report GPUs’ embodied carbon,
we do not have ground-truth embodied carbon of GPUs as
a comparison. Thus, we reference the estimated embodied
carbon of GPUs from SCARIF in comparisons. Fig. 4 shows
that our estimated carbon footprint aligns with 3D-Carbon
and SCARIF. However, our approach considers the peripheral
components, overlooked by 3D-Carbon, and is more adaptable
to new technology nodes, which SCARIF may not accurately
represent due to limited training data and selected features.
Thus, our hybrid method combining bottom-up and statistic
approaches offers a more comprehensive and generalizable
estimate of GPUs’ embodied carbon.

Fig. 5 presents the embodied carbon breakdown from our
tool. We found that (i) peripheral components - often neglected
in GPU carbon modeling - contribute approximately 18.42%
of the overall embodied carbon of NVIDIA A100 GPU, and
(ii) packaging and substrate contribute around 70.18% of the
embodied carbon of NVIDIA A100 GPU. Thus, we conclude
that (i) despite hardware vendors not reporting peripheral
components, we need urgently to consider them when mod-
eling GPUs’ embodied carbon; and (ii) despite significant

142



0 50 100 150 200

Chip

Memory

Packaging

and

Substrate

Peripheral

Carbon Emissions (kgCO₂e)

G
P

U
 C

o
m

p
o
n

en
ts

9.19%

2.21%

70.18%

18.42%

Fig. 5. GPU carbon breakdown.
  6.79% 

  99.23% 

  0.77% 

(a)

  97.82% 

  2.18% 

(b)

Fig. 6. Carbon breakdown for (a) GPT-3 and (b) GPT-4 training.

improvements in reducing the embodied carbon of chip and
memory, we also need to focus on the significant impacts of
packaging and substrate.

C. The Hidden Carbon Emissions of AI Models

Most AI research focuses on the operational carbon of
AI models, but this paper shifts the focus to the embodied
carbon from the GPUs used to run these models. We apply the
proposed GPU carbon modeling tool in III-B to estimate the
embodied carbon and reference the operational carbon from
Table I and Table II. The AI community has significantly
reduced the operational carbon of AI models’ training [13],
[14]. However, Fig. 6 shows that the embodied carbon from
training has increased nearly 3x from GPT-3 to GPT-4, with
an estimated 300 tons for GPT-4’s training, equivalent to
approximately 300 round trips between New York and San
Francisco for a single passenger. This increase is due to GPT-
4 requiring significantly more GPUs for training for its larger
model. Thus, we conclude that (i) the embodied carbon from
hardware production will continue to rise due to the growing
dependency on GPUs in AI models’ training, and (ii) the
hidden embodied carbon of AI models needs attention, as it
secretly inflates AI’s carbon footprint.

Surprisingly, Fig. 7 reveals that the embodied carbon of
serving decreased by around 2x from GPT-3.5 to GPT-4.
Despite this decrease, operational carbon has increased be-
cause (i) the number of parameters in GPT-4 has substantially
risen, leading to higher operational carbon use per query, and
(ii) the increase rate of operational carbon surpasses that of
embodied carbon from GPT-3.5 to GPT-4. Thus, we conclude
that operational carbon remains the primary concern in AI
models’ serving.

  98.25% 

  1.75% 

(a)

  99.21% 

  0.79% 

(b)

Fig. 7. Carbon breakdown for (a) GPT-3.5 and (b) GPT-4 servings.

IV. CONCLUSION

This work proposes a GPU-aware carbon modeling tool that
integrates bottom-up and statistical approaches. Our model
includes subcomponents, including chips, memories, packages
and substrates, and peripherals. With the hybrid framework,
we propose a more comprehensive estimate of the hidden
embodied carbon of GPUs. Our results show that the embodied
carbon emissions of GPUs account for 0.77% of GPT-3
and 2.18% of GPT-4, which is a neglected but important
factor. Peripheral components, which are often neglected by
previous tools, may contribute of 18.42% of the total carbon
emissions of GPUs. Compared with the state-of-the-art tools,
our method reflects real-world hardware configurations and
usages more, especially for acceleartors like NVIDIA A100
GPU. These findings highlight the importance of future carbon
modeling tools that include peripheral components. Our work
shows that embodied carbon is a non-negligible part of the
environmental carbon footprint of AI, especially as model
hardware requirements increase. By revealing these hidden
emissions’ effects, we provide a basis for hardware design-
ers, data center operators, and policymakers to make more
sustainable decisions in the era of AI.
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Abstract 

YouTube has experienced tremendous growth and widespread popularity, with the potential 
to impact billions of lives worldwide as its audience continues to expand each day. With 
this growth, accurately predicting video popularity has become increasingly valuable for 
creators and analysts seeking to optimize content engagement. This study focuses on 
comparing the performance of various machine learning (ML) models and artificial neural 
networks (ANN) for predicting YouTube video view counts using metadata features such 
as like count, comment count, video duration (seconds) and subscriber count. A dataset of 
41,894 rows was collected from the Apify YouTube scraper and Kaggle, incorporating key 
metadata attributes. The study evaluates three machine learning, and ANN models using 
performance metrics including Mean Squared Error (MSE), R² score, and Median Absolute 
Error (MedAE). The objective is to determine which model provides the most accurate 
predictions and to analyze the significance of different metadata features in influencing 
view counts. By systematically comparing traditional ML models with ANN, this research 
offers insights into their effectiveness for video popularity prediction, helping creators and 
analysts better understand engagement trends on YouTube. 

1 Introduction 

YouTube, as one of the most widely used video-sharing platforms, generates an immense 
volume of content daily, with billions of users watching and uploading videos. Given the 
platform's scale, understanding what drives video engagement has become a critical area 
of research. YouTube metadata offer valuable insights into view count prediction. 
However, effectively analyzing this vast and unstructured data requires advanced 
computational techniques. 
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Machine learning (ML) and artificial neural networks (ANN) have emerged as powerful 
tools for modeling complex relationships within large datasets. While traditional ML 
models such as Decision Tree, Random Forest, and XGBoost have shown promise in 
predictive tasks, ANN models may capture nonlinear patterns more effectively. Despite 
this, the comparative performance of these models in predicting YouTube views remains 
an open question. 

This study aims to evaluate and compare the effectiveness of various ML and ANN models 
in predicting YouTube view counts using engagement-related metadata features. A dataset 
of 41,894 rows was collected from the Apify1 YouTube scraper and Kaggle2, incorporating 
key metadata attributes. The models are assessed using common regression metrics to 
determine their predictive accuracy. By systematically comparing traditional ML models 
with ANN, this research provides insights into the most effective modeling approach for 
video performance analysis, aiding content creators and analysts in understanding audience 
engagement trends. 

2 Literature Review 

Predicting YouTube video views has been an active area of research, with various studies 
employing statistical and machine learning models to uncover key influencing factors. Rui 
et al. [1] utilized regression analysis to investigate YouTube view counts, highlighting that 
Ordinary Least Squares (OLS) regression performed better than Online Gradient Descent, 
particularly due to its stable predictions and higher accuracy. This aligns with findings that 
view counts influenced by variables such as likes, comments, and subscriber counts. 
Furthermore, the application of predictive modeling which uses the Hawkes Intensity 
Process demonstrated that factors like view count trends and user engagement are key for 
analyzing potential virality. 

The study by Jang et al. [2] employed five machine learning algorithms to predict YouTube 
video views: polynomial linear regression (LR), support vector machines (SVM), random 
forest (RF), XGBoost (XGB), and LightGBM. Stepwise regression was used to select six 
key independent variables—ranking, subscribers, colorfulness, brightness, number of 
videos, and duration—significant for predicting view counts. The data comprised 16,278 
videos, with 10,660 used for training (up to 2020) and 5,618 for testing (2021–2022), 
ensuring temporal relevance by splitting based on upload years rather than random 
division. Each model underwent hyperparameter tuning for optimal performance. The 
findings highlighted that ensemble-based models (RF, XGB, and LightGBM) provided 
robust predictive capabilities due to their handling of complex relationships, with 
LightGBM showing rapid performance but sensitivity to overfitting with smaller datasets. 
This methodological approach underscored the value of machine learning in understanding 
the factors influencing video views on YouTube brand channels. 

Yen-Liang and Chia-Ling [3] developed a meta-classifier model called Bag-REPTree, 
which incorporates five base classifiers—Naive Bayes, support vector machine (SVM), 

 
1Apify: Full-stack web scraping and data extraction platform 
2 Kaggle: Your Machine Learning and Data Science Community 
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logistic regression, neural network, and decision tree. This model was designed to forecast 
future video views based on eight initial data features, including related YouTube 
recommended videos, YouTube channel, video keywords, video title, video tags, video 
description, the number of video comments, and the number of channel subscribers. 

Trzcinski and Rokita [4] study explores a model capable of predicting video popularity 
prior to upload. This model utilizes both video characteristics, such as length and frame 
count, and visual attributes, including object complexity and scene dynamics in thumbnail 
images. The prediction is performed using Gaussian radial basis functions combined with 
support vector regression. By integrating both structural and perceptual attributes of videos, 
this approach demonstrates the feasibility of popularity prediction before uploading, 
paving the way for intelligent recommendation systems and content optimization strategies 
on video-sharing platforms. 

Poudel et al. [5] analyzed the influence of thumbnail characteristics, such as brightness, 
colorfulness, and image quality, on user engagement and found that these factors do not 
significantly impact viewership. While their work focuses on visual aspects, our study 
takes a metadata-driven approach to predict view counts. Their findings support our 
hypothesis that factors beyond visual appeal contribute to YouTube’s engagement metrics. 

3 Methodology 

This section outlines the research methodologies employed, detailing the systematic 
approaches used for data collection, analysis, and comparison of the models.  

 

Figure 1: Methodology 

3.1 Data Collection 

For data collection, we utilized the Kaggle website along with Apify YouTube Scraper, an 
effective tool for extracting extensive public data from the YouTube platform. The dataset 
from Apify consists of 6,458 rows, including columns such as like count, comment count 
and view count along with tags and description of the YouTube videos.  Also, 35,436 rows 
of data were collected from the Kaggle website. However, since the Kaggle dataset was 
not up to date, we wrote a Python script using yt_dlp3 library to scrape the most recent data 
using the existing video ID column. 

 
3 yt-dlp/yt-dlp: A feature-rich command-line audio/video downloader 
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3.2 Post Processing 

Data post processing refers to the set of techniques used to clean, organize, and analyze 
data after it has been collected from various sources [6]. In this research, postprocessing 
was conducted to enhance the quality of the dataset and optimize feature representation, 
which is vital for accurate prediction of YouTube video view counts. The post processing 
steps included feature selection and integration, handling missing data through imputation 
techniques and outlier removal. By carefully addressing these aspects, we aimed to create 
a consistent and informative dataset that would support the development of robust 
predictive models. 

3.3 Feature Selection 

Since our dataset had tags and descriptions columns, which are not relevant to our use case 
of predicting YouTube views, we decided to drop them. Additionally, removing these text-
based features helped streamline the dataset, reducing dimensionality and improving model 
efficiency by focusing only on relevant numerical features. 

3.4 Feature Integration 

New features were added to the dataset to enhance the model's predictive power. 
Specifically, we added the subscriber count and video duration (seconds) columns, as these 
factors can significantly influence a video's view count. Subscriber count provides insight 
into the potential audience size, while video duration may impact viewer engagement and 
retention. 

3.5 Missing Data Imputation 

We applied KNN imputation to fill the missing values in our dataset. KNN Imputer was 
first supported by Scikit_Learn in December 2019 when it released its version 0.22. This 
imputer utilizes the k-Nearest Neighbors method to replace the missing values in the 
datasets with the mean value from the parameter ‘n_neighbors’ nearest neighbors found in 
the training set. By default, it uses a Euclidean distance metric to impute the missing values. 
Our dataset contained some missing values, for which we chose K-Nearest Neighbors 
(KNN) imputation with ‘n_neighbors’ of 5 instead of mean or median imputation. Unlike 
mean and median imputation, which can introduce bias and reduce data variability, KNN 
imputation utilizes similarities between data points to generate more contextually accurate 
and representative values [7]. KNN imputation is often a better choice because it considers 
the relationships between features rather than simply filling in missing values with a single 
statistical measure. 

3.6 Outlier Detection 

An outlier is a data point that differs markedly from most of the dataset, either being much 
higher or lower than the others. Such points can greatly influence the outcomes of machine 
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learning models. Outlier detection plays a critical role in ensuring the accuracy and 
integrity of data analysis. Datasets often contain anomalies, or outliers, which can skew 
results and lead to misleading conclusions. Identifying and addressing these outliers is 
essential to maintain reliable data, as it helps improve the quality of the analysis and ensures 
that insights drawn are meaningful and accurate [8]. 

The choice of a multiplier of 15 was made to retain meaningful high-value data, especially 
in the context of YouTube videos, where viral content can have significantly higher views, 
likes, and comments than typical videos. A standard IQR multiplier (e.g., 1.5 or 3) might 
classify many viral videos as outliers and remove them, leading to the loss of crucial 
insights. By using a larger multiplier, we ensure that only extreme anomalies—such as 
erroneous or artificially inflated data points—are removed while preserving genuine high-
performing videos. 

 

Figure 2: Data Overview After Outlier Removal 

3.7 Scaling 

Scaling is a technique to standardize the independent features present in the data in 
a fixed range. It is performed before training the models to handle highly varying 
magnitudes or values or units [9]. Features underwent normalization using Min-Max4 
scaling to ensure they fell within a standard range, typically [0, 1]. We also used log 
transformation for the target as it was heavily skewed. This step helped improve 

 
4 MinMaxScaler — scikit-learn 1.6.1 documentation 
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model performance by making features comparable in scale and enhancing 
algorithm convergence during training.           

3.8 Model Selection  

This study utilized Decision Tree Regression5, Random Forest Regression6, XGBoost 
Regression7, and an Artificial Neural Network (ANN) for predictive modeling. Decision 
trees split data based on specific criteria to enhance separation, but they can overfit 
complex patterns, limiting generalization [10]. To address this, Random Forest constructs 
multiple decision trees using randomly selected data subsets, reducing variance and 
improving model stability [11]. XGBoost, an optimized implementation of Gradient 
Boosting, trains decision trees sequentially, with each tree correcting errors from the 
previous one, leading to higher predictive accuracy. In addition to these tree-based models, 
an Artificial Neural Network (ANN) was employed to capture non-linear relationships in 
the data. Inspired by biological neural networks, ANNs use interconnected layers of 
neurons to process patterns through weighted transformations and activation functions. The 
proposed feedforward ANN model, implemented in PyTorch, consists of three linear 
layers: an input layer with four units, two hidden layers (128 and 64 neurons) with ReLU 
activation, and an output layer with a single neuron for continuous value prediction. To 
prevent overfitting, dropout regularization is applied, randomly deactivating 20% of 
neurons in the first hidden layer during training. This combination of ensemble methods 
and neural networks enhances predictive accuracy while addressing overfitting and model 
interpretability challenges. 

 

Figure 3: Structure of ANN 

 
5 1.10. Decision Trees — scikit-learn 1.6.1 documentation 
6 RandomForestRegressor — scikit-learn 1.6.1 documentation 
7 GradientBoostingRegressor — scikit-learn 1.6.1 documentation 
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4 Experimentation 

We evaluated model performance using Decision Tree, Random Forest, XGBoost, and an 
Artificial Neural Network (ANN). Hyperparameters were tuned empirically to balance 
complexity and generalization. The Decision Tree used squared_error as the criterion, best 
as the splitter, and a max depth of 5 to prevent overfitting. The Random Forest model had 
100 estimators, squared_error as the criterion, and a max depth of 15 for robustness. 
XGBoost was configured with 100 estimators and a max depth of 5 for optimized gradient 
boosting. 

For ANN, we tested four configurations, with two giving the better results. The selected 
model (ANN1) was a three-layer fully connected network with input matching the feature 
dimension, two hidden layers (128 and 64 neurons with ReLU activation), and a dropout 
rate of 0.2 to prevent overfitting. The second model (ANN2) had an input layer with four 
features, followed by hidden layers with 256, 128, and 64 neurons, all using ReLU 
activation. After evaluation, we chose the first model for its balance of complexity and 
generalization. 

4.1 Evaluation Metrics 

Evaluation metrics for regression are essential for assessing the performance of regression 
models, which predict continuous outcomes. These metrics help in measuring how well a 
regression model can predict continuous values. The models are evaluated using the 
following metrics: 

• Mean Squared Error (MSE): This metric calculates the average of the squared 
differences between the actual and predicted values. As it is derived from the square 
of Euclidean distance, it is always a positive value that decreases as the error 
approaches zero. It provides a measure of how close the predictions are to the actual 
outcomes, with larger errors being penalized more significantly due to the squaring 
effect. A lower MSE indicates better model performance [12].  

• R² Score: R² score is used to evaluate the performance of a regression model. It is 
the amount of variation in the output dependent attribute which is predictable from 
the input independent variable(s). It is used to check how well-observed results are 
reproduced by the model, depending on the ratio of total deviation of results 
described by the model. A R² score of 1 implies perfect predictions, while a score 
of 0 suggests that the model does not explain any variance. Higher R² values 
indicate better model performance [13]. 

• Median Absolute Error (MedAE): The Median Absolute Error is a metric that 
can be used to quantify a regression models performance. Unlike MSE, which 
squares the errors, MedAE provides a more robust measure of prediction accuracy 
that is less sensitive to outliers. A lower MedAE indicates that the model predictions 
are closer to the actual values [14]. 
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4.2 Cross-Validation 

To ensure the robustness of the predictive models, we conducted cross-validation. Cross-
validation is a machine learning technique for assessing a model's performance on unseen 
data. It involves splitting the dataset into multiple subsets, or folds, where one-fold is used 
for validation while the model is trained on the remaining folds. This process is repeated 
several times, with a different fold serving as the validation set each time. The final 
performance estimate is obtained by averaging the results across all iterations, ensuring a 
more reliable evaluation of the model [15]. The cross-validation was performed using value 
of k = 3, calculating performance metrics, including R² Score, Mean Squared Error (MSE), 
and Median Absolute Error (MedAE), to estimate model generalizability. By integrating 
cross-validation within each model's evaluation loop, we obtained comprehensive metrics 
providing a balanced view of model performance and identifying potential overfitting or 
underfitting issues. 

5 Results 

In this section, we present the results of the experiments conducted. The analysis focuses 
on two major components: Correlation Analysis and Comparative Analysis of Models 
Performance. 

5.1 Correlation Analysis 

From the correlation heatmap, we observe that like count and comment count exhibit the 
strongest positive correlation with view count, suggesting that higher engagement levels 
are associated with increased video views. Additionally, subscriber count shows a weaker 
positive correlation with coefficient of 0.19 with view count, indicating that while a larger 
subscriber base may contribute to views, it is not the primary driving factor. 
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Figure 4: Correlation between Engagement Metrics and Views 

5.2 Comparative Results 

In addition to the traditional machine learning models—Decision Tree, Random Forest, 
and XGBoost—the Artificial Neural Network (ANN) was also evaluated. The ANN model 
exhibited remarkable performance with an MSE of 0.164, which is significantly lower than 
all the other models, indicating that its predictions were highly accurate with much smaller 
squared errors. The R² score of 0.812 suggests that the model was able to explain 
approximately 81.2% of the variance in the data, which is still quite strong, but not quite 
as high as the Random Forest's performance. This shows that while the ANN was highly 
accurate in its predictions, it may have had slightly less predictive power in terms of 
variance explanation compared to Random Forest. Furthermore, the MedAE of 0.164 for 
ANN indicates that the median error in its predictions was extremely small, suggesting that 
its predictions were very close to the actual values. This low MedAE supports the idea that 
the ANN model was not only accurate overall but also consistent in its predictions, with 
most errors being minimal. 

The ANN outperformed the traditional models in terms of MSE, showcasing its ability to 
minimize prediction error. However, its R² score was lower than that of Random Forest, 
which had the highest explanatory power. Despite this, the ANN's low MSE and MedAE 
make it a very competitive model, particularly for tasks requiring high prediction accuracy. 

In summary, while Random Forest still held the highest explanatory power with an R² score 
of 0.925, the ANN model showed superior accuracy with the lowest MSE and MedAE, 
making it a strong candidate for this task. The choice between these models would depend 
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on the trade-off between variance explanation (where Random Forest excels) and 
prediction accuracy (where ANN outperforms). Both models are strong contenders, with 
Random Forest providing more reliable variance explanation and the ANN offering the 
best predictive accuracy in terms of error metrics. 

  

Figure 5: Comparison of ML Models 
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Figure 6: Comparison of ANN Models 

6 Evaluation 

As part of the evaluation process, we came across a GitHub repository that implemented a 
similar approach using the same dataset. However, it's important to note that the dataset 
they used is 6 years old, while our dataset is much more recent. Despite the difference in 
the dataset's age, we decided to replicate their methodology, which involved using both log 
transformation and MinMax scaling before feeding the data into models. When we applied 
this combination of techniques, we observed that the results obtained were similar as shown 
in Table 1, particularly for the Decision Tree and Random Forest models. This suggests 
that, even with the more recent data, the predictive performance of these models remained 
comparable to the outcomes achieved with the older dataset, highlighting the robustness of 
the approaches used. The repository can be accessed at: 
Youtube-Views-Prediction/Youtube Views Prediction.ipynb at master · 
herdinsurya/Youtube-Views-Prediction 
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Model RMSE 
GitHub 

Repo 

RMSE 
 

R2   score 
GitHub 

Repo 

R2   score 
 

MAE 
GitHub 

Repo 

MAE 

Decision 
Tree 

0.01 0.04 0.92 0.85 0.00 0.03 

Random 
Forest 

0.01 0.03 0.96 0.925 0.00 0.02 

Table 1: Comparative Results of our Model vs. GitHub Repository Model 

7 Conclusion 

This study analyzed a dataset of 41,894 rows sourced from Kaggle and the Apify scraper. 
To improve predictive accuracy, additional features such as subscriber count and video 
duration were integrated. Thorough post processing steps, including handling missing 
values, feature integration, and outlier removal, ensured a clean and reliable dataset for 
model training. Before feeding the features into the models, scaling was applied to 
standardize feature values, preventing biases caused by differing scales. 

We experimented with three machine learning models: Decision Tree, Random Forest, and 
XGBoost, testing multiple hyperparameter configurations to optimize performance. 
Additionally, two Artificial Neural Network (ANN) architectures were explored, yielding 
promising results. Model evaluation was done using Mean Squared Error (MSE), R² Score, 
and Mean Absolute Error (MAE). Like count and comment count emerged as the most 
significant predictors of view count, confirming their strong influence in determining video 
popularity. 
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Abstract 

This research aims to develop a digital twin of the Twin Cities metropolitan area in Minnesota to 

analyze urban transportation behaviors. To achieve this, data from the Travel Behavior Inventory 

survey, OntheMap, and OpenStreet map are integrated to examine commuter patterns, including 

travel times, locations, transportation modes, employment details and residential distributions at 

census block level. These datasets inform the creation of a synthetic population, which serves as 

the foundation for large-scale traffic simulations. The insights gained from this study will enhance 

the understanding of urban mobility and support data-driven transportation planning. 
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Introduction  

The increasing complexity of urban transportation systems requires innovative approaches to 

understanding commuter behavior and enhancing infrastructure planning. The need for data-driven 

models to analyze traffic patterns became vital with the increase in metropolitan areas. The past 

two decades have witnessed numerous innovations to facilitate better urban planning that 

addresses the increasing transport demand. The concept of a digital twin is amongst the tools used 

to model and analyze urban systems more dynamically and data driven. A digital twin is a “virtual 

representation or replica of a physical system or process that accurately mimics its real-world 

counterpart” (Aghaabbasi, 2024). Digital twins have emerged as an approach to scenario building 

and creating virtual representations of roads and traffic behavior. Furthermore, “one of the key 

characteristics of a digital twin is its ability to monitor, analyze, and optimize the performance of 

the physical system it represents” (Aghaabbasi, 2024). It aims to provide insights and analysis to 

enable individuals responsible to make decisions, identify potential hazards, and improve road 

conditions. Additionally, it allows the use of various types of data collected, data that can be used 

to make informed decisions and predict future trends. As well as it allows examining various 

scenarios, modifications, and solutions without altering the physical infrastructure to understand 

the outcome of the proposed solutions and select the ones that produce the better outcome. 

Bachechi (2022) highlighted that the influx in several transport services has caused an increase in 

the complex urban mobility ecosystem. Therefore, to manage urban mobility with improved 

efficiency, the author suggests using digital twins, arguing they will assist in testing different 

scenarios and possible solutions. However, the implementation of digital twins poses several 

challenges. They must account for interactions between various aspects of urban life, and as the 

cities are expanding, integrating different layers of transportation infrastructure, such as roads, 

public transit, and pedestrian pathways, into a digital twin becomes essential to model the 

interconnectedness and identify infrastructure needs.  

Furthermore, Khalil et al. (2024) present an approach to studying the impact of ride-hailing 

services on urban traffic by building a digital twin of Birmingham, Alabama. It addresses two key 

challenges: the lack of data collection methods for ride-hailing services and the difficulty of 

projecting future impacts due to the rapid evolution of these services. The authors propose a unique 

data collection method that involves surveying Uber drivers and collecting app screenshots of ride 

summaries, which are then processed through crowdsourcing to extract detailed ride information. 

This approach is designed to be easily replicable in any city with minimal driver participation. 

Using the collected data and census statistics, the authors generate realistic travel day plans for the 

Birmingham population and execute them in an agent-based simulation using MATSim. 

Therefore, this research aims to create a digital twin of the Twin Cities in Minnesota using 

secondary survey data. The data collection for the metropolitan areas has been completed. While 

the simulation is planned, it will not be included in this paper. The primary goal of this study is to 

analyze transportation behavior and commuter patterns across different regions. This paper focuses 
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on the foundational step, contributing to existing studies on the use of digital twins for analyzing 

urban transportation dynamics.   

Data Description  

The data used for this research was sourced from the Travel Behavior Inventory (TBI) survey1 

conducted for the Metropolitan Council for the years 2018-2019. TBI is a household survey 

conducted every year with the aim of supporting transportation planning. The data collected spans 

through October 1, 2018, through September 30, 2019. Moreover, the survey was conducted via a 

mobile app, “rMove,” a product of the Resource Systems Group. Individuals with smartphones 

were asked to download the app and use it for seven consecutive days, while those without a 

smartphone were asked to fill out a one-day travel diary either online or over the telephone, where 

call centers would complete the travel diary with the participant. The survey was divided into two 

parts; for part one, information related to household demographics, composition, and travel 

behavior was collected, while for the second part, participants were required to record their travel 

for the specified time. The survey collected data on trips taken by individuals, the start and end 

time of trips, purpose of trip, number of travelers, mode of transportation, location block groups, 

county and city for both the arrival and destination locations.  

For this research, the main columns used were the responder's ID, arrival, and departure times, 

origin and destination block group information, origin and destination purpose (home, work, 

social, etc.), and mode type (personal vehicle, local transit, shared vehicle, etc.). While the survey 

included other detailed information, such as the number of people sharing a ride, trip distance, 

cost, vehicle speed, participation group, vehicle parking, and trip season, these were omitted as 

they are not required for our research. 

Additionally, data was also gathered from external sources such as the OpenStreetMap (OSM) API 

to collect information about house and work locations in the Twin Cities area. The work location 

data was obtained by querying the OSM API, which provides geographic and address-related data 

for specific areas. Using this API, we extracted detailed location information, including house 

numbers, street names, cities, zip codes, and latitude/longitude coordinates. These data points were 

then processed and stored in a data frame for further analysis. The home location data was similarly 

queried through an OSM API query for the Minneapolis and Saint Paul areas, retrieving relevant 

address details for each house. This combination of data sources enabled a comprehensive view of 

both work and home locations within the study region. 

 

 

 
1 https://metrocouncil.org/Transportation/Performance/Travel-Behavior-Inventory.aspx  
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Data analysis  

To create a digital twin, the first step is to conduct data analysis and construct the OD matrix, 

which serves as the foundational element for creating the simulation. OD matrix helps model travel 

patterns by capturing the number of trips made between different origin and destination pairs 

within an area; prior to creating the OD matrix, it is essential to analyze the survey data and drive 

insights regarding the different attributes and their impact on the travel behavior of the survey 

responders. The dataset was loaded and preprocessed to extract relevant features for analysis. Data 

was grouped by modes of transportation, activity types, and time intervals to compute aggregate 

metrics. Figure 1 depicts the distribution of transportation modes and activities, providing insights 

into the frequently utilized mode of transportation by individuals in the twin cities according to 

the survey. 75.7 % of the individuals use their household vehicle as the primary source of 

transportation.  

 

Figure 1: Distribution of Transportation Modes  

 

 

Figure 2: Distribution of Origin Activities 

On the other hand, majority of the trips began at home (Figure 2), which is understandable given 

most responders would begin logging their travel diaries at the beginning of the day prior to leaving 

for work or school. While most other trips began for the purpose of maintenance or for social or 

recreating purposes, which could be due to these trips being taken later in the day and being 

documented then.  

Additionally, to analyze the distribution of trips, the number of departures and arrivals by hour of 

the day were visualized (see Figure 3), highlighting the peak travel times, which start from 8:00 
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am until 6:00 pm. The pattern can be justified because of the frequent trips to and from work taken 

by responders around this time. 

 

Figure 3: Distribution of Trip Departure and Arrival Times 

Furthermore, trip frequency was analyzed to understand how trip patterns vary over time, the 

analysis also considered the average trip duration and distance by transportation mode. 

Home and Work locations 

To create the OD matrix, it’s required to have information on house and work locations for the 

trips recorded on the survey. The survey did include the higher-level address information, but to 

maintain the privacy of individuals responding to the survey, specific addresses were not included 

in the data. Therefore, to fill the gap for the addresses required, data from other sources, such as 

the American Community Survey (ACS) and the OpenStreetMap API, were utilized to gather 

house and work locations for the twin cities. These locations were then filtered based on geo IDs 

obtained from the web-based mapping tool On the Map from the U.S. Census Bureau, which was 

used to create the OD matrix. An initial analysis of the data obtained was conducted to calculate 

certain metrics, such as the number of work locations in certain geoids and the number of 

employees working in each location; similarly, for the house locations, the total number of houses 

in each geoid, and average family size. These insights assist in understanding the distribution of 

home and work locations across different regions which would be essential for building the 

simulations based on the survey.  

Trip chain analysis  

The concept of “trip chains” is critical in understanding people’s travel habits. A trip chain is a 

sequence of connected travels taken by a person over a specific period, usually containing 

numerous stops or destinations, such as home-to-work, work-to-home, work-to-grocery, and 

grocery-to-home. The interconnected trips form a chain of activities that provide a more complete 

picture of a commuter’s daily travel habits. To process the trip chains, the raw trip data was 

organized by identifying everyone’s trip sequence and linking them based on starting and ending 

points and time intervals between the trips. After the trip chains were processed, the next step in 
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the analysis was to discover common patterns, such as frequent commuting routes or popular stop 

sequences. By evaluating these trip chains, we obtained insights into people’s mobility patterns, 

the types of activities they engage in during the day, and how their journeys are interconnected; 

this knowledge of travel behavior is essential for identifying transportation trends.  

OD matrix 

Creating an OD matrix is essential when simulating travel patterns using MATSim. Thus, to create 

it, initially, the datasets for house and work locations are filtered based on the geo IDs, the number 

of house and work locations that are within those geo IDs are identified, and the remaining 

locations that are not in any of those locations are filtered out to ensure consistency. The total 

population and workers for each geo ID are obtained, and with the information collected, the OD 

matrix is created (Figure 4), representing the flow of trips between origin and destination location 

pairs. The OD matrix provides the data on how many agents travel between locations throughout 

the simulation, impacts the assignment to a specific route, and helps determine the volume of 

traffic between locations. Additionally, by modifying the OD matrix, different travel scenarios can 

be simulated to understand how changes in commuter behavior will be affected by certain changes, 

providing insights into planning and policy decisions. 

    

Figure 4: OD Trips 
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Conclusion and future work 

The paper highlights the initial steps taken to create a digital twin for the twin cities in Minnesota. 

Initially, data analysis was conducted on the survey dataset obtained from Travel Behavior 

Inventory (TBI) to understand the content of the data and plan on how it can be used for this 

research. Then, to create the OD matrix required for the simulation, additional data sources were 

utilized to obtain work and home locations and filtered based on the geo IDs available for the twin 

cities. Lastly, the OD matrix was created to highlight the travel patterns of the survey respondents. 

The next step involves creating the digital twin using the OD matrix and the data collected from 

the responders. It will act as a digital representation of individuals' movement and travel patterns. 

Additionally, the data will be integrated into an existing model to leverage its capabilities and use 

it to provide additional analysis based on the survey data. 
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Abstract 
 

A recent major (possibly disruptive) development in the field of Artificial Intelligence 
(AI) was the release to the public of ChatGPT, a machine learning based Artificial 
Intelligence chat and problem-solving system. Several competing systems now exist, 
some predating the introduction of ChatGPT, and others more recently introduced. Initial 
successes of these systems are impressive, leading to major developments in a variety of 
disciplines, and significant governance efforts from attempts to benefit from these 
successes to attempts to regulate the use of these technologies. 
 
In this paper, we researched some of these new developments. We studied the use of 
generative AI on economic activity, on education, on security and privacy, as well as its 
challenges to intellectual property. We also studied efforts to govern and regulate the use 
of generative AI on these areas both domestically and internationally in several other 
countries. We present the results of this research in this paper. 
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Introduction 
 
Recent advancements in generative AI technology have brought AI into the public eye 
more than ever. Since the release of ChatGPT in 2022, the rise in prominence of large 
language models, or LLMs, has sparked discussion and research about the opportunities 
and concerns that generative AI presents. While generative AI is not a new concept, new 
capabilities and public accessibility of LLMs and image-generating diffusion models 
have captured the public consciousness in a way other AI has not. Generative AI has the 
potential to change the way people work and learn, and it opens many questions about 
regulation, security, and rights. The significant amount of literature on generative AI 
from the past few years merits an examination of the reactions to, and effects of, 
generative AI for industries, governments, and individuals around the world. 
 
 

Economy 
 
Concerns for AI job replacement are on the rise as studies show that AI has the potential 
to replace up to a billion jobs worldwide in the coming decade, despite the millions of 
jobs it has the potential to create within a matter of years [1]. A study found that the term 
“AI Taking Jobs” reached a record high in number of searches on Google in November 
2023, a 400% increase from the previous year [1]. Investigating the varying 
implementations of AI in the workplace, and the side effects of these changes, may 
provide valuable insights and address the growing concerns over what to expect with 
these drastic changes.  
 
Unlike previous technologies, LLMs will have the largest impact on middle-to-high-
income, white-collar jobs, rather than manual labor [2]. Studies show that administrative 
positions and jobs with repetitive functions (e.g., bookkeeping, proofreading) have the 
highest risk of AI replacement, whereas manual labor jobs and positions requiring 
creativity and interpersonal skills (e.g., writing, legal services) have the lowest risk of AI 
replacement [1].  
 
The World Economic Forum describes four categories of jobs relating to how they will 
most likely be impacted by AI, including high potential for automation, high potential for 
augmentation, low potential for either, and jobs that will go mostly unaffected [3]. One 
example of AI-assisted job augmentation is through the development and usage of 
GitHub Copilot. GitHub Copilot is a coding assistant LLM that generates code 
suggestions based on the content within the code file. Studies have shown that it 
increases solo programmer efficiency without significant risk of added security riska [4, 
5]. A study found that while programmers wrote code more quickly with Copilot than 
with pair programming, they were more likely to delete or fix lines of code later in the 
study, suggesting that the quality of the code created with pair programming is better [6]. 
 
Banking and the finance industry have some of the highest potential for job automation, 
including jobs like credit authorizers, clerks, and tellers [3]. About half of banking, 
utilities, and telecommunication customer contacts are currently handled by machines, 

167



2 
 

some of which are AI technologies [2]. Banks could use AI to fully automate online help 
for clients or could use AI assistants to provide helpful information to customer support 
workers [2].  
 
Despite the growing concern for automation in the workplace, integration of AI solutions 
also brings some benefits. 20% of workers in a study expressed positive views, 
welcoming AI growth and believed that integration in the workplace would grant relief 
for some tedious and repetitive tasks, 85% of those in this survey also support the 
movement towards automation of jobs considered “hazardous or unsafe” [1].  
 
Businesses are already making plans to implement LLMs into their workflows. 75% of 
organizations surveyed for the Future of Jobs Report 2023 have plans to adopt AI in their 
operations [3]. Another survey of businesses showed that one-third of the respondents 
were planning on replacing some part of their human employee’s work with generative 
AI [1]. IBM’s annual survey of CEOs [7] found a slightly higher number: 47% expect to 
reduce or redeploy their workforce in the next 12 months because of generative AI. 
However, 40% plan to hire additional staff because of generative AI [7].  
 
The Future of Jobs 2023 report predicts that insurance and pension management, 
information technology services, media, entertainment, and sports have some of the 
highest potential for AI automation and augmentation. As of 2023, all three are in the top 
five industries in terms of plans to adopt AI technology [3]. Generative AI could be 
adapted into corporate workflows in tasks such as drafting emails, creating presentations, 
searching a company’s system, generating marketing ideas, customer support follow-ups, 
and so forth [2]. 
 
The rush to integrate new AI technologies may be largely fueled by companies’ desire to 
stay ahead of their competitors. 62% of business leaders surveyed by IBM [7] said they 
are willing to take more risks than the competition to maintain a competitive edge. 51% 
agreed that the risk of falling behind is driving them to invest in some technologies 
before they have a clear understanding of the value. However, most companies are still 
only in the planning and testing phases of adopting new AI technologies [7]. 
 
Generative AI could add trillions of dollars to the global economy, making it one of the 
most prominent advancements in modern technology [2]. Researchers predict that certain 
tasks within jobs will be automated rather than the entirety of the jobs themselves. This 
means that job responsibilities will change, but most jobs will not be replaced [2]. The 
result of this emphasizes workers needing to “upskill” as job requirements change [1]. 
Short-term job loss is a possibility as people transition their careers, but researchers 
predict that new, AI-related jobs will be created [3]. 
 
 

Education 
 
One of the most pivotal areas of AI implementation is within the field of education, and 
steps are already being taken to address how generative AI might impact the classroom. 
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The CTO of OpenAI, Mira Murati, has said she believes education is one of the most 
important applications of AI [8]. While the truth of this remains to be seen, there have 
been studies that attempt to implement generative AI into post-secondary education. with 
potential positive and negative results according to surveys of students and instructors.  
 
Surveys in the college setting have shown that student perceptions of generative AI are 
often described as either generally positive [9] or mixed [10]. Both instructors and 
students agree that generative AI should be adopted in the classroom, but that there are 
problems with generative AI models that must be addressed before they can be effectively 
integrated. Some instructors believe that generative AI will pressure educational 
institutions to change their tactics, leading to a more effective system [11, 12]. For 
example, this could lead to a departure from multiple-choice assessments in favor of 
more nuanced approaches “that require students to demonstrate their understanding in 
real-time” [12]. Another idea is to assess students on critical thinking and problem-
solving, which are areas that AI models consistently struggle with [12]. 
Across multiple surveys, neither instructors nor students believe that generative AI will 
replace instructors in the classroom [11]. However, both instructors and students believe 
that generative AI will inevitably be involved in education [10, 11]. In several studies, 
students had an optimistic outlook on the future of generative AI [9, 13]. AI’s role in and 
effect on education remains to be seen. 
 
There are studies on the implementation of generative AI tools in a variety of courses, 
particularly in the field of computer science. Examples include using ChatGPT to help 
students write an essay [13] and discussing AI image generation in relation to art 
education in a college setting [14]. Another topic involving AI in education is an 
intelligent tutoring system, or ITS. The concept of an ITS predates LLMs, but they enjoy 
a resurgence because of the recent breakthroughs in LLMs and machine learning. 
 
Recent studies  [15, 16] testing these AI tutors in classrooms have focused on helping 
students in beginner programming courses, most likely chosen due to generative AI’s 
ability to write code. One argument made is that a large language model dedicated as a 
tutor for the course would provide a way for computer science students to interact with 
this technology in a more constructive way compared to a generalized model such as 
ChatGPT [15]. 
 
One of these studies [16] created an ITS called CodeTutor, using ChatGPT-3.5 as its 
model. Participants were split into a control and experimental group, with part of each 
group having previously used any LLM-based tools such as ChatGPT. The control group 
could only use human tutors, and the experimental group could only use CodeTutor for 
help. After a semester of observation, the participants in the experimental group who had 
never used a chatbot before CodeTutor experienced the largest improvements in test 
scores. On average, participants in the experimental group scored higher than those in the 
control group. Perceptions of CodeTutor’s confidence decreased as the semester went on, 
as CodeTutor struggled with the increasingly complex problems and concepts. This 
suggests that CodeTutor would not be beneficial in higher-level classes if it is already 
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struggling in the first course, a point that the authors acknowledged as a limitation of the 
study [16]. 
 
Unlike CodeTutor, Iris was intended to be developed further after its study [15]. The 
authors argue that general models such as Chat-GPT are not built specifically for 
education. Their solution to that is Iris, a dedicated tutoring model. Iris, which uses GPT-
3.5-Turbo, functions inside of a learning management system called Artemis, chosen for 
its focus on programming exercises. Artemis gives immediate feedback after submission, 
and Iris aims to supplement that with personalized feedback. The main point of Iris is to 
be a stand-in for human tutoring. After a semester of use, students’ reception was 
generally positive, finding Iris both helpful and engaging, but not necessarily motivating. 
Most students were comfortable interacting with Iris, without a strong preference for Iris 
or human tutors. Students preferred using Iris to ask questions during lectures, and stayed 
confident even when unable to use Iris during assessments. However, Iris has its 
problems. One notable shortcoming is its file management capabilities. The authors 
advise transparency from instructors if they plan to implement Iris in their courses [15]. 
 
While student reception of these ITSs has been generally positive, it may be too early to 
tell if the advancements brought on by machine learning and LLMs are enough to make 
something like an AI tutor finally viable on a large scale, or if further research and 
development would still be necessary. 
 
One of the biggest concerns about AI in education is its threat to academic integrity. 
Many in education are worried that generative AI will be used for plagiarism [10, 11]. A 
2023 model of ChatGPT-4 was able to pass assessments in certain early-level college 
Python courses on its own, a feat that previous models of Chat-GPT were unable to do. 
The model excelled at answering multiple-choice questions and in generating solutions 
for programming exercises, however, they struggled with file management and multi-step 
reasoning [12]. While this is an arguably impressive feat, it raises the risk that a student 
could use this to cheat their way through a course. 
 
In terms of writing, the usage of an LLM can be hard to detect [11]. Even if LLM usage 
is banned in a course, a student could still create autogenerated text using a free LLM. 
Several AI detectors have been developed with limited success leaving the use of 
generative AI in writing much harder to detect compared to other forms of plagiarism. 
Even when it comes to coding, which has a relatively rigid structure compared to 
conventional writing, most AI detectors are not very accurate and can be easily fooled by 
simply asking an LLM to sound like a human, further driving down the accuracy [17]. 
Some are suggesting that instructors make their rules on AI usage clear to students [11]. 
 
Just like in other areas, there are worries in education about generative AI’s potential to 
spread misinformation due to instances where models make up facts or even citations, 
aptly named “hallucinations” [11, 13]. Overreliance is another potential issue, but studies 
that have implemented generative AI in courses have been able to mitigate this issue [15, 
16]. However, overreliance must still be considered when introducing generative AI into 
any part of education [11]. Currently, institutions have no consensus when it comes to 
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issues of cheating and misinformation. These two issues bring on their own challenges, 
making them particularly hard to deal with. Before institutions officially introduce AI 
tools into classrooms, there are important discussions to be had on this topic. 
 
 

Governance  
 
Regulations in the classroom are just the beginning as the world begins to grapple with 
the possibilities of AI technology. Policymakers are facing the question of how 
to regulate AI to make use of its benefits and drive innovation, while addressing the 
concerns of their citizens and protecting against potential risks of. While many countries 
have a variety of proposed legislation, regulations, and standards most countries have yet 
to pass any legislation governing AI. Governments are gathering research, testimony, and 
public comments to better understand how to approach the challenge of AI governance.  
 
The United States has taken a moderate stance thus far, aiming to balance innovation and 
regulation. President Biden’s executive order on Safe, Secure, And Trustworthy Artificial 
Intelligence gives instructions to 50 government agencies for AI policy including plans to 
adopt AI technologies in government agencies, with eight guiding principles to ensure the 
safety and well-being of citizens while promoting innovation. For example, one principle 
seeks to assuage public fears of unemployment, promising support of workers to soften 
the potential impacts of jobs being replaced or restructured due to new AI technologies. 
The executive order states a goal for the U.S. to be an international leader in AI 
development, adoption, and regulation [18]. However, the U.S. government has not been 
very involved with the development of AI, leaving the funding and research 
predominantly up to private companies. The executive order achieves some aims of the 
proposed AI in Government Act from 2020 and the Advancing American AI Act from 
2022. Both bills involve the adoption of AI in government agencies while considering the 
risks [19, 20]. The AI in Government Act would create the AI Center of Excellence under 
the General Services Administration to oversee government adoption of AI [20].  
 
The proposed No AI FRAUD Act aims to address public concerns by regulating 
deepfakes by giving individuals exclusive property rights to their name and likeness, only 
to be used by other entities through contract with the individual or collective bargaining 
[21]. Providers of AI models made for creating replicas of known individuals, anyone 
who makes a replica of a person public without their consent, and anyone who assists 
them while knowing the person has not given consent, are liable for damages [21]. 
 
The European Union has taken a more regulatory approach to AI governance, focusing on 
the protection of the public. The 2024 Artificial Intelligence Act [22] categorizes four 
levels of risk for AI systems. Unacceptable risk systems are banned, such as some kinds 
of real-time biometric identification, social scoring, and systems created with the intent to 
manipulate people. High-level risk systems related to profiling individuals—such as 
assessing eligibility for benefits or employment—or are related to prominent institutions 
like education or law enforcement are required to have an assessment of risk and create 
risk-management plans before the system can go into service [22]. Limited risk systems 
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must disclose that their content was AI-generated and provide enough transparency for 
users to make informed decisions [23]. Minimal risk systems include most AI systems, 
such as recommender systems or spam filters, and are not regulated [22]. The existing 
General Data Protection Regulation from 2018 requiring companies to take proper 
measures to protect consumer data is also relevant to AI development. Most international 
corporations have implemented a data governance system to comply with it [24]. 
 
A white paper released by the British government, A Pro-Innovation Approach to AI, 
states the United Kingdom’s intent to not strictly regulate the AI industry, to be consistent 
in their regulation, and to work collaboratively with the industry. They also hope to 
collaborate with other countries for more consistent AI governance globally [25]. The 
U.K. Ministry of Defense released several documents outlining their strategy for AI 
development in 2022. They aim to be ambitious in delivering AI tools for defense, while 
maintaining safe and responsible use of AI [26]. The U.K. plans to rely on existing 
agencies to regulate AI [25]. 
 
China has coupled somewhat stricter regulations with a strong drive for innovation by 
creating the AI Governance Expert Committee under the Ministry of Science and 
Technology to oversee the regulation of AI [27]. This committee joins many existing 
technology-focused agencies in governing AI in China. The Cyberspace Administration 
of China has released a draft of the proposed Measures for the Administration of 
Generative Artificial Intelligence Services. The measures would regulate the quality of 
generative AI training data. In addition to mandating that training data follows the 
existing Cybersecurity Law, the Measures would require that data does not contain IP 
infringement, can only be used with permission from the subject, and must be accurate, 
unbiased, and diverse. Generative AI services will have to undergo a security assessment 
before going on the market. Additionally, generative AI providers must require users to 
register their real identity with the programs. The Measures include some protection of 
user data, such as forbidding AI providers from using inputs to profile or identify users. 
The Measures also lays out 8 AI governance principles; for example, fairness and justice, 
open cooperation, and respect for privacy [27]. 
 
It is uncertain to what extent the Chinese government will respect the privacy of its 
citizens. The Personal Information Protection Law of 2021 requires the service providers 
to disclose how they are using the personal information, to store it securely, and to only 
store it for short periods of time. However, the above law allows for facial recognition 
software to be used for public security, with the only requirement being that the 
equipment is marked with a sign [27].  
 
China has released the Next Generation Artificial Intelligence Development Plan, which 
outlines their goals for AI innovation [28]. One of these stated goals is to become the 
world center for AI by 2030. To achieve this, the government is investing heavily in 
technology development, with a focus on funding for AI breakthroughs. Unlike the U.S. 
where private companies are driving almost all AI innovations without government 
involvement, the Chinese government is working together with private companies to 
boost AI innovation. Select companies have been named as “platform leaders,” for 
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different categories of AI technologies. The platform leaders are tasked with helping lift 
smaller startups. A stated goal along the way to AI dominance is to shift towards a digital 
economy. To achieve this, China is investing in what the government calls “New 
Infrastructure.” This includes more powerful internet, a larger power grid, data centers, 
and so forth with plans to strengthen technological education in China and help raise the 
next generation of science and technology researchers [28]. 
 
Italy takes on a unique role in AI regulatory action as the first European country to 
temporarily ban ChatGPT, in 2023. The Italian data protection agency responsible for 
driving this decision-making pointed to the company’s previous issues with a leak that 
compromised user data and further violations of data collection rules [29]. The purpose of 
the ban was to immediately halt the data collection of users in the country and launch an 
investigation into OpenAI’s privacy concerns. Italian authorities also threatened to fine 
OpenAI $21 million, applying significant pressure on the company to comply with EU 
data privacy laws [29]. OpenAI has since proposed measures and taken action to address 
these data privacy concerns, trying to fulfill these demands as other European regulators 
began to take notice and open investigations themselves [30]. The ban was lifted after the 
company took appropriate action to amend these issues. This first case of a nationwide 
ban to initiate AI reform ultimately proved to be successful in initiating changes to 
mainstream AI data handling methods marking a landmark step for AI regulation in the 
protection of user data privacy, expressing concern for safely implementing AI, and 
ensuring compliance with the country's laws.  
 
 

Security and Privacy 
 
Concerns relating to user privacy and data security continue to grow as AI technology 
develops. The introduction of AI agents—software operating across different platforms 
that can respond to user demands, engage in human interaction, and learn user behavior 
and preferences over time—has opened more doors for such concerns [31]. One study 
addressed the human-like conversation capabilities of AI and found that the relationship 
between user privacy concerns and the social presence of AI agents are negatively 
correlated, and positively correlated with AI agent intimacy [31]. This suggests that users 
are less likely to worry about disclosing personal information to social AI agents and 
more likely to worry about their privacy when interacting with intimate AI agents. This 
finding is substantial as AI chatbots move to develop and support more robust vocal 
interactions with users. For example, OpenAI is advancing its current voice mode to 
sound more humanlike, give real-time responses, and react to user emotions [32]. 
 
Another report [37] breaks down the challenges of data privacy regarding AI systems’ 
mass data collection and how people both directly and indirectly interact with AI systems. 
Additional privacy concerns arise when massive data collections can only be interpreted 
by AI systems. The concept of privacy itself is rooted in the fact that people exercise 
control over what information about themselves they want to reveal to others. That 
control, however, is seemingly nonexistent when it comes to their data being examined 
by AI systems. Mass digital surveillance by governments and private entities far exceeds 
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standard, non-digital practices in both extensiveness and completeness. For example, this 
can be seen in how online services can keep viewers watching for longer because they 
“know” them; for example, YouTube generates specialized video recommendations based 
on user preferences with little to no conscious, intentional input or even awareness by the 
user. There are also problems related to the “black box” nature of machine learning 
systems that hinders the designers of the systems in fully understanding the conclusions 
of these algorithmic processes [37].  
 
The need for transparency, authenticity, consent, privacy, representation, trust, and ethical 
standards across these widely sourced collections for training AI has become apparent 
now more than ever. Shortcomings of modern tools for tracing data authenticity at this 
scale create new challenges relating to data transparency in mass data collection [38]. 
 
A report from the World Economic Forum addresses the changing landscape relating to 
AI implementation and technological advancements, particularly within the field of 
cybersecurity. Some of the emerging impacts of AI on the field of cybersecurity include 
using AI for cyber-attack detection and prevention, identifying phishing emails, detecting 
malware, and even generating secure passwords [33]. One of the primary concerns 
addressed in this report is that increasing the sophistication of AI also increases the 
complexity of cyber threats [34]. For example, the report describes an attack where an 
attacker uses AI assistance to draft highly personalized phishing messages. Concerns 
arise when traditional security systems prove to be ineffective against newly emerging 
threats. There was a 72% increase in the number of data compromises in 2023, following 
a previous record high set the year before. The spiking numbers of data breaches and 
evolving threat tactics that utilize AI spark a heightened awareness for existing and 
constantly changing risks relating to cybersecurity [35]. 
 
Advanced AI is being used to help benefit cybersecurity at a time of heightened concerns 
for software vulnerabilities. CodeSentry is an example of an AI-based, vulnerability 
detection software revolutionizing the field of cybersecurity. Their software uses a 
Generative Pretrained Transformer (GPT) that has been fine-tuned and optimized for 
pointing out vulnerable code patterns. The model has achieved a 92.65% accuracy rate in 
vulnerability detection [36] by utilizing advancing AI technology to conduct real-time 
analysis providing insights into modern vulnerability detection. 
 
 

Intellectual property 
 
Intellectual property, including copyright and patent law, is a source of major debate 
around generative AI. Artists, writers, composers, and other copyright authors are deeply 
concerned that their copyrighted works are being used without permission to train AI 
systems [39]. Many of them do not want AI training to be considered fair use of 
copyrighted material. 
 
Speaking on behalf of the Society of Composers and Lyricists in a House of 
Representatives subcommittee hearing [39], Ashley Irwin argues that AI developers 
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should seek consent of the authors, credit them, and compensate them before using their 
work to train a generative AI system—either through direct licensing agreements or 
through collective licensing like music streaming sources have done. Photographer 
Jeffrey Sedlik points out that there is an existing industry for licensing artists’ work, and 
it is one of the ways artists can continue to earn money from their work [39]. Stock photo 
agencies like Getty Images have licensed images to some AI companies, while others 
have used them without permission. Getty Images has filed a suit against Stable Diffusion 
for using their images without licensing them [40]. 
 
Another argument raised against AI training as fair use is that the generated works 
directly compete with human authors [41]. AI systems can learn and create much faster 
than a human artist or author can [39]. Generative AI could affect the employment of the 
authors it can mimic and could negatively impact the market by reducing demand for 
work from human authors [41]. Potential harm to the market is as much a part of fair use 
qualification as how the works are being used [39]. 
 
The developers in favor of AI training as fair use of copyrighted materials argue that the 
AI systems and outputs are sufficiently transformative works, and therefore do not 
infringe on the content used for training. In his House subcommittee testimony [39], Sy 
Damle stated that the copyrighted works used in training are not stored in the model, and 
an output that closely resembles a piece of training data is a type of overfitting that 
developers try to eliminate. The system uses copyrighted works to learn patterns and facts 
about language and images, then discards them. Under American copyright law, facts are 
not copyrightable [39]. 
 
In his testimony [39], Chris Callison-Burch brings up the Google Books case precedent 
and believes it should apply to AI training. To develop Google Books, the creators 
downloaded copies of books without permission and used them to create a searchable 
database of books. An infringement claim was brought forward, but the court decided that 
because the copyrighted material could not be viewed in full, and the work was suitably 
transformative, it was not infringement [39]. However, as Timothy Lee points out in an 
article for Ars Technica [41], Google Books was not using copyrighted material to make 
more books. Generative AI does create new images and text [41]. 
 
A major reason AI companies and developers want training data to be considered fair use 
is that training a generative AI model requires billions of pieces of content [39]. Most 
content currently used is from giant datasets scraped from the internet. Almost all content 
on the internet is copyrighted, as something becomes copyrighted the moment it is put in 
a tangible medium. Damle argues that finding and paying everyone whose work is in the 
database would be nearly impossible. Although collective licensing has had success in the 
music industry, doing the same for training data would be on a significantly larger scale. 
The cost to AI developers would be staggering, while the billions of individual creators 
would not receive much in royalties. Damle cautions that requiring AI companies to 
license all copyrighted materials for training could drive them out of the U.S. to less-
restrictive countries. Callison-Burch argues that it could potentially force a monopoly on 
AI if only the largest companies can afford to license material [39].  
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Many artists and writers are concerned that generative AI can be prompted to mimic the 
style of a specific person. However, in previous cases, courts have determined that style 
is not copyrightable. Damle argues that the AI mimicking style falls more under unfair 
competition than copyright law. Callison-Burch suggests that AI-generated songs 
mimicking a musician’s style and voice could be handled by bolstering right of publicity 
laws instead of through copyright [39].  
 
There is also the issue of the copyright status and patentability of works created by AI. 
The U.S. Copyright Office officially stated in 2023 that works created by AI are not 
eligible for copyright protection. The question remains open on how much human 
involvement is required in the creation for it to be AI-assisted human authorship and 
therefore eligible for copyright [39]. Governments around the world have issued the same 
stance: only humans can be considered authors under copyright law [42]. Countries have 
also stated that patents must have a human author, though there are some exceptions. In 
2019, Stephen Thaler, the inventor of the DABUS AI, applied to patent some of 
DABUS’s generated movies and images with DABUS listed as the author. The patent 
was rejected by the European Patent Office, the United States, and the United Kingdom, 
but it was accepted by the Republic of South Africa [42]. A German court decided that 
DABUS’s inventions could be patented as long as Thaler was named as the author [43]. 
 
This decision is consistent with the general consensus on patents for AI-generated works. 
While there are people who argue that laws should change to allow AI to be an author, the 
majority seek to identify a human author of AI-generated works. The question becomes 
whether the end users, developers, or owners of the AI are the authors of AI-generated 
outputs. In China, the Tencent v. Yingxun case determined that an AI-generated article 
belonged to the company it was generated for [44]. In U.S. case law, if the AI system did 
the majority of the work to generate the outputs, the author of the system is recognized as 
the author of its outputs [45]. In the U.K., a 1988 law states that computer-generated 
works are authored by “the person by whom the arrangements necessary for the creation 
of the work are undertaken” [45]. Both policies allow the end user to be the author if they 
do most of the work to create the output. This ambiguity may lead companies to name a 
human author for an AI-generated innovation so that they can secure a patent [45]. 
There have been a few cases of generative AI deepfakes of celebrities’ voices or likeness 
being used without their consent which spurred lawmakers to discuss how to best 
regulate deepfakes and to protect an individual’s voice or likeness from being generated 
without their permission. Right of publicity laws could be a way to achieve this. There 
are currently only state right of publicity laws in the United States, no federal ones [39]. 
 
Many state right of publicity laws allow for people to sue over unauthorized commercial 
use of their name or likeness [46]. However, that means that the right of publicity can 
only be used to contest deepfakes that are used commercially. Additionally, in some 
states, only people whose name or likeness is commercially valuable, like celebrities, can 
assert right of publicity claims. For other non-consensual deepfakes, other laws may 
apply. Current laws against releasing intimate depictions of someone without consent 
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could protect against explicit deepfakes, and current anti-defamation laws could protect 
against deepfakes that could be used to harm one’s reputation [46].  
 
Some members of Congress have proposed laws that prohibit certain AI replicas of 
people while leaving the right of publicity laws up to states. The Protect Elections from 
Deceptive AI Act would forbid falsely depicting federal candidates with the intention of 
influencing elections. Another proposed bill is the No AI FRAUD Act, which would give 
individuals the property rights for their own name and likeness, regardless of whether 
they are commercially valuable [46]. 
 
The negotiations following the SAG-AFTRA and Writers Guild of America strikes in 
2023 were two of the first collective bargaining agreements involving generative AI [47]. 
Studios must now get union actors’ consent to create digital replicas of them, alter 
previously recorded media of them, or store their digital replicas. The studios must 
provide a description of the intended use of digital replicas or alterations before gaining 
consent from the actors. Actors in the union must be compensated for their digital 
replicas as if they had recorded the scene or audio [48]. The Writers Guild agreement 
requires studios to inform writers whether any part of the material given to them is AI-
generated. It also requires that a generative AI cannot be a credited writer, be used to 
write or rewrite material, or be used to create source material for a production. The 
agreement allows writers to assert claims that their work has been exploited to train an AI 
[47]. AI-generated scripts cannot be used to reduce the pay of writers or undermine their 
credit [49]. As style cannot be copyrighted, the union agreement allows a writer to protect 
their style and reputation by preventing generative AI that directly mimics their work.  
 
 

Conclusion 
 
It is impossible to predict with certainty what the future of generative AI holds. That is 
one of the greatest challenges that governments face in regulating AI. Governments 
around the world are taking their first steps towards regulating AI, balancing innovation 
and protection; they are determining how to protect citizens from security and privacy 
risks and from deepfakes spreading misinformation or other harm. Copyright law is a key 
debate in AI governance with no clean answer.  
 
Overall, generative AI is predicted to contribute trillions of dollars in economic growth 
by increasing efficiency and adding new products and careers. Businesses are making 
plans for how they can be part of that growth and take advantage of new AI technologies. 
Concerns about job loss are not unfounded, including job loss concerns related to 
intellectual property. However, experts predict more restructuring of jobs rather than 
complete automation of them, and that AI-driven unemployment will be short term. 
 
Generative AI is slowly being accepted into classrooms, and it likely will continue to be 
integrated into education. Plagiarism is a prominent issue with AI in education, yet it has 
been shown that educational help from LLMs can help students learn without becoming 
reliant on them. Generative AI shows potential in finally creating a successful digital 

177



12 
 

tutor, which would expand the ability of educational institutions to give students 
personalized, individual help.  
 
There is caution, but there is excitement, too. Recent AI innovation allows things that 
were previously impossible, both good and bad. In the end, generative AI as part of 
education, work, and life is a near reality. Whether actions will follow stances is hard to 
say, but there are overarching hopes that AI development and adoption will be conducted 
and regulated ethically. Across countries and industries, the prevalent sentiment seems to 
be that AI innovation must be pursued but pursued responsibly. 
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Abstract

The VEX Artificial Intelligence Robotics Competition (VAIRC) presents a challenge
where robots compete autonomously within a dynamic environment. Reinforcement
learning is a promising approach to facilitate complex decision-making behaviors in the
VAIRC. Currently, simulated environments are used to train VAIRC systems, but
individual teams typically develop these environments in private. We use Gymnasium to
create a modular environment for a lightweight training and implementation system that
emphasizes game strategy and adaptability. In future work, we aim to explore
collaborative strategies between two robots using this system. Our work highlights the
potential of integrating reinforcement learning with robotics to apply strategy
optimization in real-time decision-making.
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1 Introduction

The VEX AI Robotics Competition (VAIRC) is an adaptation of the VEX V5 Robotics
Competition where teams play in one-vs-one matches using two fully autonomous robots
per team. Robots function without input from drivers and instead communicate with each
other as the match progresses through two minutes (2024 - 2025 Game Manual, 2025).
This is possible because the robots have computers on board that collect information from
the environment and make decisions based on that information.

The competition is divided into two main parts: ”skills” and ”matches.” In the ”skills”
sessions, teams perform without opponents and focus on maximizing the number of points
earned following the rules of the game, depending on actions taken by the robot. There
exists a leaderboard containing the highest-scoring teams. In the ”matches” sessions, teams
compete against each other in one-vs-one matches. The team with the most points at the
end of the match wins.

A common approach to game strategy optimization is reinforcement learning. Reinforce-
ment Learning (RL) is a field of machine learning that uses a reward to guide the actions
of an agent in a given environment. The agent receives feedback from the environment
in the form of rewards or penalties, which it uses to improve its decision-making process
over time. The goal of the agent is to maximize the cumulative reward it receives from the
environment. This is especially useful in the VAIRC, where the environment is dynamic
and the robots must make decisions based on the information they have available.

Prior approaches using RL have resulted in robots with high performance in specific tasks.
One major issue with existing approaches is the computational intensity of model train-
ing. In a prior paper, the training process involved the operation of a physics simulation
mimicking the robot field, which made training a slow process (Zietek et al., 2022).

Our system focuses on optimizing an agent to score the most points through higher-level
actions in a simplified environment. This has the advantage of reducing the amount of
time taken to train a high-performing model. It also simplifies the creation of a simulation
implementing the game mechanics. RL solutions in other domains could take advantage of
this foundation to reduce the required computational complexity when training agents.

To assist in evaluating these higher-level actions, we used the CasADi library. This is an
optimization library used to solve complex mathematical problems. One use case for this
tool is for planning paths, taking object footprints and obstacles into consideration. We
used this when actions were evaluated after training a RL model.

In the following sections, we will go through how we have put together our system in
detail. This includes setting up each component for the VEX competition, as well as the
techniques used to integrate components.
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2 Approach

2.1 Overview
The typical approach when creating a RL model for robotics applications is to create a
virtual environment in which the model can learn. These virtual environments can be a
simplified version of a specific scenario, or they can be extremely detailed representations
of the real world. For our approach, we opted for a relatively simple environment that
simulates the VEX AI competition field. We combined this with other existing programs
to create abstract actions that virtual agents can take within the environment.

Our goal in using an abstract environment for the agent to train in is to reduce the overhead
needed to construct and maintain an environment. This is especially important because the
game changes every year and the environment needs to be updated to reflect the new game.
In this way, the more complex aspects of the game can be abstracted away and the agent
can focus on the game strategy. Since the environment is modular and easier to update than
a detailed simulation, it also better supports faster and more flexible development of the
agent. Some examples include changing the environment starting state based on match and
skills field setup, or adding new elements to the environment, such as additional rings.

2.2 Path Planner
The most important part of the skills competition is scoring as many points as possible. To
do this, the robot needs to be able to navigate the field efficiently. Our first step was to
develop a program to generate an optimal path from one point on the field to another while
avoiding obstacles. We decided to use CasADi, a computer algebra solver for nonlinear
optimization problems. The original project we used as a basis was created by tianchenji
and posted on a public repository on GitHub (tianchenji, 2020). This project was adapted
to fit our use case.

This program takes two points on the field and outputs an optimal path from one point
to another. The program works by creating a nonlinear programming problem that can be
solved by CasADi. The first step is to define the dimension of the robot and the field as well
as the size and position of all the obstacles. To simplify the collision detection, the robot
and obstacles are all represented as a circle that circumscribes each vertex of the robot or
obstacle.

The next step is creating a linear interpolation between the two points. This provides a
sufficient estimate for the solving algorithm to then find an optimal solution efficiently. An
array of variables is generated which describes the position and velocity of the robot at each
point. Additionally, a single variable is used to set the time interval between each point in
order to determine the distance between each point.

Once all the variables are defined, an additional array of dynamic constraints are created
based on those states. These constraints limit the position of each point by taking into
account things like the maximum speed, and acceleration of the robot, as well as collisions
with obstacles.
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The position of each point is calculated by using the kinematic equations of motion:

r⃗ = r⃗0 + v⃗∆t

In this equation, r⃗ is the position of the current point, r⃗0 is the position of the point before,
v⃗ is the velocity at the point, and ∆t is the time interval between the points. The equality
constraint ensures the position of each point is directly determined by the equation. Upper
and lower bounds for each point are also set so that the position of the robot doesn’t go
outside the field limits and that the velocity doesn’t exceed the maximum speed of the
robot.

Even though upper and lower bounds were already set to limit the individual components
of position and velocity, additional constraints need to be added to ensure the speed of the
robot does not exceed the maximum speed calculated with inequality:

|v⃗| ≤ |v⃗max|

In this inequality, |v⃗| is the magnitude of velocity at the current point and |v⃗max| is the
maximum speed of the robot.

Similarly constraints are put on the acceleration of robot to ensure the acceleration does
not exceed the max acceleration at any point with this inequality:

a⃗ =
v⃗ − v⃗0
∆t

|⃗a| ≤ |⃗amax|
In these equations, a⃗ is the acceleration of the robot at the point, v⃗ and v⃗0 is the velocity at
the current point and point before respectively, ∆t is the time interval between each point,
and |⃗a| and |⃗amax| is the magnitude of acceleration at the point and maximum magnitude of
acceleration.

Finally, an additional constraint is created for each obstacle to ensure the robot does not
collide with any obstacle. The robot and each obstacle is represented as a circle so checking
for to check for collision equates to checking the distance between the robot and the obsta-
cle. An additional buffer is added to ensure any uncertainty in the real world is accounted
for.

d = |r⃗1 − r⃗2|
d ≥ R1 +R2 + ϵ

In these equations, d is the distance between the center of the robot and obstacle, r⃗1 is the
position of the robot and r⃗2 is the position of the obstacle, R1 and R2 is the radius of the
robot and obstacle, and ϵ is a small buffer between obstacles. The inequality enforces that
the distance between the two points is greater than the sum of the radius of the robot and
obstacle.

Once all the variables and restrictions are set, a cost function is created for the nonlinear
programming (NLP) problem. In our case, the cost function is the total time taken to go
from the start to end point. However, because the number of points remains constant when
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solving the problem, the cost function can be simplified to using just the time interval
between points:

c = ∆t

The NLP solver will then attempt to find a solution in which this cost is minimized. The
algorithm we chose to use in our case is Interior Point Optimizer (IPOPT) due to its effi-
ciency at quickly solving large-scale problems with many nonlinear constraints. Once the
solver finds a solution, the list of points can be passed on for the robot to follow using the
existing odometry system.

2.3 Virtual Environment
Our next step was to create the virtual environment for the agent to train in (“VEX AI Re-
inforcement Learning”, 2025). This environment needs to effectively model all aspects of
scoring in the game while simplifying many of the aspects and physics of the real world.
To achieve this, we used Gymnasium, an open-source Python library for developing rein-
forcement models. Gymnasium provides a large amount of flexibility allowing us to create
an environment that fits our needs (“Gymnasium Documentation”, 2025). For the envi-
ronment model, we used the Stable Baselines3 MultiInputPolicy (MIP) model along with
the Proximal Policy Optimization (PPO) algorithm to train the model (“Policy Networks
Documentation”, 2025; “Proximal Policy Optimization Documentation”, 2018). The MIP
model architecture allows us to feed many inputs with different sizes rather than a single
vector of inputs, and the PPO algorithm helps train the model quickly and efficiently.

Similarly to the path planner system, the first step is to define the objects in the environment
including the robot, field, and field elements. Once the environment set up, the observation
space and action space needs to be defined for the virtual agent in order for the agent to
understand and interact with the environment.

The observation space is not the same as the environment state since the real robot will only
have so much information. We can provide information such as the robot’s position and
orientation, the amount of time left in the match, the position of elements in the robots field
of view (FOV) as well as how many rings and goals the robot is holding. This observation
space is set to model what can be determined using the sensors we have available to use.

The action space is a relatively short list of possible actions the robot can perform. Some
examples include “Pick up nearest goal,” “Pick up nearest ring,” “Drop goal,” “Turn to-
wards center,” “Add ring to goal,” among several others. These abstract actions provide the
agent with a simple way to determine how to interact with the environment.

The final step needed for the reinforcement algorithm is generating a reward based on what
action the robot takes. The reward function we use is given by this equation:

r = (S − S0) + p

The reward, r is calculated by the difference between the score after taking the action, S
and the initial score, S0 plus any penalty, p that is given based on an invalid action. The
score is calculated using criteria based on the VEX competition manual (2024 - 2025 Game
Manual, 2025). The penalty is only added if the action the model chooses is invalid, and
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the default penalty for all invalid actions is −0.1 to ensure that the penalty doesn’t override
any reward based on the action. We put a higher penalty on actions that might give a reward
but cause longer lasting negative such as climbing too early. Table 1 demonstrates some
examples of rewards given to different actions.

Action Initial
score

Final
score

Penalty Final
Reward

Successfully drop the goal in an empty
corner (valid action)

8 13 0 5

Attempt to pick up a goal that is already
held (invalid action)

13 13 -1 -1

Attempt to climb too early in the match
(invalid action)

13 16 -10 -7

Table 1: Reward examples

Table 1 shows what rewards are given to a few actions in specific scenarios. Valid actions
will always have a penalty of 0, and invalid actions will have different penalties less than 0
based on its severity. For example, attempting to pick up a goal that is already being held
will have little to no consequence as the action just can’t be performed, so it is assigned the
default penalty of −1. On the other hand, climbing too early in the match leaves the robot
unable to perform any more actions for the rest of the episode, so even though it scores 3
points, it is given a harsh penalty of −10 in order to restrain that behavior.

The general training loop for the process is as follows and is shown in Figure 1. First the
agent evaluates the current state of the field to determine what action to take. After selecting
an option, the agent will use the information it has available to perform that action in the
environment. If an action is invalid or impossible to perform given the current state of the
environment, the agent is given a penalty for that step. If the agent successfully performs
an action, the score of the field is determined by the state of the environment according to
the rules of the VEX AI competition. Then, the reinforcement model is adjusted by taking
the reward into account and the process is repeated. If the environment reaches a state
where the episode is over (i.e. running of time), the environment is reset and the process
continues.
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Figure 1: Gymnasium training loop

Finally, once the model is trained, a final simulation can be run to record all the actions
taken by the agent which can be converted into a preplanned route for autonomous coding
skills. The environment outputs a list of steps along with the calculated coordinates of each
path to a text file, which can be then be parsed by an additional program to create the C++
code necessary for the robot to run each action.

2.4 Integration
Our final step was to integrate these programs with the existing program to control the
physical robot. As touched on in the previous section, a program was created to convert the
output of the RL model into usable C++ code.

Integration also involved, in large part, the use of an Nvidia Jetson Orin Nano Development
board to facilitate an eventual real-time agent implemented directly on a robot.

The development board is based on the Nvidia Jetpack SDK - a modified version of the
Ubuntu Linux distribution. Technologies utilized in addition to the Nano included the Intel
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RealSense D455 depth camera, which, when paired with VEX software could be used to
detect important game pieces and give other valuable data.

The use of the PyRealSense library allowed functionality of the VEX Web Dashboard,
which serves as a central point for viewing information returned by the robot’s various
sensors on the Nano, including position readout and objects detected by the RealSense
camera.

Figure 2: Web Dashboard

In addition to the information displayed in the Web Dashboard, custom data packages were
able to be sent from the robot’s brain and received on the Nano, which could facilitate
further communication and the implementation of a real-time agent.

Due to the architecture of the Nano, which was set up similarly to a desktop computer, it
was trivial to get the RL model running on it. Being written in Python, there were library
dependencies which needed to be installed. After installing those libraries, running the
model worked similarly to how it was run on ROSIE.

Another challenge in getting the Jetson Orin Nano to function directly on the robot is
simply powering it. The Nano must be powered externally, separate from the robot’s other
systems. To do this, a USB power hub was used. The power hub we had access to outputted
power at 5 Volts from either USB-A or USB-C, while the Nano can only accept power at
between 9 and 19 Volts over 5.5mm x 3.5mm barrel jack. To circumvent this difference, a
voltage boost converter was proposed to be used to convert both voltage and cable medium.
The system diagram of all the hardware components can be found in Figure 3.
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Figure 3: VEX AI System Diagram (“VEX AI System”, 2024)

3 Discussion and Results

3.1 ROSIE Supercomputer Use
The agents simulated in the virtual environment were trained using the Milwaukee School
of Engineering ROSIE Supercomputer. Our training processes relied on using a single an-
gent inside one environment, so, rather than using GPUs, the training was performed using
an Intel Xeon Gold 6240 CPU 2.60 GHz. Running the training on ROSIE let training of
the model to take place quickly without needing access to local processing power. Because
of this other tasks for development could be done without slowing down the process of
training the model.

3.2 Simulation
The path planning algorithm provided the ability to generate optimal paths quickly based on
a dynamic environment that changes rapidly. Over the course of 1000 trials with the robot
and 5 goals as obstacles randomly placed on the field, the average time to solve was 0.127
seconds and the percentage of successfully generated paths was 32.5%. Table 2 records
the average time to generate paths for feasible (successful) and unfeasible (unsuccessful)
paths.
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Status Average time (seconds)
Successful 0.122
Unsuccessful 0.129
Overall 0.127

Table 2: Path generation results

The results show that paths can be generated quickly regardless of whether there is a fea-
sible path to the target. Unsuccessful paths are typically only found when the target or
starting destination overlaps an obstacle, making it impossible to generate a path between
the two points. For example, see Figure 4 and Figure 5 as an example of a feasible and
unfeasible path. Notice that in Figure 5, the robot is overlapping an obstacle at the starting
point.

Figure 4: Feasible path Figure 5: Infeasible path

The Jetson Nano uses an ARM Cortex-A78AE CPU 1.5 GHz. Based on single threaded
benchmarks of both CPUs, we can estimate that the average time to generate a path on the
Nano would be 0.266 seconds (“CPU Benchmarks”, 2025). This is an acceptable amount
of time for our use case as other processes can be run on separate threads while a path is
being generated.

For the virtual environment, we were able to use the simulation to generate preplanned
routes for the skills competition using one robot. The state of the environment is known
at the start and the single robot is the only thing interacting with the environment, so the
state is completely deterministic. Because of this, we used this setup to test the training
performance. The model architecture we used has just two hidden layers of 64 nodes each,
keeping it relatively lightweight and easy to train.
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The images below show visual representations of the environment at different steps in the
simulated episode run by the final trained model. Figure 6 shows the state at the beginning
of the episode (Step 0), and Figure 9 shows the state at the end (Step 52). The number of
steps is not the same for each episode as each action can take a different amount of time.

Figure 6: Step 0 Figure 7: Step 18

Figure 8: Step 36 Figure 9: Step 52

The model we trained over 5 million steps was able to achieve a maximum score of 52
points. This is 8.3% higher than an initial, naive solution, that was manually created which
scored 48 points. This shows that the reinforcement learning model was able to indepen-
dently find optimal strategies that were not obvious at first. In additional testing, each
model was trained for 10 million steps, and the scores were averaged to get the results be-
low. Figure 10, shows the average score and average best score of the three trained models
over the total course of all training steps.
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Figure 10: Training Results

Figure 10 shows that although the score of each model fluctuates drastically throughout
the training process, the best score continues to go up at a decreasing rate. In fact, after
about 6.6 million steps, there are no improvements to the best score showing that the model
converges to a adequate strategy relatively quickly.

Based on an additional test, the average steps per second during training was found to be
602.5 steps per second. We used this to estimate the time to train the model at any number
of steps. Table 3, shows the best average score at logarithmic intervals of steps including
the estimated time to train.
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Step Best Score Time (seconds)
10240 6.7 17.0
20480 11.0 34.0
40960 21.7 68.0
81920 35.7 136.0
163840 44.0 271.9
327680 46.3 543.9
655360 48.7 1087.8
1310720 50.3 2175.6
2621440 52.0 4351.1
5242880 53.7 8702.3
10004480 54.0 16605.7

Table 3: Path generation results

These results show that the model quickly reaches an average best score of 44.0 by 165,000
steps and 48.7 by 656,000 steps, which is just over 80% and 90% of the maximum score of
54, respectively. Reaching a score of 48 took just about 18 minutes, and training the model
for 10 million steps still took less than 5 hours.

Several adjustments were made to the environment throughout development to keep train-
ing as efficient as possible. For instance we consolidated actions to keep the total of number
of actions to a minimum. For instance, we combined ”Drive to nearest goal” and ”Pick up
goal” to just ”Pick up nearest goal.” This provided less options for the model to choose
from and allowed it to learn optimal strategies more quickly.

We also performed some testing to determine what model hyper-parameters led to the most
optimal training time. We found that a learning rate of 0.001, a discount factor of 0.995, and
an entropy of 0.0 gave the best results. These values provided a balance between exploiting
effective strategies and experimenting with others, as well as considering both short-term
and long-term rewards while maintaining a consistent strategy.

When training the model for competition matches, we added an option to limit the game
elements the robot can see in the simulation to just those in a specific FOV as well as an
option to randomize the positions of the robot and all the game elements. This helped
generalize the model rather and prevented overfitting to the initial game state. Doing this
helped keep performance high even with field states other than the initial setup, which
ensures the model will output sufficient actions in actual matches.

3.3 Drawbacks and Challenges
A significant challenge with our approach to actions in the RL environment is that it is
difficult to translate the higher-level actions output by our model into lower-level actions
the robot can interpret. The exact code the robot should run for a given action will vary
based on factors like the distance and angle of a given item, as the robot needs to approach

12
194



an item correctly in order to interact with it. As a result, although the theoretical results
seem promising, we have not tested it extensively on a physical field.

We also encountered considerable difficulty when attempting to use the VEX-provided
instructions to configure the Jetson Nano, particularly setup of the PyRealSense library for
Python 3.10. The library’s functionality was eventually achieved through steps outlined in
a thread on GitHub (Drkstr, 2020).

4 Conclusion

In this work, we have demonstrated an implementation of a Gymnasium environment that
abstracts the simulation for the VAIRC. Our approach highlights the decision-centered ap-
proach to encourage complex behavior in agents that can be facilitated through an inte-
grated system with a Nvidia Jetson Orin Nano. This higher focus on strategic behavior
will serve as a basis for RL agents and involvement in future VAIRC contexts supported by
abstract environments and actions.

For the VAIRC, the implementation of our environment and how the RL agent approaches
solving the task results in less intensive cycles for training with a greater focus on making
strategic gameplay decisions. For future projects, we could look at mimicking this level
of play to accommodate multiple agents to compete with each other in a match. This also
could lead to prospects with training the model on varying degrees of simulated hardware
ability to better simulate VAIRC games with variable robotics hardware between teams.

Another component we would like to explore is real-time decision making. Possible prospects
in this space would involve further work with the Jetson Nano and VEX V5 Brain to process
incoming inputs in real time to observation inputs for a model.

This also opens up more potential research into RL environment tuning for levels of ab-
straction and interaction mediums for a model and real-world system. Further research
on how models can handle environment discrepancies can better outline adaptability and
generalization between RL techniques and the potential efficacy of focusing on strategic
decisions and realistic RL environments.

We are excited for the application of our Gymnasium environment in the VAIRC space and
the future of robotics embedded systems. We plan to expand our work with this environ-
ment to the VAIRC 2025-2026 problem and expand our approach to handle multiple robots
in a cooperative and adversarial manner.
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Abstract 

In this work, we explore deep learning-based fire spread prediction using the previously 

developed WildfireSpreadTS dataset, collected by a different research team prior to our study. 

Our primary goal is to accurately model the dynamics of wildfire propagation by leveraging 

Convolutional Neural Networks (CNNs) and U-Net architectures. We conduct extensive 

experiments that involve systematic hyperparameter tuning to find optimal configurations for 

capturing complex spatial features of fire progression. To handle the inherent challenges of 

segmentation and reduce prediction errors, we use the Intersection over Union (IoU) loss 

function, providing a robust measure for target-object overlap. Preliminary results demonstrate 

that this integrated approach effectively identifies fire-prone regions while maintaining strong 

predictive performance, highlighting the potential of deep learning methodologies for supporting 

timely wildfire management and resource allocation decisions. 
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1 Introduction 

Wildfires continue to pose a severe threat to ecosystems, infrastructure, and human communities 

worldwide. Over recent decades, climate change, population expansion, and land-use practices 

have contributed to more frequent and larger fire events [1]. These increasingly catastrophic 

blazes not only damage ecological habitats but also cause significant socio-economic losses. 

While traditional simulation approaches, such as FARSITE and Prometheus, have been widely 

adopted for modeling fire behavior, they often require extensive domain knowledge and manual 

tuning to reflect real-world complexity. As a result, machine learning (ML) and deep learning 

(DL) approaches have garnered substantial attention in wildfire spread prediction due to their 

ability to learn complex, non-linear relationships directly from data [2]. 

Among various DL architectures, U-Net has emerged as a popular choice for segmentation tasks 

because of its encoder–decoder structure and skip connections, enabling the capture of both high-

level semantic features and low-level spatial details [2]. In this context, U-Net’s capacity to 

handle pixel-wise predictions makes it particularly useful for modeling fire propagation, as it 

allows for fine-grained segmentation of prospective fire-perimeter regions. Recent work 

demonstrates that architectures based on convolutional neural networks (CNNs) often 

outperform purely physics-based methods by effectively leveraging large-scale remote sensing, 

meteorological, and topographic data [1]. 

In this study, we use a U-Net architecture to predict wildfire spread based on the 

WildfireSpreadTS dataset—specifically focusing on the 2018 subset [3]. This dataset’s multi-

temporal, multi-modal nature offers a valuable benchmark for deep learning algorithms, as it 

includes spatial resolutions that facilitate image-like representation of fire spread dynamics over 

consecutive days. Our aim is twofold: first, to demonstrate how U-Net can accurately learn the 

progression of fire fronts from historical satellite observations and weather variables; and 

second, to highlight the significance of proper loss functions—particularly Intersection over 

Union (IoU)—in improving predictive accuracy when dealing with highly imbalanced fire 

masks. By leveraging IoU, we directly optimize the overlap between predicted burned regions 

and ground-truth data, thereby addressing the class imbalance inherent in wildfire segmentation 

tasks [4]. 

Additionally, recent advances in multimodal data fusion have demonstrated the benefits of 

integrating satellite imagery, topographical features, and real-time climate indicators to capture 

the spatial and temporal complexity of fire behavior [5]. The breadth of data available from 

Google Earth Engine and other remote-sensing platforms allows for daily updates of 

environmental conditions—such as humidity, wind, vegetation indices, and land cover—that 

critically influence fire expansion. 

This paper is structured as follows. Section 2 presents our data sources and describes the 

WildfireSpreadTS dataset, focusing on the 2018 fire season. Section 3 details the methodology, 

including data preprocessing, model architecture, and training strategies. In Section 4, we 

provide experimental results, analyzing model performance using IoU. Finally, we conclude by 
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summarizing our findings, discussing limitations, and suggesting future directions for scaling 

this approach to broader geographic regions and longer forecast horizons. 

2 Data 

2.1 Data Collection 

We obtained wildfire data through repositories curated using Google Earth Engine and 

GRIDMET (the Gridded Surface Meteorological dataset). The raw geospatial data was 

transformed and stored in TIFF files, used in the final training for predicting fire spread. 

Ultimately, the data was preprocessed into clean input tensors. 

From the final dataset, we took the wildfire data from the year 2018 and specifically looked at 

VIIRS (Visible Infrared Imaging Radiometer Suite) bands, which are satellite-based images 

providing data on fire detection, vegetation, and burned areas [6]. The data from GRIDMET 

includes wind speed and direction, temperatures, and humidity data. From MODIS, there is 

information about elevation and land cover. All components were compiled into TIFF images 

keyed by the date of the fire data, offering a distinct, multi-parameter view of fire spread. 

2.2 Data Cleaning 

While a variety of data points are employed in different portions of the overall pipeline—as 

outlined in Section 3, ‘Methods’—each compiled dataset goes through a standard cleaning 

process to ensure spatial and temporal consistency. TIFF files were checked to ensure that each 

pixel corresponds to the same physical location, and some files were cropped to zoom in on the 

actual burning area, with a buffer of a few kilometers. Lastly, continuous features were 

normalized to the [0,1] range and fire labels were made binary (fire vs. no fire). 

3 Methods 

3.1 Model Selection and Rationale 

We chose a U-Net-based framework due to its proven success in segmentation tasks requiring 

precise boundary delineation [2]. By leveraging an encoder–decoder structure with skip 

connections, U-Net captures both high-level semantic features and low-level spatial details. 

Compared to traditional machine learning methods, convolutional neural networks (CNNs) can 

learn complex, nonlinear relationships directly from large-scale geospatial data [1]. 

Consequently, adopting a U-Net architecture provides a strong baseline for leveraging the multi-

modal nature of the WildfireSpreadTS dataset [3]. 
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3.2 Model Architecture 

 

Figure 1: Diagram of our 3D U-Net model architecture. 

As shown in Figure 1, our model employs a multi-branch 3D U-Net architecture that first 

separates the input tensor—representing three consecutive days of spatial data across 23 

channels—into four modality-specific encoder branches (VIIRS, Weather, Forecast, and Static). 

Each branch processes its subset of channels through three sequential 3D convolutional blocks, 

each comprised of convolution + batch normalization layers followed by max pooling, capturing 

increasingly abstract features. The terminal outputs of these four encoder paths are concatenated 

and passed through a “bridge” layer, which further refines the merged feature representation via 

3D convolution and dropout. On the decoder side, transposed convolutions progressively 

upsample the merged feature maps, and each stage integrates skip connections from the 

corresponding encoder blocks, gated by attention modules to focus on relevant spatial features. 

Finally, the last 3D convolution and reshape operation produce a single 2D fire-segmentation 

map, with a sigmoid activation to yield pixel-wise probabilities for fire vs. no fire. 
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3.3 Data Preprocessing 

Before training our model, the 2018 WildfireSpreadTS TIFF files underwent a structured 

preprocessing pipeline. The goal was to transform raw geospatial data into a unified set of input 

tensors ready for segmentation. Key steps included: 

Spatial Alignment and Resampling 

Each of the 377 TIFF images was checked for coordinate system consistency. When necessary, 

data were reprojected or resampled to align with the baseline 375 m spatial resolution of the 

VIIRS active-fire product. This ensures that every pixel across different sources (e.g., weather 

raster layers, vegetation indices, topography) refers to the same ground location. 

Region of Interest (ROI) Cropping 

Fire events vary in their geographic extent, so many TIFF files covered large swaths of land. We 

cropped ROIs around known fire perimeters or ignition points, typically ensuring sufficient 

spatial context (e.g., a few kilometers buffer) beyond the actual burn extent. This step helps the 

model focus on relevant areas and reduces the computational load. 

Temporal Consolidation 

Because each daily TIFF captures a snapshot of conditions and active fires, we grouped 

consecutive days for each ROI into multi-day “stacks.” This creates a sequence-like data 

structure that allows the downstream network to learn spatiotemporal patterns of fire spread over 

the course of consecutive days. 

Normalization and Masking 

During data preprocessing, all continuous bands (e.g., reflectance and temperature) were min–

max scaled to the [0,1] range, ensuring a standardized input distribution. Any invalid pixels—for 

example, those occluded by smoke or cloud cover or corrupted by sensor issues—were tagged 

with a sentinel value (e.g., −1), enabling the model to learn how to handle or ignore these 

anomalies. Finally, the active fire labels were transformed into binary masks (fire vs. no fire), 

preparing the data for supervised segmentation tasks. 

Train–Validation–Test Split 

From the processed 3773 images, we allocated a portion for training, validation, and testing. 

Because fire behavior can be geographically and temporally distinct, we ensured that no single 

fire event was split across these subsets. Instead, entire events or contiguous ROIs were grouped 

to reduce spatial overlap among the partitions. A typical split ratio was used (e.g., 70–80% 

training, 10–15% validation, 10–15% testing), though exact percentages depended on the number 

of unique fire events available. 

Batch and Patch Creation 

Depending on GPU memory and model input constraints, large ROIs were sometimes tiled into 

smaller patches (e.g., 256 × 256 pixels) for batched training in the neural network. The “sliding 

window” or “tiling” approach ensures coverage of the entire burned area while making training 

feasible on standard hardware. 
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This end-to-end pipeline converts the multi-modal, daily TIFFs into uniform spatiotemporal 

samples for segmentation tasks, enabling our deep learning model to learn how wildfires 

typically progress under different environmental conditions. Further methodological details, 

including the specific network architecture and loss functions, are presented in the following 

subsections.   

4 Experiments 

4.1 Formatting Input Data 

To train on daily wildfire progression, we organized spatiotemporal features into 3-day windows, 

each containing 23 channels (e.g., reflectances, weather variables, land cover). These were 

concatenated into a (3,300,220,23) tensor, giving the model a coherent snapshot of evolving fire 

events. This arrangement preserves necessary spatial detail while enabling the model to learn 

from day-to-day changes without excessive overhead. 

4.2 Why IoU loss? 

Intersection over Union (IoU), also known as the Jaccard Index, quantifies how well a predicted 

segmentation overlaps with the ground-truth mask by dividing the size of their intersection by 

the size of their union. This is particularly suitable for wildfire tasks, where missed fire pixels or 

excessive false alarms have real-world consequences. IoU also helps mitigate challenges of class 

imbalance by focusing on the overlap of positive predictions rather than raw accuracy [4]. For 

these reasons, we employ IoU to robustly evaluate segmentation performance. 

4.2 Experiments Conducted  

In our experimental phase, we conducted numerous training runs with variations in batch size, 

learning rate, and focal loss hyperparameters. From these, we selected five representative 

configurations that achieved the highest IoU scores, as summarized in Table 1. All experiments 

in this table had 100 epochs and a focal gamma of 2.0. The chosen experiments highlight how 

small changes in hyperparameters can meaningfully influence convergence and segmentation 

quality, especially in the context of highly imbalanced wildfire data. By examining each 

configuration’s IoU score, we can see that more conservative learning rates and moderate focal 

alpha values tend to capture burn perimeters more accurately, indicating that overly aggressive 

updates or inadequate weighting of minority classes can undermine performance. 
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Batch Size Learning Rate Focal Alpha IoU 

9 0.0001 0.75 0.4012 

8 0.0001 0.75 0.3880 

7 0.0001 0.75 0.2821 

8 0.001 0.75 0.2539 

8 0.001 0.65 0.2497 

Table 1: Our top five best performing experiments. 

 

Among these five experiments, the best run attained an IoU of 0.4012, demonstrating the 

inherent challenges of segmenting sparse fire pixels. Complete metrics for this model show that 

it achieves a Loss of 2.6033, an Accuracy of 0.9980, a Precision of 0.5232, a Recall of 0.6384, 

and an F1 Score of 0.5751. The high Accuracy largely reflects the abundance of non-fire pixels, 

illustrating why metrics such as IoU, Precision, and Recall are more meaningful in this domain. 

Although the Recall indicates the model succeeds in capturing around two-thirds of the true fire 

pixels, there remains room to reduce false negatives, as these can have serious consequences in 

real-world fire management scenarios. 

To illustrate the predictions produced by our best-performing model, we provide sample outputs 

comparing the model’s binary masks with ground-truth fire labels in Figure 2. In several cases, 

the model effectively delineates fire fronts and identifies multiple ignition points, though small 

or fragmented burn regions sometimes remain challenging to detect. The probability maps also 

reveal occasional overestimation in regions with noisy reflectances or extreme weather signals, 

highlighting the need for additional preprocessing steps or domain-specific regularization. 

Despite these limitations, the obtained IoU scores establish a promising baseline for wildfire 

segmentation using 3D U-Net architectures, pointing to future avenues for improvement in data 

curation, model refinements, and integration of physics-based constraints. 
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Figure 2: Example predictions from our best performing experiment achieving an IoU score of 0.4012. 

5 Challenges 

5.1 Data Acquisition and Preprocessing 

Our first major challenge lay in acquiring and preparing geospatial TIFF files that contained the 

necessary information for accurately modeling wildfires. Despite the variety of available data 

sources—ranging from satellite imagery to governmental agencies—each source provided data 

in different formats, resolutions, and timeframes. This inconsistency required extensive effort to 

align and merge multi-layered TIFF files. We had to ensure that the temporal and spatial 
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coverage overlapped, so our 3D U-Net would have comprehensive snapshots of environmental 

factors like temperature, vegetation density, and soil moisture. 

Once obtained, the TIFF datasets went through several preprocessing steps to make them suitable 

for 3D U-Net input. These steps included reprojection (to ensure a uniform coordinate system), 

normalization (for consistent numeric ranges), and artifact filtering (e.g., removing clouds that 

could obscure ground data). Although time-consuming, meticulous preprocessing was essential 

to prevent biases or missing values from degrading the model’s predictive accuracy. 

5.2 High-Performance Computing Constraints 

Even with the extensive preprocessing, running a 3D U-Net on these large-scale geospatial 

datasets demanded more computational power than anticipated. While we utilized Rosie, our 

high-performance computing (HPC) cluster, memory and GPU availability remained 

bottlenecks. The multi-gigabyte size of individual TIFF stacks often pushed system limits, 

especially when we attempted to process multiple time snapshots or geographic regions in 

parallel. Despite parallelization strategies and optimized frameworks, scheduling workloads at 

scale required careful coordination to prevent gridlock in the HPC queue. 

Moreover, adapting our 3D U-Net to handle geospatial data introduced complications like 

varying spatial resolutions and heterogeneous input structures. These adaptations further taxed 

system resources by increasing the complexity and size of intermediate tensors. As a result, 

thorough experimentation and resource management were critical to prevent crashes, optimize 

training efficiency, and fully leverage Rosie’s capabilities. 

6 Future Work 

6.1 Physics Informed Neural Networks (PINNs) 

Physics-Informed Neural Networks (PINNs) have demonstrated strong potential for improving 

the accuracy and generalization of predictive models by embedding physical laws directly into 

the learning process. Studies such as "Physics-informed neural networks for parameter learning 

of wildfire spreading" [7] and "Physics-Informed Machine Learning Simulator for Wildfire 

Propagation" [8] highlight the capability of PINNs to integrate governing equations of wildfire 

behavior, such as reaction-diffusion equations and wind-driven fire spread models. The 

integration of these equations allows predictive models to be more general than their training 

data as a portion of the decision is based on the equations. 

Integrating a PINN into our UNet framework could improve key metrics, including prediction 

accuracy and generalizability across diverse terrains and weather conditions. One possible 

approach is incorporating a physics-informed loss function at the neural net “bridge” of the UNet 

architecture, ensuring that predictions adhere to known physical constraints. Alternatively, an 

independent PINN model could replace the UNet for fire spread prediction, leveraging physics-

based regularization instead of purely data-driven learning. However, further experimentation is 
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required to determine the trade-offs between a hybrid approach and a standalone PINN 

implementation. 

6.2 Sentiment Analysis 

Sentiment analysis of social media has emerged as a promising tool for disaster response and 

early warning systems. Research such as "Sentimental Wildfire: A Social-Physics Machine 

Learning Model for Wildfire Nowcasting" [9] and "Investigating Disaster Response through 

Social Media Data and the Susceptible-Infected-Recovered (SIR) Model: A Case Study of the 

2020 Western U.S. Wildfire Season" [10] suggest that analyzing social media posts can provide 

critical situational awareness, potentially improving wildfire response times. Using social media 

posts to understand where people are and where the fire is spreading could help advise disaster 

response. 

While sentiment analysis could enhance our model by incorporating real-time reports from 

affected individuals, several challenges must be addressed. The primary difficulty lies in 

obtaining and curating relevant data, as wildfire-related social media posts are often unstructured 

and sparse. Developing an effective dataset would likely require collecting and labeling data 

manually. Furthermore, integrating sentiment analysis into our wildfire spread prediction model 

would require treating it as an additional input parameter, contributing to uncertainty 

quantification and alerting mechanisms. Previous solutions used a separate AI that had access to 

APIs to pull, parse, and sort posts for relevance and use that curated list as an input into the fire 

prediction model. This could be replicated in our work but would be a lot of effort for another 

input parameter that hinges on live social media coverage of the fire. 

6.3 Optimizing Firefighter Response 

Beyond predicting wildfire spread, a natural extension of our model is optimizing firefighter 

response strategies. By leveraging our predicted fire spread as an input to another decision-

support model, we could provide actionable insights for resource allocation and evacuation 

planning. Such an approach could involve reinforcement learning or optimization-based methods 

tailored to minimize fire damage while ensuring firefighter safety. 

However, real-time integration of firefighter location data presents legal and logistical 

challenges. Regulations on real-time GPS tracking of emergency personnel vary by jurisdiction, 

and ensuring secure data sharing between agencies remains a key concern. Overcoming these 

hurdles may require partnerships with firefighting agencies and the development of privacy-

preserving data-sharing protocols. Future work should explore the feasibility of integrating 

geospatial firefighter deployment data with our predictive framework to enhance operational 

decision-making. 
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7 Conclusion  

We presented a multi-branch 3D U-Net for wildfire spread prediction, showing how 

spatiotemporal stacking, IoU-driven segmentation, and attention-based skip connections can 

accurately delineate fire fronts. Our experiments on the WildfireSpreadTS dataset demonstrate 

both the promise and limitations of such deep learning methods, suggesting that integrated data 

streams and physics-informed constraints are likely to push performance further. Continued 

refinements in model architecture, data preprocessing, and HPC strategies will aid practical 

deployment in real-time fire-management scenarios. 
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Abstract

Collaboration is essential for solving complex real-world problems, as it enables tasks to
be completed more efficiently and leverages the diverse perspectives and skillsets of team
members. Multi-Agent Reinforcement Learning (MARL) can be utilized to train agents in

environments where they must collaborate to achieve a common goal. MARL is
specifically challenging due to the non-stationarity introduced by multiple agents learning
simultaneously, and its development has primarily focused on managing these challenges
without any special focus on collaboration. Recent work on MARL has introduced the use

of an attention mechanism in the critic of the Actor-Critic architecture that allows the
critic to select relevant information from other agents’ observations, promoting better

learning of the value function. In this paper, we study the impact of the attention
mechanism on the quality of learned collaborative policies. We propose a new actor-critic
architecture that incorporates an attention mechanism in the actor to model collaboration
directly in the learned policies. We evaluate this architecture on a simulation of a soccer

game that features competition between teams of collaborators and compare it to the
current state-of-the-art in MARL as well as classical reinforcement learning algorithms.
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1 Introduction

Collaboration and communication are likely one of the most important aspects that make
the human species the most advanced on earth. By endowing AI with strong collabo-
rative skills, we can scale the number of agents addressing a problem, thereby tackling
more complex challenges while maintaining team cohesion. However, achieving and main-
taining cohesion in multi-agent environments has proven challenging due to the inherent
non-stationarity that arises when multiple agents learn and adapt concurrently. In this pa-
per, we introduce a novel multi-agent reinforcement learning algorithm that emphasizes
inter-agent collaboration, leveraging shared information to foster coordinated and efficient
problem-solving.

Many architectures have been proposed for managing collaborative multi-agent systems.
For example, in [1], they used the option-critic architecture first described in [2] and ex-
tended to cooperation between agents. In [3], they use a hierarchical approach where a
top-level policy assigns roles to lower-level policies in the form of a latent vector. When
it comes to using attention for the purpose of collaboration, [4] uses attention to deter-
mine whether agents should communicate with each other and then actually communi-
cate through the use of Long-Short-Term-Memory architecture. However, while these ap-
proaches represent important advances, they often struggle to scale to large numbers of
agents and fall short in actively fostering robust collaboration. Our contribution directly
addresses these limitations by introducing an algorithm that not only scales efficiently but
also significantly enhances inter-agent collaboration, paving the way for more complex and
coordinated multi-agent systems.

In this paper, we build upon [5], which explored the use of attention mechanisms in the
critic in actor-critic architectures. They additionally explored methods for extracting a new
baseline (named multi-agent baseline) to generate a better estimate of the return. We extend
their work by additionally incorporating an attention mechanism in the actor and a novel
loss. The attention mechanism in our model aim to allow agents to communicate and share
information and thoughts in a selective manner. It functions by allowing an agent to pose
an open-ended question to its peers. Other agents then determine whether they are best
suited to respond; those that are, provide targeted feedback. For example, in a soccer game
scenario, a player with the ball may query, ’Who should I pass to?’ Agents which are
not nearby opponents may be identified as optimal recipients, and their responses inform
the passing decision. We additionally develop a novel loss (named conformity loss) which
encourages diverse actions in agents, enhancing collaboration in certain environments. We
have named this model Team-Attention-Actor-Critic (TAAC).

It is important to note that our algorithm (TAAC) requires centralized training and exe-
cution, meaning that agents must be both trained and deployed in an environment where
global state information is readily accessible for effective coordination. Because of this, the
algorithm may not be well-suited for environments like robotics, where obtaining global
state information in real time can be challenging. However, in digital settings, such as sim-

1
210



ulated environments or large-scale multi-agent systems in software—where global state
data is easily available, our algorithm can leverage this information to achieve robust and
efficient collaboration.

To test our algorithm, we train it in a simulation of a soccer environment. In this setting,
agents control individual players on a team competing in a virtual soccer match. This sim-
ulation accurately models key aspects of the game, including team coordination, strategic
passing, and goal scoring. We present our results by comparing the performance of our ap-
proach against state-of-the-art algorithms using a combination of traditional performance
metrics (such as win rates, goal differentials, and ELO ratings) and collaboration metrics
(such as inter-agent connectivity and pairwise distance).

This paper is organized as follows. In Section 2, we introduce the notation and provide the
necessary background. Section 3 details our proposed algorithm along with its implementa-
tion. In Section 4, we describe the experimental setup and the evaluation metrics employed.
Section 5 presents the experimental results, while Section 6 offers an in-depth analysis and
discussion of these findings. Finally, Section 7 concludes the paper and outlines directions
for future work.

2 Background and preliminaries

Our strategy to model collaboration will build upon the actor-critic algorithm. Below, we
introduce this algorithm along the principles and notation needed to formalize it. Following
this section, we provide a comprehensive description of our contributions.

In reinforcement learning, control problems with multiple agents can be modelled as Markov
Decision Games (MDG), which are defined by:

• A set of n agents;

• A set of states S that describe the current common environmental conditions facing
the agents;

• A collection of actions A(s) =
∏

iAi(s) for s ∈ S where Ai(s) are the actions agent
i can take in state s and:

a⃗ = ⟨a1, a2, . . . , an⟩ ∈ A(s);

• Transition probabilities p(s′ | a⃗, s) for transitioning from state s to state s′; Where a⃗
is the vector of actions for all the agents;

• A function:

r⃗(s′, a⃗, s) = ⟨ri(s′, a⃗, s)⟩i=1,...,n
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that supplies the immediate rewards for each agent associated with this transition.

Throughout this paper, for a generic vector z⃗, we will write z⃗\i to mean z with the ith
dimension excluded:

z⃗\i = ⟨z1, . . . , zi−1, zi+1, . . . , zn⟩

and we will write z⃗i to mean the pair (zi, z⃗\i).

In environments that take place over a finite number of discrete periods T , the sequence
of periods in which the agents participate is referred to as an episode. At each time step,
each agent makes an observation, oi,t = Oi(st), of the global state, which encapsulates
all available information for agent i; the vector of such observations across agents is o⃗t =
⟨oi,t⟩i=1,...,n The goal of each agent is to learn a policy which describes the probability that
a trained agent should take action ai given an observation oi,t, to maximize its individual
sequence of rewards throughout an episode:

∑T−1
t=0 γtri(st+1, a⃗t, st). Here a⃗t and st are the

agents’ actions and the common state at time t and γ ∈ [0, 1] is the discount factor on future
rewards. In general, policies could differ across agents; we will focus on the case where
the policy is shared. Any differences in decision-making across agents are modelled using
their observations of the state. Given this, we write these policies as π(ai|oi,t).

2.1 Policy Gradients

Policy gradient methods differ from value-based methods (e.g. Q-learning, [6]) in that they
model the policy directly rather than estimating the state-conditional value of actions and
then using those values to build a policy. To learn the policy parameters u for a policy
πu(·), these methods use an estimate of the policy gradient ([7], [8], [9]) to update the
parameters in the direction of increase in the expected sum of discounted rewards. In the
case of n agents with shared policies, taking the Monte Carlo approach of using the full
return, the policy gradient may be written as:

∇uJ(u) = Eτ∼πu

[
n∑

i=1

T−1∑
t=0

∇u ln πu

(
ai,t | oi,t

)
Gi,t

]
. (1)

Here, τ is a trajectory of states, actions, and rewards:

τ = s0, a⃗0, r⃗1, s1, a⃗1, r⃗2, . . . , sT−1, a⃗T−1, r⃗T ,

and Gi,t is the sum of discounted rewards (the causal return) from a given timestep t on-
wards for a given agent i:

Gi,t =
T−1∑
k=t

γ k−t ri
(
sk+1, ak, sk

)
. (2)
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Given sampled episodes, we use this estimate of the policy gradient to take steps in the
direction of ∇uJ(u) via gradient ascent to reach an optimal policy which is shared by all
agents.

2.2 Actor-Critic Algorithms

To avoid high variance in the estimates of ∇uJ(u) across episodes driven by use of the full
causal return, Gi,t, a baseline is often subtracted from the return. Actor-Critic algorithms
use an estimate of the long-term value as the baseline, for example, the state-value function,
V (oi,t), which predicts the return to an agent given an observation oi,t (see [10]). If we
model the state value function as a differentiable function of parameters w and write Vw(·)
then this yields the following estimate of the policy gradient:

∇uJ(u) = Eτ∼πu

[
n∑

i=1

T−1∑
t=0

∇u ln πu

(
ai,t | oi,t

)
× [Gi,t − Vw(oi,t)]

]
.

Note that we may express the state-value function in terms of the state-action value function
Q(oi,t, a), averaged over actions:

V (oi,t) =
∑
a∈Ai

πu(a|oi,t)Q(oi,t, a).

We will use this below to model multi-agent structure.

In these algorithms the policy is referred to as the actor and the long-term value estimate
as the critic. The actor’s parameters are learned through the policy gradient estimates and
the critic’s parameters are learnt through value-based methods (e.g. gradient descent on the
difference between the critic’s predicted state value and a target value, which can be either
the observed Gi,t or a bootstrapped value, see [11]).

3 Team-Attention-Actor-Critic (TAAC)

3.1 Attention Mechanism

The authors of [5] introduced the use of an attention mechanism in the critic, the purpose
of which is to aggregate information from multiple agents to more accurately evaluate an
agent’s state-action value. The intuition behind this use of the attention mechanism is to
enable an agent to ”query” other agents for their internal representations, thereby enhancing
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the information available to optimize the critic and allowing for more accurate prediction
of the return. In our approach we extend their work by introducing a separate attention
mechanism in the actor. The intuition behind doing this is different; we seek to allow
agents to use the internal representations of other agents directly when making choices,
with the idea being that enabling this is analogous to giving the agents insight into what
other agents will choose. This attention mechanism slightly differs from the one in [5] and
works as follows.

First, an embedding vector ei is generated for each agent. (Note that the method for com-
puting ei differs between the actor and the critic; these details are provided in the respective
sections below). The embedding vectors are then concatenated to form a matrix E which
is separately multiplied with learned matrices WQ, WK , and WV to produce:1

K = EWK , Q = EWQ, and V = EWV . (3)

These are referred to as the key, query, and value matrices, respectively. Attention is then
computed as:

Attention(Q,K, V ) = Softmax
(
QKT

√
dk

)
V (4)

where dk is the dimensionality of the K matrix ([12]).2 In our implementation, multiple
attention heads are applied in parallel, each with its own set of Query, Key, and Value
weight matrices. The outputs of these heads are concatenated and then passed through
a linear transformation to yield the final updated embeddings ẽi. Finally, these updated
embeddings ẽi are forwarded through an MLP to generate either a distribution over actions
(in the actor) or a state-action value estimate (in the critic). Detailed descriptions for each
are provided in the subsequent sections.

3.2 Actor Attention Architecture

To incorporate attention into the shared policy, we condition it on the observations of all
agents and write it as πu(ai|o⃗i)). We generate an embedding vector ei for an agent by
passing the agent’s observation through an MLP3 so that:

ei = MLP (oi) (5)

These embeddings are calculated for each agent, formed into E as above, and passed to
the dedicated actor attention mechanism. The attention mechanism returns an updated
embedding ẽi for each agent which is then passed through an MLP, and finally a softmax

1in [5], their attention mechanism differs only by having the V matrix be fixed for each attention head and
not calculated by using E and WV .

2Division by dk is done to scale the values appropriately before the softmax function.
3Instead of an MLP, any other algorithm can be used to generate an embedding.
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output layer to generate a distribution over actions:

πu(ai|o⃗i)) = Softmax
(

MLP(ẽi)
)
. (6)

In our implementation, we deliberately omitted the original embedding ei from the input to
the final MLP. This design choice forces the actor to rely solely on the information provided
by the attention blocks rather than bypassing them, ensuring collaborative policies. A figure
of the actor architecture can be seen in Fig. 1

Figure 1: Architecture of Actor

3.3 Critic Attention Architecture

In the critic, we must also incorporate the observations and actions of other agents. Conse-
quently, the critic’s state-action values are formalized as:

Qw

(
o⃗i, a⃗i

)
. (7)

To create the initial embedding ei for the critic, we combine the agent’s observation and
action using an MLP3 as follows:

ei = MLP(oi, ai) (8)
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This embedding ei is then processed through the dedicated critic attention mechanism. The
outputs from these attention heads are concatenated and passed through a linear transforma-
tion to yield an updated embedding ẽi. Finally, ẽi is combined with the original embedding
ei and fed into a final MLP to generate the scalar state-action value estimate:

Qw

(
o⃗i, a⃗i

)
= MLP(ẽi, ei) (9)

In the critic architecture, we include the original embedding to provide additional informa-
tion, as the critic does not require the same enforced reliance on collaborative signals as the
actor does. A figure of the critic architecture can be seen in Fig. 2

Figure 2: Architecture of Critic

3.4 Multi-Agent Baseline

The multi-agent baseline computes the expected value of the critic by taking a weighted
sum of its outputs over all possible actions for a specific agent, where the weights are
given by the agent’s policy distribution. This reduces the variance in our baseline as well
as generating a more accurate estimate of the true state-value under the current policy
due to considering all possible actions and weighting them using the policy’s distribution.
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Furthermore, by holding the other agents’ actions fixed, we obtain a more accurate estimate
of the agent’s true value. Formally, the baseline is defined by:

V (oi|o⃗\i, a⃗i) =
∑
ai∈Ai

πu (ai | o⃗i) Qw(o⃗i, a⃗i) (10)

Applying these ideas, the policy gradient estimate is:

∇uJ(u) = Eτ∼πu

[
n∑

i=1

T−1∑
t=0

∇u lnπu

(
ai,t | o⃗i,t

)
×
[
Gi,t − V (oi,t|o⃗\i,t, a⃗i,t)

]]

3.5 Conformity Loss

We further model and encourage collaboration by adjusting the actor loss function to pro-
mote diversity of actions among agents, under the assumption that effective collaboration
arises when agents work on separate and diverse tasks.4 We call this adjustment confor-
mity loss. It is computed by measuring the cosine similarity between each unique pair of
updated embeddings ẽi:

Lconf = θconf max

{
2

N(N − 1)

N−1∑
i=1

N∑
j=i+1

ẽ⊤i ẽj
∥ẽi∥ ∥ẽj∥

, θconf

}
. (11)

Where θconf and θconf are hyperparameters used to scale and cap the loss This loss attains
high values when agents’ embeddings are very similar (indicating low diversity) and low
values when they are not. In our implementation, we cap this loss at a minimum of θconf

to ensure that agents are rewarded for diverse actions but not rewarded for completely
opposing actions.

4 Experimentation

In this paper, we compare multiple algorithms against our novel architecture (TAAC) in
a simulated soccer environment. In this environment, teams of 3 agents work together to
score goals against an opposing team. A goal is scored when the ball is kicked into the

4The value of diversity may not hold in all environments, but we found it to be a useful addition for our
experiments.
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opponent’s goal. Each team is composed entirely of agents running the same algorithm to
ensure a fair comparison.

4.1 Environment Structure

The simulation represents players as solid circles on a 2D plane capable of moving toward
the ball and colliding with it. When a player collides with the ball while in mode ”kicking”,
the ball gains additional velocity. Additionally, the ball collides nearly elastically with
the walls, preventing it from leaving the play area. Figure 3 illustrates the simulation
environment.

Figure 3: Simulation Environment for Soccer

At each time step, every agent observes the global state, from which it derives an individual
observation with no hidden information. In our environment, the state consists of:

• The relative position vector to each teammate.

• The relative position vector to each agent on the opposing team.

• The relative position to the ball.

• The velocity vector of the ball.

• The relative position to the opponent’s goal.

• The relative position to the agent’s own goal and opponents goal.
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• Raycast measurements in the directions of North, East, West, and South indicating
the distance to the nearest boundaries of the play area.

Based on its observation, an agent selects an action. In our environment, an action is defined
by five Boolean inputs: move forward, move right, move down, move left, and kick. An
agent may choose any combination of these inputs, provided they are not contradictory
(e.g., moving left and right simultaneously). Overall, the total number of possible actions
is 18.

After an action is chosen and the simulation advances by one time step, rewards are as-
signed to each agent. The reward structure is designed as follows:

• Exploration Reward: Each agent receives a small reward for moving toward the
ball. This reward is computed as the dot product of the agent’s chosen direction d⃗
and the vector from the agent to the ball v⃗a, scaled by a factor θexp:

rexplore = θexp (d⃗ · v⃗a) (12)

• Team Reward: All agents on the same team receive a larger reward for moving the
ball towards the opponent’s goal. This reward is calculated as the dot product of the
ball’s velocity vector v⃗b and the vector from the ball to the opponent’s goal g⃗ scaled
by a factor θball:

rball = θball (v⃗b · g⃗) (13)

• Scoring Reward: The biggest reward rgoal is granted when a goal is scored, defined
as the ball being fully inside the goal box.

• Distance Reward: This reward is allocated based on the average distance to all
teammates, to prevent players from clustering together and playing a . First, the av-
erage distance is computed, then it is capped at a maximum threshold, and finally
scaled by a constant factor to prevent excessive rewards for large spacing. Specif-
ically, if di represents the distance to teammate i and there are N teammates, the
average distance is calculated as d̄ = 1

N

∑N
i=1 di and the reward function is defined

as:

f(d̄) = θdist ·min
(
d̄, θmax

)
. (14)

Here, θdist is the scaling factor and θmax is the cap applied to the average distance.

It is important to note that all rewards (but the distance reward) can be negative, acting as
penalties for behaviours such as moving away from the ball, moving the ball away from the
opponent’s goal, or being scored on.
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Games are configured to last T time steps, and an episode is defined as a sequence of time
steps that terminates either when a goal is scored or when the game concludes. As a result,
a single game may consist of multiple episodes.

4.2 Training Procedure

We employ curriculum learning [13] to progressively build up skills in this complex envi-
ronment. The training is divided into the following stages:

1. Stage 1: Score goals against an inactive opposing team, with random ball and player
spawns.

2. Stage 2: Introduce an opposing team with randomly selected actions, encouraging
players to navigate obstacles and opponents. Continuing with random ball and player
spawns.

3. Stage 3: Engage in league play, where a team competes against a randomly selected
past version of itself while maintaining random spawn positions.

4. Stage 4: Continued league play with fixed starting positions for each team.

This staged learning approach allows agents to first master movement and scoring before
tackling competitive play.

4.3 Evaluation Metrics

Performance is evaluated using win rates, goal differentials, and ELO ratings [14]. Each
team is assigned an Elo rating, which gets updated based on victory, lost or tie and the Elo
rating of the opponent. When interpreting Elo ratings, it is important to note that the ab-
solute values are less meaningful than the relative differences between them. Additionally
Goal differential are measured as the difference between the teams’ scores. In addition to
performance, we assess collaboration using several key indicators:

• Average Pairwise Distance: A higher average distance suggests that agents are not
clustering excessively, which may indicate diverse task allocation.

• Possession Frequency: This measures the number of times a ball swaps possession
within the team. A high number may indicate that players are passing and, therefore,
collaborating.

• Connectivity: This metric measures the number of graph-like connections between
players, calculated as the ratio of observed connections to the maximum possible
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connections N(N−1)
2

. To ensure only meaningful connections are counted, connec-
tions only within a range of distance are included. An optimal connectivity level
indicates balanced spacing and cooperative positioning.

Using these metrics, we can comprehensively assess both the performance and collabora-
tive behaviour of the teams.

5 Results

Our evaluation compares the performance of our TAAC algorithm against two bench-
mark algorithms: PPO [15] and MAAC [5]. PPO was chosen as a baseline because of
its widespread use and proven robustness across diverse environments, while MAAC was
chosen for being state-of-the-art in multi-agent reinforcement learning and closely aligning
with our implementation. Additionally, we included a random model to provide a grounded
point of reference.

We trained each algorithm for 7 days across over 100,000 games. Note that, due to its low
performance and slower learning, MAAC was not advanced to stages 3 or 4 and thus did not
gain experience playing against an opponent. We then assembled a league of 20 teams (5
copies of each algorithm) and randomly selected teams to compete in 5,000 games, during
which we collected the following data:

Figures 4 to 6 display our performance results, illustrating the ELO ratings, goal differen-
tial, and win rates for each algorithm. The goal differential is calculated as Scoreteam1 −
Scoreteam2; Where a positive value indicates that team 1 is outscoring team 2 by that mag-
nitude, while a negative value indicates the opposite.

Figure 4: Elo rating progression for each algorithm over the evaluation period.
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Figure 5: Win-rate comparison across the algorithms over the evaluation period.

Figure 6: Goal differential Matrix across the algorithms over the evaluation period.

Additionally, we present our findings on the collaborative data. Figure 7 illustrates the con-
nectivity score for each model, Figure 8 shows the frequency of possession swaps within
a team, and Figure 9 highlights the average pairwise distance among agents on the same
team.
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Figure 7: Connectivity comparison across the algorithms over the evaluation period.

Figure 8: Possession swaps comparison across the algorithms over the evaluation period.
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Figure 9: Average Pairwise distance comparison across the algorithms over the evaluation
period.

6 Analysis

Following extensive training of all algorithms, our results indicate that TAAC is the top
performer, as evidenced by its superior ELO rating and win rate (see Figures 4 and 5), with
PPO closely trailing. In contrast, MAAC significantly underperforms compared to expec-
tations for a state-of-the-art MARL method, possibly due to insufficient training time or
suboptimal hyperparameter settings. Additionally, Figure 6 illustrates head-to-head com-
parisons, highlighting that TAAC outperformed all other algorithms.

When examining collaboration-oriented metrics (Figures 7–9), the data suggest that TAAC
exhibits more coordinated teamwork. For instance, while Figure 9 indicates that PPO
agents are more spread out, Figure 7 shows that TAAC’s agents are more closely connected,
which may be linked to more advantageous positioning. In addition, the possession swap
metrics in Figure 8 imply that TAAC and PPO frequently swapped possession of the ball,
potential indicating tactical passing. MAAC demonstrates a incredibly high possessions
frequency potentially indicating frequent passing.

Video recordings further substantiate these findings. The footage confirms that PPO fre-
quently employs a dedicated goalie while the remaining players focus on attacking, ex-
plaining their pronounced spatial separation. Additionally, PPO exhibits clustering among
its attackers and pursues the ball aggressively, which also explains its lower overall connec-
tivity and relatively high possession frequency In contrast, TAAC consistently maintains a
stable offensive formation that only transitions to a defensive position when necessary,
which is evident through its connectivity score. TAAC’s dynamic strategy, characterized
by frequent ball possession exchanges and timely passes, demonstrates superior tactical

15
224



coordination. Video recording of MAAC indicate a similar approach to PPO but instead
having the entire team pursue the ball aggressively, this explain their low pairwise distance
and connectivity. Furthermore, MAAC’s high possession frequency is also explained by
this behaviour, as possession likely rapidly changes between players when the players are
grouped together. Additionally despite managing to considerably score against random op-
ponents, MAAC was consistently outperformed by both PPO and TAAC, as seen in the
performance results.

Overall, these results suggest that our novel algorithm demonstrates enhanced collabo-
rative behaviour and improved performance in environments where teamwork is critical.
However, due to MAAC’s suboptimal performance and limited training, we plan to inves-
tigate its shortcomings further to enable a fairer comparison with state-of-the-art methods.
Looking ahead, a logical next step is to evaluate TAAC in alternative environments and
scenarios to better understand its limitations. Moreover, selecting an environment where
collaboration is more directly tied to performance will allow us to more rigorously test our
contribution.

7 Conclusion

In this work, we introduced TAAC, a multi-agent reinforcement learning algorithm that
leverages multi-headed attention in both the actor and critic networks to foster robust col-
laboration. Our experiments demonstrate that TAAC outperforms competing methods in
win rates, goal differentials, and Elo ratings while exhibiting superior coordinated be-
haviour, as confirmed by game statistics and game recording analysis. Future work will
involve a deeper investigation into MAAC to ensure it performs to its full potential and
also to explore this new algorithm in different environments to fully test its capabilities.
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Abstract 
Pretraining has emerged as a necessary step when working in complex sequential decision 
domains. I recreated the VideoPreTraining (VPT) and Inverse Dynamics Model (IDM) within the 
domain of Super Mario Bros. Preliminary results show that it is possible to create other 
foundational models in other domains with limited resources. The IDM/VPT share the same 
architecture and have a parameter count of 9 million which is substantially lower than the 
original VPT/IDM. They are trained on 6 hours of ground truth data to find out if they can be 
applied to this domain. My results show that the IDM has 82.87% accuracy, 0.5757 precision, 
and 0.4564 recall while the VPT has 85.75% accuracy, 0.5338 precision, and 0.9127 recall. This 
shows that more agents can be created in other complex environments with minimal ground truth 
data as a solo undergraduate research project. 
 
 
1    Introduction 

 
My goal was to reproduce the VideoPreTraining (VPT) model and Inverse Dynamics Model 
(IDM) introduced in Baker et al. [1] within a different context of Super Mario Bros (SMB), 
specifically the 1984 release on the Nintendo Entertainment System (NES). I wanted to work in 
the domain of SMB because it's the right level of complexity for a solo undergraduate research 
project. In comparison to Minecraft, the original domain, SMB is a good environment for testing 
this approach because of its history as an environment for reinforcement learning (RL). This 
space is a common introduction into reinforcement learning; however the models are generally 
very limited in their observation and action spaces. Traditionally actions are removed or 
configured such that one output converts in a sequence of actions and observations are 
preprocessed or using internal gamestate as part of the observation space, these steps are 
essentially a middle-man between the model and the environment. This does typically increase 
performance of the model but at the cost of generalizability. But the removal of impossible 
actions or downscaling the image can increase performance without reducing generalizability.  
The VPT/IDM is able to interact directly with the inputs and outputs of the environment to make 
decisions. Not all environments have the tools and software to interact with traditional RL 
approaches and the ones that do are not usable outside of the domain. That is not to say it's an 
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impossible task; tools originally introduced by Brockman et al. [2] as OpenAI Gym, now known 
as Gymnasium and maintained by the Farama Foundation, can be used to make this process 
easier.  

The IDM is trained on a ground truth dataset to predict the labels of a sequence of 
frames; those labels are called pseudo labels. The VPT is then trained on the pseudo labels 
generated by labeling web-scraped videos with the IDM. This is the pretraining part of VPT, it 
creates a model that is able to be trained purely on behavior cloning on internet scale datasets. 
This approach is most valuable when dealing with a hard search problem, RL traditionally can’t 
achieve these tasks within the environment without a middle-man or exponentially larger training 
times. The VPT parallels others efforts at deep understanding, the scale of the data is where the 
model’s strength shines. When the pretraining is done it can serve a valuable role through fine 
tuning or placement within a larger architecture. For example, STEVE-1 from Lifshitz et al. [3] 
is a text-to-behavior model that leverages the pretrained models: VPT from Baker et al. [1] and 
MineClip from Fan et al. [4]. These two pretrained models were able to be combined to create a 
new model with finetuning for $60 of compute. This new model produced a novel approach for 
agentic behavior prompting within the context of Minecraft. 

My contributions to this space are the preliminary results of the VPT and IDM within the 
domain of SMB for the NES. The VPT and IDM is only trained on 6 hours of ground truth data. 
The results of the VPT and IDM are summarized in Table 1.  
 

Model IDM VPT 

Top-1 Accuracy 82.87% 85.75% 

Top-3 Accuracy 96.29% 98.49% 

Precision 0.5757 0.5338 

Recall 0.4564 0.9127 

F1-Score 0.4863 0.6169 

  
Table 1: Summary of the results of the VPT and IDM trained on ground truth data. Precision, 
Recall, and F1-Score are macro-averages. 
 
 
2    Methodology 
 
Following Baker et al. [1], I used the same architecture for both the VPT and the IDM. The only 
difference between the VPT and IDM is the VPT is casual while the IDM is non-casual. This 
difference is made by adding a causal mask to the VPT when attending. The IDM has no causal 
mask allowing it to look at past and future frames when predicting labels.  
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     (a) 256 x 240 ​                  (b) 128 x 120​ ​          (c) 64 x 60 

Figure 1: Screenshots of the Super Mario Bros showing the effect of downscaling the images. 
This was done by using “area” as the interpolation mode. 
 

The IDM takes in 64 consecutive frames then labels the middle 32 frames. This means 
the first 16 and last 16 frames are a buffer that will not be labeled since they lack relevant 
context. The VPT takes in 64 consecutive frames then predicts the next action for each frame. 
Each frame is a screenshot of SMB, for computational efficiency the image is scaled down to 64 
by 60, as seen in Figure 1. The image pixels are initially in the format RGB in the range [0, 255], 
this is divided by 255 to reduce the range down to [0, 1] to reduce exploding gradients. 

 
 
2.1    Architecture 
​  
The IDM and VPT architecture is nearly identical, therefore I will describe them together. The 
first layer is a 3D convolution with 64 learnable filters with a temporal kernel depth of 5, height 
of 1, and width of 1. I dubbed this the Temporal Feature Extractor; it’s as a computationally 
efficient way to reduce convoluting over time throughout the entire model while still getting the 
benefits of that context. This is not a strictly necessary step because the Normalized Transformer 
Blocks performs temporal contextualization later, but that added temporal context earlier in the 
model increases performance according to Figure 14 from Baker et al. [1].  

The temporally contextualized frame is then followed by the Feature Extractor which is a 
ResNet feature extractor. It consists of three subsequent stacks with widths . 𝑊 = {32, 64, 64}
Each stack is made up of, in order, an initial 3 x 3 convolutional layer with 1-pixel zero padding. 
This makes it such that the incoming and outcoming image has the same dimension. Then 
followed by 3 x 3 max pooling with a stride of 2 and padding of 1. This makes it such that the 
image dimensions height and width are halved each pass through. Then two ResNet blocks as 
defined in He et al. [5] with each layer having output channels.  𝑊 

The output of the Feature Extractor is followed by the Embedder which is used to reduce 
the dimensionality of the flattened features. The features at this point have a dimensionality 
3,584 then are reduced to a dimensionality of 256 then upscaled to a dimensionality of 512. The 
reason for reducing the dimensionality is for separation and consistency during the upscaling 
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process. If the Feature Extractor were fed directly into the Normalized Transformer Blocks then 
the increase in size would then increase compute of the Normalized Transformer Blocks by a 
large polynomial and exponential factor. This was added to allow the feature extractor and 
normalized transformer compute to scale separately and keep those components of the model 
separate, compute wise, from each other.  

The Normalized Transformer Blocks follow after the Embedder. It is based on Table 1  
from Loshchilov et al. [6]; It describes the normalized transformer architecture. The Normalized 
Transformer Blocks will be performing action predicting (either causal or non-causal). It is made 
up of 2 normalized transformer blocks. Each block has an attention layer with 4 heads and a 
residual connection. That output and residual are then combined using an eigen learning rate 
described in Loshchilov et al. [6]. The output is then fed into the feed forward which has a 
similar eigen learning rate and residual connection. This process is repeated then fed through a 
linear layer which encodes 36 possible actions which are put through softmax. 
 

 
Figure 2: Overview of the IDM and VPT architecture. The left side contains the full architecture, 
it starts at the bottom left then ends at the top. The right side contains all of the modules, e.g. the 
implementation of a ResNet block. All modules have input from the bottom and output at the top 
unless shown otherwise by an arrow indicating a residual connection like shown in the 
normalized multi-head attention.  
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2.2    Rationale 
 
The action space is determined by removing all mutually exclusive actions. An example of this is 
movement on the x-axis can be described as moving left, right, or no operation (noop). Therefore 
only 3 actions exist for the x-axis, the y-axis is similar with only up, down, or noop. This means 
there are 9 movement actions. The A and B button on the NES controller have 4 combinations of 
on and off which means there are  actions or 36 actions. 9 * 4

The original architecture proposed for the VPT/IDM was modified to solve problems not 
originally faced by Baker et al. [1]. I lacked ground truth data and manually curating a dataset 
would have diminishing returns quickly. To try and mitigate this problem I went with normalized 
transformer blocks over traditional transformer blocks because of Figure 2 in Loshchilov et al. 
[6] which showed a 4 to 20 times speed up in training (in terms of tokens). I believed this 
allowed me to train a capable model with limited training data. 
 
 
3    Methodology 
 
By following a modified approach proposed by Tan et al. [7] which is used as a technique to 
efficiently upscale a model and find optimal hyperparameters. I found optimal hyperparameters 
that were within the original compute budget. This was done through an exhaustive grid search 
by estimating the effects of each hyperparameter on the compute of the model. The original 
compute budget was 3 sets of 4 Tesla V100s per a training session and training up to 15 models 
in parallel. I reduced the model parameter size from 0.5 billion to 2.8 million; I found reducing 
the model size allowed for quicker experiments that otherwise might have taken weeks instead of 
hours. This allowed me to use the upscaling technique to reduce the time doing a hyperparameter 
search. Scaling for minimal parameter count is ideal, but barely taken into account when 
performing a grid search. The parameter count should be below 0.5 billion, no larger than the 
original. This estimate is mainly because the relationship between compute and parameter count 

differs between the Feature Extractor ( ) and Normalized Transformer Blocks (~ ).  ~𝑂(𝑛) 𝑂(𝑛2)
The grid search and model upscaling is performed by first entering values into a 

spreadsheet to find if it's still within the next compute budget. Then performing a grid search on 
the possible combinations of those hyperparameters. There are 5 parts of the spreadsheet: Input, 
Temporal Feature Extractor, Feature Extractor, Embedder, and Normalized Transformer Block. 
The Input is only full of independent hyper parameters. The relationship of the parameters only 
depends on the Input not vice versa. The Temporal Feature Extractor is calculated by the 
formula below.  is the kernel which is 3 dimensional for this component.  is the channel either 𝑘 𝑐
going in or out.  is the number of frames being processed.  is the image dimensions.  𝑡 𝐼
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The Feature Extractor is calculated by the formula below. This formula describes the 
number of convolutions per stack summed by the number of stacks. The stack has 1 convolution 
and 2 ResNet blocks (a ResNet block contains 2 convolutions) which is a total of 5 convolutions 
per stack. 

  𝑝
𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝐸𝑥𝑡𝑟𝑎𝑐𝑡𝑜𝑟
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The Embedder is calculated by the formula below.  is the dimension of that layer.  is 𝐿 𝐿
0

the flattened output of the Feature Extractor.  is the size of the embedding dimension.  𝐿
2
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The Normalized Transformer Block is calculated by the formula below.  is the number 𝑁
of Normalized Transformer Blocks.  is the number of heads for multi-head attention.  is the 𝐻 𝑑
dimension of the embedding.  is the dimension of the key, query, and value vector.   is the 𝑑
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dimension for feed forward. 
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Figure 3: A screenshot of the spreadsheet used to calculate the compute. The true parameter 
count for the IDM/VPT was 9,355,876 while the spreadsheet estimated it was 9,471,584 which is 
1.22% off of the true value. This was a valuable tool when upscaling the model.  
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I found that the spreadsheet was not perfectly accurate, but it followed the general trends well 
enough that I was able to use it as a guide when increasing compute. Overshooting and being off 
by a small margin was not a concern. I found that runtime was not estimatable with any 
precision, but TeraFLOPS and FLOPs were accurate to the same degree.  

The current hardware I have available would not be able to efficiently train a model any 
larger than 275 million parameters. In Baker et al. [1] it took them ~9 days to train a 0.5 billion 
parameter model for 30 epochs on 70k hours of data using 720 Tesla V100s. Using that as a 
rough estimate, a 275 million parameter model would take ~36 days to train on 12 Tesla V100s, 
but I only have extended access to 4 Tesla V100s which means it’d take ~108 days to train a 
foundational model of that size.  

Based on the preliminary results, upscaling the model up to 80.8 million parameters will 
produce the most optimal results for the compute. In Baker et al. [1] it was shown that larger 
models performed at better complex downstream tasks, especially when fine tuned, even if 
smaller were initially more performant. With a 80.8 million parameter model I believe this is the 
sweet spot for maximum generalizability while staying within the maximum compute budget.  
 
 
4    Experiments 
 
4.1    Data Collection 
 
I started by collecting ground truth data by scraping the internet for Tool Assisted Speedruns 
(TAS) of SMB. TAS are playthroughs of video games generated via specialized software that 
provides precise, frame-by-frame control over the game’s inputs. By allowing the user to slow 
down or pause the game, as well as automate complex or time-sensitive actions, TAS enables the 
production of highly optimized gameplay sequences that would be exceedingly difficult—or 
impossible—for a human player to replicate in real time. This methodology is widely employed 
to explore theoretical skill ceilings. TAS videos are a unique datasource because it's a labeled 
form of video that's reproducible, but the drawback is it is used to replicate near impossible 
inputs for human players. I started with 4 hours of TAS inputs and I played SMB for 2 hours. I 
recorded the inputs then played them back to record the video to avoid any desync issues. These 
inputs were stored in a PostgreSQL database for easy access and analytics.  
​ For the unlabeled data it was collected through web scraping on Youtube. I web scraped 
based on a list of queries (as shown in Table 2) and grabbed the first 500 videos for each query. I 
used each video’s metadata to reduce the compute required for rejecting and accepting videos. 
For each video I collect the title, duration (in seconds), weblink, channel id, and description then 
it is inserted into PostgreSQL database. The database stored 27,990 unique videos metadata 
which was 12,779 hours of videos collected over the span of 70 days. 
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NES Super Mario Bros No Warp 
Super Mario Bros NES world 8-4 walkthrough 
Super Mario Bros NES world 3-1 walkthrough 
Super Mario Bros NES expert playthrough with no warp zones 
Super Mario Bros NES world 1-1 
Super Mario Bros NES world 4-2 warp zone trick 
Super Mario Bros NES how to beat level 8-3 
Super Mario Bros NES best way to complete world 6-2 
Super Mario Bros NES world 5-1 walkthrough 
Super Mario Bros NES world 7-4 maze solution 
NES Super Mario Bros Playthrough 
Super Mario Bros 1 full game playthrough NES 
Super Mario Bros NES perfect run no power-ups 
NES Super Mario Bros Warpless% 

Table 2: This contains a subset of the queries used when collecting the initial dataset. I found that 
Super Mario Bros was a broad enough topic that even with NES it’d return different versions of 
the game consistently.  
 
 
4.2    Data Cleaning 
 
I used a whitelist and blacklist to filter out unwanted videos which reduced it to 577 unique 
videos and 314 hours. These videos have a wide variety of resolutions, frames rates, and 
artifacts. To reduce the noise of this data and normalize the input I finetuned Yolo11n for 
classifying and cropping. Yolo11n was trained by a fifth of the remaining videos, which were 
labeled based on if they were an unmodified SMB video and where the gameplay was within the 
screen. I took 1 frame per a second and used that as the fine tuning data. This approach worked 
well for removing webcams, stream chats, and other artifacts that’d reduce VPT’s ability. I found 
that the fine tuned Yolo11n model’s ability for classification was not sufficient enough for 
classifying videos. Instead I did manual classification for the quality of the video, this reduced 
the final dataset to 165 videos and 62 hours. I believe the big jump from 27,999 videos to only 
165 is because of the diverse range of the SMB genre which is harder to quantify through 
keywords. I found that different versions of SMB are commonly within the top 5 results of a 
query. Through more advanced data collection processes this could be mitigated but it’s most 
likely a fundamental issue with this type of approach.  
​ The preprocessing step for faster training times and standardization of a noisy dataset was 
converting every video to be at 30 frames per a second (fps). I found this worked for every video 
in my dataset as that frame rate didn’t slow down or speed up the gameplay. Once the video was 
converted to 30 fps I then converted them into numpy chunks of 1024 frames. This made the 
training process easier and reduced the preprocessing that would have been incurred by loading 
each video clip during training. It reduced the IO overhead of videos, especially longer ones. 
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4.3    IDM 
 
The IDM was trained based on the described in Section 2.1 and Figure 2. This experiment was to 
figure out if it could achieve any accuracy when labeling on a substantially smaller ground truth 
dataset. The training process was set up such that the loss was calculated by seeing if the middle 
32 logits were correct according to CrossEntropyLoss. Looking at Figure 4, it shows the heavily 
imbalanced class size; to mitigate this I computed class weights using the sklearn python library. 
This was found to be not enough to learn all classes since the model's local minimum was worse, 
in terms of macro-average accuracy, than without it. Those classes still needed to be labeled, I 
found that setting the minimum size for a class to be set at 1000 helped mitigate this issue but it 
was not enough to solve it. I did find that this did have a trend of getting closer to the correct 
action. This looked like labeling a frame as action from “B” to “Left + B” when the frame was 
labeled “Left”. It increased the model’s ability to grasp what was going on but not to the extent 
of differentiating similar classes. By increasing the ground truth data by a factor of 5 and 
upscaling up to 80.8 million parameters it could achieve similarly to Baker et al. [1] in the SMB 
domain. When looking at the confusion matrix in Figure 4, I found that the mislabeled classes 
were nearly identical in quantity across the diagonal. This is not seen in the VPT which leads me 
to believe it has to do with the non-causal nature of the IDM. 
 

 
Figure 4: The training results of the IDM. Top left is the Confusion Matrix of the Top 10 largest 
classes; I went with this approach because it was hard to distinguish between 36 classes 
especially on a log scale. Top right is the loss of over time. Bottom left is the class distribution 
on a log scale. Bottom right is the accuracy per class, a trend does exist around class size and 
class accuracy but it's not a fully predictive measure. (Section A.1 for higher resolution) 
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​ I found that the IDM was able to accurately label on a significantly smaller dataset. The 
results are summarized in Table 1. I found that the biggest issue was around the heavily 
imbalanced class sizes making it difficult to define an ideal loss function. In this domain that is a 
non-mitigatable issue through traditional means like undersampling because some classes are 
very rare and have no distinguishing traits from other classes. For example pressing Up + B as a 
unique action only has one instance where it is used, when effective in game; other instances 
would look the same as a Noop. This is when Mario is climbing a vine and already holding B 
but–from a visual perspective–this doesn’t have any distinguishing features in an image nor over 
time. 
 
 
4.4    VPT 
 
The VPT was trained based on the described in Section 2.1 and Figure 2. This experiment was to 
figure out if I could achieve any accuracy when labeling on a substantially smaller ground truth 
dataset. The training process was set up such that the loss was calculated by seeing if the last 32 
logits were correct according to CrossEntropyLoss. I used the same process for calculating the 
class weights as described in Section 4.3.  
​ I found that the VPT was able to correctly predict the next action with higher accuracy as 
shown in Table 1. The VPT did better than the IDM, although they are technically performing 
different tasks in theory the causal tasks should be the hardest. One reason this might have been 
more effective is that the masked training approach allowed for the training parallelization 
benefits of a transformer to take full effect while the unmasked approach trained similarly to a 
CNN. Building off of Section 4.3, The rationale behind this theory is the way an unmasked 
transformer learns would be reliant on all of its inputs and learning in one area would affect 
different predictions as more context could be misunderstood. Essentially boils down to the fact 
that the IDM wasn’t able to use its non-causal abilities as effectively as originally proposed. 
When looking at the confusion matrix in Figure 5, the incorrect predictions tend to cross 
similar/overlapping classes. For example the largest quantity of incorrect predictions is when the 
true label is “B + Right” while the predicted label is “B”. 4.58% of that class was incorrectly 
labeled. But when looking at gameplay there are many scenarios where it’d be indistinguishable 
between the two. When looking at the accuracy per class plot in Figure 5, it’s significantly more 
effective than the IDM across all classes.  
​ I tested the VPT’s ability to play SMB which was predicted to be quite effective. This 
was found to be incorrect, with RL finetuning it could become quite effective in a short 
timeframe. What was found is the VPT is attempting to replicate TAS inputs which typically 
means its trying to reproduce frame perfect inputs consistently. For example, in a SMB TAS the 
player will start off levels by pressing “Left + B” to look left then holds “A + B + Right” to gain 
speed then at the apex of the jump will hold “B + Right”. This is a specialized technique to 
accelerate faster, this happens over the course of 31 frames or 0.52 seconds and the model is 
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unable to recreate these inputs. I did see a general trend towards behaviors that would beat a 
level (e.g. jumping over enemies) but the model wasn’t able to produce those actions effectively. 
I tested it in Super Mario Bros: The Lost Levels (SMB2), the second SMB NES game; it had 
never seen this environment in its training data but it performed to the same extent as SMB. I did 
find two issues that could be fixed with finetuning. When the model is not moving it does not 
want to start moving again. When thinking about it from the model’s perspective it makes sense, 
if for the last 64 frames it didn’t move then it will probably not move on the 65th frame. The 
other issue is when the model wants to move right it wants to start by recreating the frame 
perfect sequence talked about earlier. It typically fails this and then holds left in an attempt to 
start the process of moving right. Sampling techniques were unable to mitigate this issue as the 
model needed full control on its actions to reproduce difficult sequences. 
 

 

 
Figure 5: The training results of the VPT trained on ground truth data. Top left is the Confusion 
Matrix of the Top 10 largest classes on a log scale. Top right is the loss of over time. Bottom left 
is the class distribution on a log scale. Bottom right is the accuracy per class. (Section A.1 for 
higher resolution) 
 
 
4.4    IDM & VPT 
 
I used the IDM to generate pseudo-labels for the 62 hours of data I collected. Then, I trained the 
VPT on 10% of the pseudo-labeled data, equivalent to 6 hours of footage. The labeling process 
involved using a sliding window approach mentioned in Section 2. The main goal with this 
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experiment was to see how noisy the online data collected is. The setup and hyperparameters 
were the same as Section 4.3. The evaluation of this model was on ground truth data.  
​ The VPT trained on IDM pseudo labels is not sufficient enough. This is reflected in 
Figure 6 with every chart (besides the class distribution) showing an inability to correctly label 
frames. With a 2.86% accuracy it's nearly no different than random chance when sampling of one 
of the 36 classes. The confusion matrix and accuracy per class plots from Figure 6 do show a 
different reason, the conclusion is the same, it seems that the model didn’t even attempt to learn 
other classes. Compared to previous runs of the VPT, this is consistent where the longer it trains 
the more classes it understands but its substantially lower for 40 epochs. This indicates that the 
issue is low data quantity, the pseudo labels are inaccurate, or the noise of online videos as a 
factor in its ability to learn. Increasing the data quantity has its drawback on compute as 
mentioned in Section 3. Increasing quality requires training a new model.  
 

 
 

 
Figure 6: The training results of the VPT trained on 10% of the pseudo-labels generated from the 
IDM. Top left is the Confusion Matrix of the Top 10 largest classes on a log scale. Top right is 
the loss of over time. Bottom left is the class distribution on a log scale. Bottom right is the 
accuracy per class. 
 
 
 5    Future Works 
 
The next steps of this paper is to try and replicate the VPT trained on pseudo-labels produced by 
the IDM. If I am able to replicate the VPT from Baker et al. [1] this would show the 
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reproducibility of this project in a solo undergraduate project. Creating a foundational model in a 
new domain could open the gates to others to finetune that model into something new that 
previously would have been infeasible. Using this new foundational model I would like to 
recreate a similar model to STEVE-1 from Lifshitz et al. [3] which combines MineClip from Fan 
et al. [4] and the VPT from Baker et al. [1] to create a text-to-behavior model. I believe if a 
foundational model is achieved I could recreate STEVE-1 in a new genre, specifically not 
Minecraft nor Super Mario Bros. If this is something that can be recreated I would like to see 
how generalized this process can become. I would like it to be possible for someone to gather 
and train their own foundational model using my approach with minimal effort.  
 
 
6    Conclusion 
 
I explored the feasibility of creating foundational models for sequential decision-making tasks 
within the domain of Super Mario Bros (SMB) as a solo undergraduate research project. By 
recreating the VideoPreTraining (VPT) and Inverse Dynamics Model (IDM) architectures 
introduced in Baker et al. [1]. The IDM/VPT I created have a parameter count of 9 million which 
is substantially lower than the original IDM/VPT, 0.5 billion. With only 6 hours of ground truth 
data; the IDM has 82.87% accuracy, 0.5757 precision, and 0.4564 recall while the VPT has 
85.75% accuracy, 0.5338 precision, and 0.9127 recall. This shows that more agents can be 
created in other complex environments with minimal ground truth data.  
​ The experiments revealed that pseudo-labeling internet size datasets with the IDM did not 
boost the VPT’s perform at my scale. Likely due to noise of the online videos and lack of ground 
truth data. Nonetheless, this is promising results for the IDM/VPT demonstrating the viability of 
extending pretraining methods into other environments. By improving data quality, incorporating 
finetuning, and scaling up the parameter count; it may be possible to replicate the success seen in 
Minecraft. Ultimately, the goal is to establish generalizable, reproducible pipelines for training 
foundation models on undergraduate resources.  
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A    Appendix 
 
A.1 Full Size Figures 
 
Showing Class Distribution and Accuracy per Class from Figures 4 and 5 at full size. These 
might be hard to read exact values in the previous Figures. 
 
Figures 4: 
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Abstract 

In the computer science and computer engineering department (CS&CPE) at the 
University of Wisconsin-La Crosse (UWL), faculty are responsible for academic 
advising for their majors. This means that students seek assistance from their 
advisors on what classes to take in the upcoming semester, and guidance on 

navigating their academic careers. The goal of this research is to develop a locally 
hosted chatbot from open-source software that can answer common student 

advising questions. In this paper we will present a survey of chatbot platforms that 
we considered, followed by the design and implementation of our chatbot. The 

survey will present a variety of chatbot platforms ranging from no-code/low-code 
packaged cloud instances, open-source tools that use cloud services, and open-
source projects that allow you to build and host your own chatbot. Our chatbot is 

written in Python and uses the open-source packages, such as ollama (a large 
language model (LLM), to compose a proof-of-concept product. This chatbot is 

hosted on our department resources. We have built a custom knowledgebase with 
our course catalog information for CS&CPE classes that the chatbot uses to answer 

basic questions about courses. Finally, we will describe how the chatbot was 
tested. Moving forward, the goal is to enhance the chatbot’s capabilities to answer 
a wider range of queries, including commonly asked advising questions compiled 

by the CS&CPE faculty, and integrate it into the CS&CPE homepage. 
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1 Introduction 
Academic advising is a rewarding but time-consuming activity that many faculty do in 
addition to their other teaching, research, and service duties. It is something that takes 
many forms but generally encompasses the following tasks: (1) advising students on what 
classes to take, (2) being a resource for other services on campus (e.g., financial aid, 
registrar, career services, student life), and (3) sounding board for students as they 
consider school-life balance, changing or declaring a major or minor, apply for 
internships and jobs, and consider their life trajectory after college. In each of these 
categories of interactions, there are simple questions that advisors answer over and over 
and over again, however there tends to also be unique interactions since each student’s 
path and questions are unique. The purpose of this project is to determine if a chatbot can 
be created to answer the common questions allowing students and advisors to spend their 
advising time and energy on the harder questions that require nuance. 

The interactions with students with respect to (1) are largely dependent on understanding 
the course offering patterns, current offerings of classes, the curriculum (in particular the 
prerequisite structure), and the relative workloads of the classes. These are largely 
answerable with a chatbot if it is trained on the curriculum, course catalog, and updated 
with current course schedule information. Interactions with students often also fall into 
category (2) where students are seeking information about campus services, and the 
faculty adviser is the first point of contact. These referrals to existing websites, 
procedures, and offices are also easily answerable by a chatbot trained on the specific 
resources at that university. The last category of interactions is trickier to encapsulate in a 
chatbot service. Referrals to career services, procedure for changing a major/minor, and 
other offices like student life are likely to be the only items that would be better 
addressed by a chatbot versus a real human. 

Assuming it is possible to create, train, and test the chatbot to accurately answer the 
questions described above as easily answered by a chatbot, there are several benefits to 
students and faculty. First, it will reduce the barrier to get answers for students who can 
access the chatbot whenever the need arises, and they do not need to wait for an answer 
from their adviser. Second, this will free up time for the advisers so they can have more 
time for the tougher advising questions and their other duties. In this project, we aim to 
create a chatbot and see if it can answer a basic set of advising questions accurately as a 
proof of concept. Future work will dive more deeply into the extent to which a chatbot 
can aid students and faculty in academic advising. Before describing our implementation, 
we will describe the general structure of a chatbot and survey the different types of 
chatbot platforms. 

2 Architecture of a Chatbot 
Chatbots are advanced computer programs designed to simulate human conversation and 
engage with users [1]. There are many types of chatbots, ranging from basic decision tree 
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models to sophisticated virtual assistants powered by generative AI alongside other 
cutting-edge technology. Every chatbot has the following components: (1) conversational 
interface that is web or mobile based, (2) natural language processing component that can 
interpret the human user input as intents, and (3) underlying knowledge base and data 
storage that map the intents to the (hopefully) correct responses that are then delivered to 
the user.  

 

Figure 1. Chatbot components and workflow. [Image from: https://www.engati.com/blog/what-is-a-chatbot] 

Modern chatbots can be categorized into three broad categories depending on the extent 
to which AI is used: 

Decision-tree – a tree is created that dictates how the conversation should flow from 
question to answer in the conversation. It requires the builder of the chatbot to understand 
and explicitly state the possible questions and answers and conversation flow. 

AI chatbots – use AI to manage the interpretation of user questions into intents, a more 
generalized form of the questions, and map them to answers. AI can be further used to 
consume data to create the intents and answers from a variety of sources, as well as 
continue to learn over time. 

Virtual assistants – similar to AI chatbots, they use AI to manage the human interactions 
and understand and react to them, however they can also be more integrated into other 
services and software to perform more complex actions. 

For our application, an AI chatbot that uses AI for natural language understanding (NLU) 
and is trained on our specific data for advising would be ideal. Our chatbot does not need 
advanced capabilities or integration with other campus services, like the ability to change 
a student’s major or register for a class. Additionally, this is a proof of concept and the 
budget for this project is $0. 
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3 Survey of Chatbot Platforms 
If you search for chatbot platforms, many options are available. We initially wanted to 
choose a simple platform that would allow us to quickly and easily build our proof of 
concept without much experience or knowledge of programming and chatbots. In our 
search we found that chatbot platforms come in three general categories.  

3.1 Low-code/No-code Hosted Platforms 

Low-code/no-code hosted platforms do not require users to write code and often use a 
drag and drop interface to manage instances and setup the intents. These platforms are 
often hosted by large cloud providers, use their proprietary software to build and deploy 
the bot, and pricing depends on the complexity of the bot, volume of messages, or other 
metrics related to the data storage and processing required to host and run the bot. It is 
common for these platforms to have a free tier to encourage users to try out the service, 
but the pricing models are difficult to understand unless you know how much storage the 
bot will end up using and how many messages your users will need. This pricing model is 
especially difficult to navigate for users who are new to chatbots and do not have a good 
sense of the scale of the bot they are creating. 

IBM’s WatsonX Assistant [2] is a good example of one of these chatbot platforms. It 
includes a visual builder tool for easy chatbot creation. It integrates several advanced 
features like voice assistance, learning from customer interactions, and the ability to 
escalate a conversation to a human agent. Other large companies such as Amazon [3] and 
Google [4] also offer similar services, as well as independent services Yellow.ai [5]. 

Overall, this is a good approach for someone who wants a high-quality product with 
many advanced features, does not want to write much code, and will need or want a high 
level of support from the company to build and run the chatbot. It is also good for 
someone who has the money and workload to justify paying for this service. The 
downside is the complex pricing structure which likely leads to hidden costs for small 
users, potential security and privacy concerns due to using external LLMs and data 
hosting, the potential of paying for services a simpler chatbot will not need. For our use-
case, we ruled out this class of chatbot platforms due to price and complexity. 

3.2 Chatbot Services Hosted in the Cloud 

We continued our search for chatbot platforms that are open source, however many of 
these continued to use cloud platforms and services. Several open-source, cloud hosted 
chatbot platforms are described in [6]. In general, this set of solutions have fewer 
advanced features and were built to work with a specific set of software systems and 
integrations (e.g., AWS, Azure, Dialogflow, Luis, Facebook Messenger, Slack). These 
platforms, while marketing themselves as open source, rely on several other services that 
tend to use a pay-as-you-go model and usually require to you integrate the UI through a 
messaging platform like Slack. The language models used tend to be hosted in the cloud 
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and accessed via APIs. They varied from pretrained to trainable, depending on what you 
pay for. 

One of the solutions we explored was botonic [7]. Botonic seemed like a good solution as 
it let us host our own website, build our own messaging service, and had good 
documentation and examples to follow. However, we struggled to get the NLU model to 
work or use an external NLU model instead. Several of the external NLU models require 
API keys or logins to access even the free tier of service. This was not ideal for a student 
project that will need to be passed from one student to the next and while experimenting 
with the system, we are not sure how many requests we will generate in development. 
Lastly, if it was going to take this much work to get the system to run, we were not 
getting much value and did not have as much control over the LLM and training data. 

3.3 DIY Chatbot 

The last type of chatbot we considered is one where we utilize open-source software to 
build each piece of the chatbot and host it locally on a server at our university. By 
looking at the other chatbot platforms, we learned about how chatbots are created and the 
major components, and we also learned that we wanted to learn more about how they 
work and have control over the process more than just creating something quick. This led 
us to explore how to build a chatbot from scratch, host it on our own servers, and be able 
to swap out the components as we learn more. 

The benefit to this approach is we can fully control the cost. We have a local cloud 
system in the department we can use to create a VM for the project and provision it with 
enough resources to run a smaller LLM for our project. Additionally, since we control the 
LLM and where it runs, we can better control the privacy and security of the system. 
Lastly, we can continue to learn how the LLMs work which may lead to more research 
opportunities for students. The major downside is the resource usage locally, and 
additional labor to write and maintain the chatbot. Ultimately, the cost, control, and 
ability to work on just the pieces we are interested in as the project grows were the 
determining factors in our decision. 

4 Academic Advising Chatbot 
The chatbot we have created is written in Python. The primary resource for the current 
version of the product is a YouTube video by pixelgami called “RAG + Langchain 
Python Project: Easy AI/Chat For Your Docs” [8]. The tutorial videos and other 
documentation helped us build a Python program that allows users to ask questions about 
courses offered by the Computer Science & Computer Engineering department at UWL. 
The functionality was integrated into a basic website for users to access. 
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To build our chatbot we used a RAG (Retrieval Augmented Generation) approach [9]. 
RAG is the process of optimizing outputs of a Large Language Model (LLM), or in our 
case a natural language processing model (NLP), by integrating external knowledge 
bases. This method eliminates the need to retrain a model on a specific dataset, keep the 
cost of the project at zero and allowing for more developer control. UWL already had a 
comprehensive knowledge base on the University official website covering course 
information for CS & CPE so implementing RAG approach was a natural choice. 

To make the knowledge bases easily accessible to the NLP we chose, we decided to use a 
vector database, Chroma [10]. Chroma is an open-source, AI application database 
designed for storing and retrieving vector embeddings. The advantage of a vector 
database is the ability to store textual information as a vector, this allows for similarity 
search. This feature is essential to providing our chatbot with the relevant context it needs 
to give accurate answers. To convert the text to a vector, we employed an open 
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embeddings model. An embedding model generates vector representations of text, 
allowing the text to be stored in the Chroma. The model we chose was Ollama’s nomic-
embed-text [11, 12] due to its status as free and open source, as well as its competitive 
performance. Once we had the tools needed, it was simple to manage our data in a way 
that can be easily integrated with our NLP model to give a response based on accurate 
and up–to-date information. 

With the knowledge base properly prepared, finding and delivering relevant information 
is a much more efficient process. To ensure the chatbot delivers the desired response, we 
1) carefully create a prompt that would give the NLP model guidelines for how it should 
reply, 2) query the database for relevant data chunks, and 3) incorporate the chunks into 
the prompt that will be fed to the NLP model. To first create a prompt, we considered 
what acceptable answers would look like for common student questions. From here we 
could textualize some of the guidelines we came up with. Later in the development 
process, we did further testing to refine the prompt for more accurate outputs. After the 
prompt template was completed, we moved onto querying the database. Leveraging 
Chroma integration with LangChain [13], this process was simplified. First, you take the 
question the users asked, embed it, and compare the embedding to other embeddings in 
the vector database and return the most similar result. From here we can insert the chunks 
into the prompt and sent it to the NLP model. 

All these components form the backend NLP model and knowledgebase infrastructure. 
The web frontend is a simple Python website using flask that allows users to interact with 
the chatbot. Most of the work thus far has focused on building the chatbot backend and 
confirm that it works. 

The chatbot was tested by studying the input material, in our case the course catalog 
information, and specific questions were asked to which we knew the answers. If the 
chatbot answered correctly, we considered that a successful interaction. We did this with 
several different courses and different questions about courses (prerequisites, content, 
offering patterns) and asked using different language to test the chatbot. We also tested 
questions that the chatbot should not know and confirmed that the chatbot can answer 
that it does not know the answer. 

5 Conclusions and Future Work 
In this project we built a proof-of-concept chatbot and trained to it answer questions of 
about courses offered by the CS&CPE department at UWL. Throughout the experience 
we explored several different approaches to building a chatbot, but ended up choosing a 
DIY approach and assembled the pieces ourselves. The current implementation can only 
answer a limited number of questions and has been tested mostly for functionality. Future 
work involves more rigorous and systematic testing for robustness, understanding a range 
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of questions and language to ask those questions, and accuracy of the answers. This work 
will be done first, before expanding to larger knowledge bases and user tests. 

Once the chatbot is shown to pass these more rigorous tests, we will further extend the 
work to answer a broader set of common academic advising questions. The faculty in the 
CS&CPE department will create a FAQ document with the common questions and 
answers. The faculty will work to make sure the document covers as many 
straightforward questions and the corresponding questions are complete and correct. If 
any questions yield a difference in opinion or more context is needed to answer a 
question, then we will not add it to the FAQ. We will explore training the bot to respond 
to “it depends” type of questions with a response to seek guidance from their academic 
advisor. Additional testing will be performed as we add more material to the bot. 

One of the ways we will work to understand how well the bot is performing is to log the 
questions and answers. This will help us determine how well the chatbot is answering 
questions, allow us to debug answers, and once we start user testing keep track of 
questions the bot is not able to answer so we can consider building answers for those 
questions. 

The department looks forward to testing and using this new tool so that students can get 
answers to their questions more quickly and easily, and thus leading to more impactful 
advising sessions dedicated to the bigger picture issues. 
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Abstract
The Clojure programming language, built on the Java Virtual Machine, is a widely used
functional language. Its simple syntax makes it a powerful language to introduce begin-
ner programmers to key concepts of programming. However, debugging in Clojure can be
unintuitive because Clojure errors are exceptions in the underlying Java language. They
frequently contain terminology intended for experienced developers, leaving out important
context. Our research project, Babel, aims to provide beginner programmers with a tool
that replaces Clojure error messages with clearer explanations, removing unfamiliar jar-
gon. This is work in progress, with the current goal of improving the user experience by
using Morse, a third-party viewer, to present error information in a more beginner-friendly
format. In this paper we discuss the structure of Clojure error messages and explain the
data flow for the error messages processing. We discuss options for formatting the error
messages provided by Morse, as well as the principles that guide our choices. We present
examples of views and interactions for Clojure error messages. We conclude with a discus-
sion of future directions.
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1 Introduction
The Clojure programming language is a functional language in the Lisp family, developed
and released in 2007 by Rich Hickey [7]. Clojure is implemented in Java, compiles to Java
bytecode, and runs in the Java Virtual Machine (JVM), allowing programmers to use Java
libraries directly from Clojure. However, unlike Java, it is a dynamically typed functional
language with immutable data as a default (mutable data must be specifically declared).
Clojure quickly became known in industry. Even though the number of Clojure program-
mers is not a large percentage of all developers (1.3% of professional developers reported
extensive use of Clojure), it remains one of the most admired languages (68.5%) and is the
3rd highest-paying programming language, according to the 2024 Stack Overflow Devel-
opers Survey [2].

There is a long history of teaching Lisp as the first programming language, starting from
the famous “Structure and Interpretation of Computer Programs” curriculum [3] and con-
tinuing with the introduction of the Racket programming language that provides a tiered
system of Lisp-based beginner languages [5, 1]. While Clojure is also a Lisp language and
shares the benefits of focusing on development of functions that follow the structure of the
data representation, some of Clojure’s aspects make it more challenging than other Lisps
for novice programmers.

One such aspect is Clojure error messages: due to Clojure implementation via the under-
lying Java language, Clojure errors are Java exceptions. They frequently contain terminol-
ogy intended for experienced developers, leaving out important context. As a result, what
would otherwise be a powerful educational tool presents a difficult learning curve for new
programmers.

A project at UMN Morris, called Babel, aims at providing alternative beginner-friendly
error messages and other tools that help beginner programmers to interpret Clojure errors.
The current state of the project provides a tool to rewrite the majority of error messages
into a clearer and more specific form - for example, specifying the erroneous arguments to
functions. The challenge at this point lies in connecting this tool to a variety of possible
ways of interacting with Clojure (via an interpreter or in IDE, for example). We also are
working on providing features to give the users more resources and more control when
they are receiving an error message. The resources include explanation of terminology (for
example, what does the term “hashmap” refer to?), links to documentation for functions,
etc. Giving users more control allows for optional expansion of some information, such as
the stack trace. This work is still in progress. In this paper we discuss our approaches to
tackling this task, demonstrate our current achievements, and discuss future directions.

The rest of the paper is structured as following: Section 2 provides background on Clo-
jure, its error messages, and the Clojure feature called spec that we utilize on our work.
Section 3 discusses how Babel processes error messages. Section 4 describes the interac-
tive environment that we are developing, both from the implementation side and from the
standpoint of design for the users. Section 5 discusses the current state of the project and
future directions.
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1.1 Related Work
Previous work on the topic of improving error messages in general for beginners [4] re-
vealed that certain visual design choices can have a strong impact on a user’s comprehen-
sion of error data. Dong and Khandwala found that, out of text coloring, increased white
space, and collapsible components, adding whitespace to separate important sections of
the error message helped to aid with understanding the most overall, and that employing
theories of visual perception in the design of error messages help to improve their usability.
We are using these insights as guidance for our approach.

A 2017 paper by Wrenn and Krishnamurthi [10] on error handling in Racket, another Lisp-
based programming language, suggests treating error messages as classifiers, using high-
lighting tools to mark up error messages. This is somewhat similar to our own approach in
that we extract components of error messages and classify them using keywords to deter-
mine appropriate styling choices that make them more navigable to the end user.

An earlier paper on Racket [8] suggests that the vocabulary used in error messages plays a
key role in the ability to understand them, and students often have a hard time navigating
technical language intended to point them to specific issues. This knowledge is important
to our own research, as native Clojure error messages often contain highly technical vo-
cabulary as well, and we make an effort to replace such terminology with more universal
language.

2 Background

2.1 Clojure and its Error Messages
Clojure syntax utilizes the prefix notation, common for Lisp languages: a Clojure expres-
sion is enclosed in parentheses that contain a function followed by its arguments. For
example, (/ 6 2) denotes an expression 6/2 and results in 3. Clojure is dynamically
typed, and no types are declared.

In addition to lists (common in other Lisp languages), Clojure employs a variety of col-
lections, such as vectors, hashmaps, and sets. It comes with a large number of predefined
functions. Below we introduce collections and functions used in examples in this and sub-
sequent sections.

Vectors are enclosed in square brackets; commas between elements are optional and usu-
ally omitted. For example, [1 -1 0] denotes a vector of three elements: 1,−1, and 0.
By convention Clojure uses ? at the end of the names of predicates, i.e. functions that
return a boolean. For example, neg? takes a number and returns true if it’s negative and
false otherwise. Likewise, even? takes an integer and returns true if it’s even and false
otherwise. A function filter is used to select elements of a vector, or another collec-
tion. It takes a predicate and a collection and returns a collection with only the elements
that satisfy the predicate. For example, (filter neg? [1 -1 0]) would return a
collection with only one element, 1. A subtle point is that Clojure also allows passing just
a predicate to filter, without a collection: (filter neg?). This returns a function
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that can be invoked on a vector at some later point. Since this use is allowed, the correct
number of arguments for filter is one or two.

Clojure is a hosted language, running on the Java Virtual Machine (JVM), which is a byte-
code interpreter that allows a program to run on any computer without needing to be rewrit-
ten for each one. The JVM works by compiling code into bytecode, which it can then run.
Clojure code can be loaded into the JVM from a file or directly via an interactive inter-
preter known as REPL, which stands for Read - Evaluate - Print - Loop. In our examples
we assume that the code is entered into REPL. The REPL prompt is denoted with =>, and
the Clojure response follows.

When Clojure code is executed, it compiles into JVM bytecode, allowing it to use many
of the features that the JVM provides, but most importantly for the work presented here is
that it uses the Java exception system for handling errors and when an exception is thrown
in Clojure, it is a Java exception.

An exception is an event or error that disrupts the normal flow of a program’s execution. In
Clojure, exceptions typically occur when something goes wrong, such as dividing by zero
or passing an inappropriate argument to a function. It’s important to note that Clojure syn-
tax errors will also result in an exception, because during the compilation of dynamically
loaded Clojure code into JVM bytecode, any syntax error will cause an exception.

Error messages are generated when an exception occurs. They provide information about
the type of error as well as where it happens. As an example of one such mistake, a novice
to Clojure might write the following expression

(filter neg? 1 -1 0)

instead of the correct version (filter neg? [1 -1 0]), as described above. This
causes an error, because the filter function was expecting either one or two arguments. Here
1, -1, and 0 are not in a collection, presumably because the user forgot to include them in a
vector. Instead, they are being passed as separate arguments, which causes the function to
be overloaded with inputs it doesn’t expect.

Execution error (ArityException) at user/eval1 (REPL:1).
Wrong number of args (4) passed to: clojure.core/filter

Clojure presents this error as an ArityException, referring to the number of arguments of
the function. The message is cryptic for beginners, especially without the documentation.

Consider another example that we use to detail representation of Clojure error messages:

=> (/ 9 0)
Execution error (ArithmeticException) at user/eval1

(REPL:1).
Divide by zero
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The code is causing an error because it is trying to divide by zero, Let’s break apart the
error message:

• ArithmeticException is the type of error that happens.

• user/eval1 (REPL:1) is the location of the error; since for this example we
assume that the code was directly typed into REPL, the location is REPL, line 1.

• Divide by zero is the given description for the cause of the error.

The error message is a part of a Java exception object that contains more information.

The exception object for (/ 9 0) contains the following information, represented as a
nested Clojure hashmap, i.e. a collection of key/value pairs. The key names are preceded
by : The exception typically contains a stack trace (see the keyword :trace) listing the
sequence of function calls that resulted in the error. While our project includes a way of
reducing the stack trace to a few informative lines, this paper is not focusing on the stack
trace.

#error {
:cause "Divide by zero"
:via
[{:type java.lang.ArithmeticException

:message "Divide by zero"
:at [clojure.lang.Numbers divide "Numbers.java"

190]}]
:trace
[[clojure.lang.Numbers divide "Numbers.java" 190]
... omitting 18 lines...
[clojure.main main "main.java" 40]]}

In addition to the above information, the exception contains the phase of Clojure execution
when the exception occurred. For example, in the earlier case of the divide by zero error,
the exception occurs in the execution phase. Since an error can occur at any point in the
Read-Evaluate-Print-Loop, there are several possibilities of the phase. Below we list some
of them:

Phase Description
:read-source Error while reading characters at the REPL or from a source file.

:compile-syntax-check Syntax error caught during compilation.
:execution Any errors thrown at execution time.

:read-eval-result Error thrown while reading the result of execution.
:print-eval-result Error thrown while printing the result of execution.

Knowing the phase of the evaluation is helpful for detecting what kind of error has occurred
and what information the user would benefit from.
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2.2 Clojure Spec
Clojure spec is an addition to Clojure first released around 2016 [6]. It is a set of fea-
tures that allow setting specifications, particularly for functions, that are checked before
the function call. These specifications typically include the number and types of argu-
ments, although they may include other conditions. The flexible nature of spec allows
programmers to choose what parameters to check and, to a degree, what information will
be communicated about why the arguments failed to satisfy spec.

As an example, one may specify that a function f takes no fewer than 2 and no more than
4 arguments, the first argument must be a non-negative integer, and the second one must be
sequence. Types (or any other conditions) are specified as predicates. For example, we can
require that the first argument of f satisfy both number? and pos? predicates, and the
second satisfies seq? (a predicate that determines if a Clojure object is a sequence). Any
existing Clojure predicate can be used, or the user can write their own.

If arguments not satisfying the spec are passed to the function, a spec error will occur. A
spec error is an exception of the type clojure.lang.ExceptionInfo that contains
data describing the error, including the failed predicate. For example, if the second argu-
ment of the function f above is a number 5, and not a sequence, the error message states
that it failed the predicate seq? Even more importantly, the argument that’s causing the
error (in this case 5) will be included in the spec error message.

Without using spec, the error message would be a Java ClassCastException that
doesn’t report the value of the failing argument, only the incompatible types. The more de-
tailed information provided by spec allows us to make error messages more understandable
to novice programmers, as described in Section 3.1.

3 Babel Project

3.1 Overview of the Project
Our research project, Babel, is a tool intended to help novice programmers understand Clo-
jure errors. It does this by providing learners with substitute error messages that describe
code problems in simpler terms, replacing the unfamiliar jargon and low-level clutter of na-
tive error messages. For example, the error message produced via the function call below,
where count is a function that returns the length of a sequential collection:

=> (count 1)
Execution error (UnsupportedOperationException) at user/

eval1529 (REPL:1).
count not supported on this type: Long

is transformed into a new message, replacing the reference to the internal type Long and
removing details about the Java exception object and irrelevant internal information:

=> (count 1)
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Function count does not allow a number as an argument in
this position.

In Clojure interactive session on line 1.
Call sequence:
[Clojure interactive session (repl)]

Babel creates error messages like these through simple analysis of the native error’s Java
exception class and message contents, and one could argue that for cases like these, the
native error message suffices. However, for more complicated problems, such as incorrect
calls to functions or malformed arguments, Clojure’s messages get more difficult to parse.
Consider an erroneous code fragment described in Section 2.1:

=> (filter neg? 1 -1 0)
Execution error (ArityException) at user/eval1540 (REPL

:1).
Wrong number of args (4) passed to: clojure.core/filter

In these situations, it would be ideal to have a detailed explanation of what the offending
arguments in the function call are, and what was expected. This is where Babel makes
use of the Clojure spec library, described in Section refsubsec:spec-overview, in its error
reporting.

By employing specs on core Clojure functions, it is possible to explicitly specify the cor-
rect form of a function call and how the function was used incorrectly. Using spec, we
know that the filter function must take a predicate and, optionally, a collection, there-
fore expecting one or two arguments. With Babel, the above error message is replaced as
follows:

=> (filter neg? 1 -1 0)
Wrong number of arguments in (filter neg? 1 -1 0): the

function filter expects one or two arguments but was
given four arguments.

In Clojure interactive session on line 1.
Call sequence:
[Clojure interactive session (repl)]

Moreover, the Babel spec for filter also reports incorrect types of arguments:

=> (filter neg? 3)
The second argument of (filter neg? 3) was expected to be a

sequence but is a number 3 instead.
In Clojure interactive session on line 1.
Call sequence:
[Clojure interactive session (repl)]

Our project presently includes specs for many pre-existing Clojure functions and rewrites a
majority of potential Clojure errors that cannot employ spec (such as divisions by zero, un-
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matched delimiters, etc). With much of the internal work done at this stage of the project,
our focus is now on the potential of third party tools to display modified error messages in
an interactive viewer that will allow beginner programmers to explore them more dynami-
cally and familiarize themselves with how Clojure itself handles error data, enabling them
to view the data in a more organized way and easily explore related documentation.

3.2 Processing Error Messages
Babel constructs its error messages by intercepting exceptions directly from REPL. This
is done by attaching an observer function to a running instance of a REPL server. The
observer passes exceptions to babel processing function and replaces the message with the
result. Before developing the interactive interface, the message was returned as a string.
The processing for the interactive interface is described in Section 4.

Since different kinds of exceptions contain information in a different way, the first step in
processing them is to determine what category they belong to. Errors can be categorized
broadly into spec errors and non-spec errors

• Spec errors occur when the data does not conform to the specification for a function
or a similar construct. These errors can be further divided into Babel specs, Clo-
jure internal specs, and third-party specs. Babel specs were specifically designed by
our group to provide as much information as possible to users, and in particular to
novices. Clojure internal specs are provided for some specific Clojure constructs and
provide useful information, although not necessarily phrased in a way suitable for
beginners, so our software rewrites them to a more beginner-friendly format. Finally,
third-party specs come with libraries imported into the code base. Since we don’t
know the semantics of these specs, we can only suggest what the intent is. Care
should be taken not to second-guess, and thus obscure, the intent.

• Non-spec errors occur when errors happen outside of the clojure.spec system. They
are typically either syntax error that happen before a function can even be called, or
runtime errors that are not checked by spec, such as division by zero or any other
errors that arise during program execution.

Due to the complexity of Clojure runtime system on the JVM, it may not be immediately
obvious what type of error has occurred. For example, Clojure uses lazy sequences: many
functions that return a sequence, such as filter, don’t evaluate it immediately. The result
is evaluated only when it’s needed, and only as many elements as needed are evaluated.
This may result in evaluating the sequence at the :print-eval-result phase. If an error occurs
at that point, it may manifest itself as a nested error (an exception attached as a cause to
another exception) since it occurs within a printing function.

In order to determine the type, the following properties of exceptions are used: error types,
levels of nesting, and phase.

• Grouping by error types or subtypes can help find patterns in errors that make it easier
to prescribe solutions to errors, based on similar error types.
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• As we mentioned before, an exception may be nested within another exception if it
is produced by a lazy sequence or in some other cases. Grouping by levels of nesting
and the order in which errors occur provides more insight into the path the error took
before it becomes visible, helping us understand the sequence of failures.

• Classifying by phase (such as :read-source, :execution, and :print-eval-result) offers
additional context about when and where the error occurred.

Using the above in conjuction with each other allows us to find the elements of an exception
that can be used to explain its cause to the user.

4 Adding Visual Interactive Environment
We explore using the third-party Morse viewer [9] as a supplementary way to interactively
present error information in a better, more beginner-friendly format. This approach pro-
vides an interactive, visual layer of error message presentation on top of the existing REPL
error message display. For instance, unlike default Clojure error messages, the Morse
viewer allows us to use monospace font for code snippets, and highlight function names
with color coding. Additionally, for spec errors, we can dynamically generate the link to
the documentation of the function where the error occurred, provided it is a predefined
Clojure function.

Morse is a tool designed for data exploration and visualization. While it was originally de-
signed to help experienced developers navigate large datasets and projects, it provides tools
and extensibility to be curated with a beginner audience in mind. Morse uses a system of
customizable viewers to achieve its data visualization. Each view is individually designed
to display a specific data structure based on given conditions.

4.1 Running a Babel Session with Morse
By default, the Clojure REPL does not expose the correct hooks to effectively manipulate
the data from error messages. In order to get around this, initializing Babel within an
existing REPL session, using a custom-made (babel/init) function to connect the
processing hooks, creates a new custom sub-REPL (a new REPL session) above the existing
session. Creating a sub-REPL allows us to configure the behavior attached to the following
hooks in the new session:

• :init Defines the initialization behavior of the sub-repl. In Babel, this starts a new
Morse session connected to the new REPL.

• :eval Defines the behavior whenever a command is executed within the REPL. In
Babel, this taps the command into an atom (a mutable state variable), and evaluates
the command within both Morse and the REPL.

• :caught Defines the behavior on exception. In Babel, this processes the error as
described previously, and passes the following information about the error to Morse
to be displayed in a custom viewer:
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– The last command entered, read from an atom that is updated at evaluation.

– The location in the environment where the error occurred. In the REPL, this
resolves to “Clojure Interactive Session”.

– A vector of pairs containing the error message produced by Babel, with labels
associated with each segment denoting its type for formatting.

– The url to the documentation of the function called that caused the error.

Once the sub-REPL is initialized, the user can then use the sub-REPL as usual, but with
the addition of Babel error messages when applicable in the terminal, and a parallel pop-up
Morse viewer that format the error message in an easier-to-parse way, providing interactive
display for the user, for example giving them the ability to click on the documentation link.

In order to provide a message in the format suitable for More viewer display, Babel process-
ing module returns the message as a sequence of key/value pairs, where each key indicates
what part of error message it is. Fir example, the code part of the message will be labeled
as :code, which allows displaying it in the monospace font common for code.

4.2 Setting up Morse Viewers
Morse viewers can be created to have custom behavior around certain data. Creating a new
viewer in Morse requires the following:

• A predicate defining the constraints of the data that can be displayed in the viewer.

• The graphical format of the view to be displayed. This is built with the JavaFX
library.

The Babel viewer takes a map of input data as input, and defines the predicate for the viewer
by checking for a map with the necessary fields. For the formatting definition, Babel uses
the built-in WebView object in order to format the error data with an HTML template,
enabling us to leverage the large, robust tools of HTML and CSS to define the visuals of
the error messages.

4.3 Exploring Design of Error Messages Interface
An example of the error presentation for Babel is shown in Figure 1, displaying the error
message for the expression (even? 1 2). Code segments are displayed as monospace
and isolated. Additionally, function names within the body of the error message are color
coded.

5 Current State and Future Work
Our project is currently focusing on the goal of utilizing Morse viewers for creating in-
tuitive, robust interactive display of error messages. A lot of effort was put into figuring
out the technical setup and data flow to accomplish this task. It also required changing the
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Figure 1: Morse visualization of the arity error on even? with too many arguments (right),
with session evaluation history (left).

way an error message is passed to the display by adding tags (such as :code) for various
elements of an error message.

We have accomplished creating a prototype for these interactions and the data flow. How-
ever, as the project stands right now, many features of the interactive display are still in
active development:

• More work needs to be done to convert all of the exception processing into the tagged
format.

• The ability to hover over specific terms used in error message for explanations of
what they mean, as well as to navigate collapsible stack traces, would be useful for
making the tool more interactive.

• Figuring out the user’s workflow in alternating between correct code and errors is
also a future work item.

In the future, we would like to conduct usability studies with the interactive tools offered
by Morse, after we have developed the tool enough to cover more of Babel’s capabilities.
Allowing research participants to experiment with the tool for learning Clojure would help
drive the direction of the project and improve upon the design choices. We would also
like to explore IDE integration as a potential avenue of development for Morse, in order to
make the tool more useful for learning to code as a whole.
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Abstract 

Intro:  Vocal cord ultrasound (VCUS) has emerged as a less invasive and better tolerated 

examination technique, but its accuracy is operator dependent.  This research aims to apply a 

machine learning-assisted algorithm to automatically identify the vocal cords and distinguish 

normal vocal cord images from vocal cord paralysis (VCP). 

Methods:  VCUS videos were acquired from 30 volunteers, which were split into still frames and 

cropped to a uniform size.  Healthy and simulated VCP images were used as training data for vocal 

cord segmentation and VCP classification models. 

Results:   The vocal cord segmentation model achieved a validation accuracy of 96%, while the 

best classification model (VIPRnet) achieved a validation accuracy of 99%. 

Conclusion:  Machine learning-assisted analysis of VCUS shows great promise in improving 

diagnostic accuracy over operator-dependent human interpretation. 
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1. Introduction  

Vocal cord paralysis (VCP) refers to a condition in which one or both vocal cords (also known as 

vocal folds) are unable to move, leading to significant health impacts. VCP can occur as a result 

of surgery (especially thyroid, parathyroid or neck surgeries), trauma, tumors, or neurological 

disorders. The inability of the vocal cords to move can lead to a weak or breathy voice, hoarseness, 

swallowing dysfunction, and in severe cases, difficulty breathing. 

Examination methods to visualize vocal cords have been developed over many decades. Benjamin 

Guy Babington in 1829 is credited with being the first observer of the vocal cords, using a mirror 

and reflected light [1]. Today, flexible laryngoscopy (FL) is considered the current gold standard 

for examination of the vocal cords in an awake patient [2]. This technique is unfortunately an 

invasive one, as it involves navigating a flexible camera probe through one’s mouth into the upper 

parts of the throat. Additionally, some types of probes are discarded after a single use, while the 

reusable ones must undergo a lengthy sterilization process after each use. The less invasive method 

of transcutaneous ultrasound of the vocal cords (VCUS) has gained acceptance due to lower cost, 

improved patient tolerance, reduced risk of respiratory infectious exposure, and accuracy in both 

pediatric and adult patients [3,4].   

VCUS can be particularly suited to the pediatric population [5].  Hamilton, et al. conducted a 

systematic review and meta-analysis demonstrating that VCUS has high sensitivity (91%) and 

specificity (97%) for detecting vocal cord immobility in children, making it a reliable alternative 

to laryngoscopy in pediatric populations [6]. Similarly, Su et al. found that VCUS in adults has a 

pooled sensitivity of 95% and specificity of 99% for diagnosing true vocal fold immobility, 

supporting its utility in adult patients as well [7]. 

Despite the apparent advantages of VCUS in terms of cost and patient tolerance, it is recognized 

that the examination technique can be highly operator-dependent, with a range of vocal cord 

identification from 41% to 86% per a systematic review by Carneiro-Pla, et al in 2014 [8].  Further, 

some authors have recommended against using VCUS to identify VCP especially in overweight 

and postoperative patients [9]. 

To overcome operator-dependence, machine learning has been applied to vocal cord motion 

analysis, as exemplified in the 2010 work by Voight, et al. who used phonovibrogram features and 

various machine learning (ML) algorithms to achieve classification accuracies of up to 93% [10].  

More recently, deep learning methods have been used to analyze video laryngoscopy images 

obtained from FL [11, 13].  Application of machine learning to VCUS interpretation has not yet 

been described. 

This research aims to apply a machine learning-assisted algorithm to automatically identify and 

segment human vocal cords from ultrasound images, and investigates the application of multiple 

deep learning algorithms to differentiate bilaterally mobile vocal cords from VCP. This was done 

with the intent of complementing clinician examination and interpretation.  

 

2. Methods  

As of March 2025, we were unable to identify any publicly available datasets of significance on 

the internet which contained ultrasound images or videos of the vocal cords. Thus, approval from 
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the Milwaukee School of Engineering Institutional Review Board (MSOE IRB# I-2024-012) was 

obtained for a study which would allow us to record videos of VCUS scans from consenting 

participants and train a machine learning-based vocal cord segmentation model on the videos. Over 

the course of two weeks, 30 MSOE undergraduate students were recruited to provide ultrasound 

videos of their vocal cords. Exclusion criteria ensured that all study participants were “MSOE 

community members” (students, faculty, or staff) and excluded those who anticipated a possible 

inflammatory reaction to ultrasound gel or its ingredients.  Paper flyers posted in common areas 

around MSOE campus were used to recruit participants and free pizza was offered as a 

participation incentive. Each participant verbally consented after an investigator read them an 

informed consent script that detailed the specifics of the study. Precautions were taken to ensure 

that all collected data remained de-identified and confidential. No identifying information was 

collected from any participant except self-identified gender and age.  

Number of Male Participants 7 

Number of Female Participants 23 

Median Age 20 

Table 1: Participant demographic breakdown 

Each participant was comfortably seated for the ultrasound examiner to record a 30 to 60 second 

video showing their vocal cords. Care was taken to include all pertinent anatomy necessary to fully 

visualize vocal motion.  Anatomic structures typically seen on VCUS are illustrated in Figure 1. 

Participants were observed during passive respiration and during phonation, throat clearing and 

laughter. Ultrasound videos were recorded using a GE Logiq S7 Pro ultrasound machine and linear 

probe at 8.5 MHz, depth 5cm, using a standardized examination technique. A single author (WSL) 

was trained and certified in VCUS, therefore he carried out all data acquisition. To preserve 

participant anonymity, all personally identifiable information, including overlaid text within 

ultrasound frames, was removed using a custom anonymization script. 

 

Figure 1:  Vocal cord ultrasound image with annotated pertinent anatomy 
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2.1 Data Processing and Labeling 

All collected ultrasound videos were securely uploaded over a secure Wi-Fi network to MSOE’s 

on-campus supercomputer, Rosie. Three participant videos (10% of overall dataset) were moved 

to a separate directory to serve as validation data, and one video was excluded entirely due to its 

low imaging quality. The remaining 26 videos were processed to extract every 20th frame, resulting 

in a total of 2,168 still frames parsed from video. Next, each extracted frame was resized to 

256×256 pixels via Lanczos interpolation and saved in full-color PNG format to maintain a 

consistent dimension and file type. Lastly, an anonymization script was run on each frame which 

removed any remaining text or scale bars from the images, further simplifying and standardizing 

the dataset.  

 

Figure 2: Example of ROI annotation/labeling on an anonymized VCUS video frame 

After cleaning and resizing, these images were set aside to have the vocal cords segmented 

manually by three team members (WSL, QR, MB), using the Label Studio open-source software 

run locally on Rosie. Each annotator identified a rectangular region of interest (ROI) by placing 

the upper boundary of the region at the anterior commissure (crest where the two cords meet), the 

lower boundary at the highest visible reverberation artifacts from the arytenoid cartilage, and the 

left and right boundaries directly adjacent to the visible edges of the vocal cords (Figure 2). Frames 

that lacked clearly visible vocal cords were discarded, leaving us with a model training dataset 

totaling 1,088 images and 1,088 associated ROI labels (one per image). 

 

2.2 Segmentation Model Training 

These 1,088 manually labeled images were used to train a segmentation model which can identify 

and segment the vocal cords in a VCUS image, if they are sufficiently visible. We used the 

YOLOv8m object detection model provided by Ultralytics as the backbone for this task, benefiting 
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from its efficient convolutional architecture and decoupled detection head. All experiments were 

conducted using ultralytics==8.3.88.  

Images were resized to 640×640 during model training. The training was performed with 

augment=True enabled in YOLOv8, which includes default augmentations such as mosaic, mixup, 

scaling, and HSV color-space augmentation. The model was trained for 4 epochs using the SGD 

optimizer with the default learning rate, momentum (0.937), and weight decay (5e-4).  

Training and validation sets were stratified from the augmented dataset. The model was trained on 

a single-class detection task ("vocal_cords") using YOLO's standard CIoU loss for bounding box 

regression, Binary Cross-Entropy for classification, and Distribution Focal Loss (DFL) for refined 

localization. 

 

2.3 Segmentation Model Evaluation Protocol 

We used COCO-style object detection metrics to evaluate the model on the 10% validation set 

drawn exclusively from the three participant videos that were previously unseen by any model:  

• Precision, Recall, and F1-score  

• mAP@0.5 and mAP@0.5:0.95  

• Confidence-curve and PR-curve analysis  

• Normalized confusion matrix (vocal cords vs. background)  

The model was evaluated on a validation set using a confidence threshold of 0.701, derived from 

the F1-Confidence curve. While clinical applications often prioritize precision to minimize false 

positives, F1-score was selected here to balance the high recall needed for screening and early 

detection tasks with acceptable precision.  

 

2.4 Preparation for VCP Classification 

After building a vocal cord detection and segmentation model, we then sought to investigate the 

viability of using a convolutional neural network (CNN) to identify potential vocal cord paralysis 

from ultrasound images. We investigated two different CNN architectures to perform a binary 

classification task on input VCUS images: differentiating between bilaterally mobile vocal cords 

and cords exhibiting VCP. To address the major limitation of not having access to a source of 

clinical VCUS images of patients with VCP, we were able to create digitally simulated images of 

VCP.  Vocal cord length is noted to vary by functional activity such as singing at high or low pitch 

[12], or clinical conditions such as paralysis. VCP causes distinctive vocal cord length difference 

between the paralyzed side and the mobile side [2], thus inspiring and supporting our method of 

digital alteration to simulate VCP.  

 

2.4.1 Synthetic Data Creation and Data Augmentation 

To address class imbalance when approaching classification, we employed an “asymmetric 

squishing” technique to create examples of VCP from the 1,088 healthy training images we had 
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available to us. First, we referenced our manually created labels to crop each image down to just 

the ROI, so that each image exclusively contained vocal cord anatomy, and then we resized each 

image back up to 256x256 using Lanczos interpolation. Each ROI image was then split in half 

vertically down the center of the image, and each half was saved separately for the subsequent 

synthetic data creation steps. 

To simulate the appearance of one paralyzed vocal cord being shorter than the other (mobile) cord, 

one of the image halves was scaled vertically by a factor of 0.75 in such a way that the top borders 

of the two half-images stayed lined up, but the bottom border of the “compressed” half now rested 

well above the bottom border of the unmodified half. Pixel information was then sampled from 

the original VCUS image, i.e. from outside of the labeled ROI, to fill in the “empty space” below 

this compressed half and make the image square again. This created the appearance that the vocal 

cord contained in one half of the image was noticeably shorter than the vocal cord in the other half.  

Unfortunately, recomposing the compressed half with the uncompressed half often resulted in a 

“seam” where the pixels no longer lined up neatly. To address this, a vertical strip six pixels wide 

on either side of this seam line was deleted and replaced using a bilinear interpolation based on 

the brightness values of the pixels adjacent to the seam. This looked more natural, but 

unfortunately still could be considered a significant visual artifact in many of our training images. 

We were concerned that this artifact would induce unintended bias in our classification models if 

it were present only in our synthetic VCP example images, so we came up with a strategy that we 

hoped would mitigate this issue and simultaneously ensure that our dataset contained an equal 

distribution of both healthy and paralyzed training images: 

 

Figure 3: Examples of the four classes of images created 

Four image groups were created for our training data. The first group, “rightpar”, contained 1,088 

images that had been modified by the procedure described above to have their right sides 

compressed in a simulacrum of right vocal fold immobility. Similarly, “leftpar” contained 1,088 

more images which had their left halves compressed equivalently. In an attempt to reduce artifact 

bias, the third image group called “healthy2” contained 1,088 more images that were split 

vertically and then rejoined using the same bilinear interpolation operation as had been used on 

the paralysis images, but neither half was compressed or modified otherwise. This way, the image 

still looked mostly “normal”, but exhibited the same bilinear interpolation artifact present in the 

paralysis images. Finally, the fourth group contained a final 1,088 images that were not modified 

beyond cropping them down to the labelled ROI. After creating these four groups, we had 2,176 

healthy examples and 2,176 VCP examples, or 4,352 training images in total. 
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Finally, data augmentation was applied to both healthy and VCP image groups to further expand 

the dataset and enhance model generalizability. Augmentations included random rotations of up 

to 10 degrees, horizontal flips, and minor affine transformations. In addition, multiple 

augmentations were combined sequentially, such as a rotation followed by a flip, or an affine 

transformation followed by both a rotation and a flip, to introduce additional variability. This 

approach substantially increased the number of training-ready images, raising the total to 34,816 

unique images. 

 

Figure 4: Examples of how original images were augmented to increase dataset size 

 

2.5 Classification Models 

We evaluated the performance of two different CNN architectures for classifying VCUS images 

as healthy or paralyzed. The first model we evaluated, YOLOv8n-cls, was pre-trained on large-

scale image datasets and then fine-tuned on our augmented VCUS dataset. Then, we developed 

and evaluated a simple custom model architecture which we dubbed VIPRnet, shown in Figure 5. 

 

Figure 5: VIPRnet model structure 
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3. Results 

3.1 YOLO Segmentation Model Results 

 

Figure 6: Training and Validation Loss & Metric Curves 

 

3.1.1 Training Performance 

As shown in Figure 6, the model achieved strong convergence across all loss components. Training 

loss decreased steadily over 4 epochs: 

• Box loss: 2.07 → 1.43 

• Classification loss: 2.94 → 1.43 

• DFL loss: 2.18 → 1.68 

Validation metrics showed a sharp improvement after the initial epoch, with mAP@0.5 rising to 

0.78 and mAP@0.5:0.95 reaching 0.40. These improvements are corroborated by increasing 

precision (0.84) and recall (0.80) values. 

Metric Value 

Precision 0.84 

Recall 0.80 

mAP@0.5 0.78 

mAP@0.5:0.95 0.40 

 

Table 2: YOLO Segmentation model training metrics 
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3.1.2 Confidence-Based Analysis 

The Recall-Confidence curve (Figure 7) demonstrates strong recall even at low thresholds, 

suggesting the model rarely misses true positives. Conversely, the Precision-Confidence curve 

(Figure 8) indicates that perfect precision (1.00) is only achieved at a high threshold (0.952), 

resulting in reduced recall. The F1-confidence curve (Figure 9) peaks at 0.701, offering an optimal 

trade-off between the two metrics for general-purpose detection. 

In the context of this research, the F1-optimal threshold of 0.701 was selected rather than a 

precision-maximizing threshold to prioritize sensitivity in detecting potential vocal cord anomalies. 

In a clinical screening workflow, this ensures that fewer pathological cases are missed. 

 
Figure 7: Recall-Confidence curve 

 

 
Figure 8: Precision-Confidence Curve 

 

 

 

Figure 9: F1-Confidence Curve 
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3.1.3 Spatial and Dimensional Consistency 

As illustrated in Figures 10 and 11, bounding boxes predominantly cluster near the image center 

(x ≈ 0.5, y ≈ 0.4), aligning with anatomical expectations. A strong correlation between box width 

and height was observed, corresponding to the elongated shape of vocal cords. 

 

Figure 10: Label Distribution Grid (Instances, x, y, width, height) 

 

Figure 11: Pairwise Correlogram of Bounding Box Parameters 
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3.1.4 Confusion Matrix 

The normalized confusion matrix (Figure 12) reveals strong performance on the single-class task, 

with 96% accuracy in identifying vocal cords with minimal misclassification of vocal cords as 

background. 

 

Figure 12: Normalized Confusion Matrix 
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3.1.5 Qualitative Results 

Figure 13 presents bounding box predictions on representative validation images. The model 

consistently identified vocal cords even under conditions of shadowing or simulated asymmetry, 

reinforcing its robustness across imaging artifacts and augmentations. 

 

 

Figure 13: Sample Detection with Bounding Boxes on Ultrasound Image 
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3.2 YOLO Classification Model Results 

3.2.1 Training Performance 

The YOLOv8n-cls model converged reliably over 20 training epochs, with both training and 

validation loss showing a consistent downward trend (Figures 14a–b). Top-1 accuracy increased 

from 0.48 to 0.93, indicating strong learning of class-discriminative features. Top-5 accuracy 

reached 1.00 early in training and remained flat, reflecting the binary nature of the classification 

task (Figures 14c–d). 

 

Figure 14: Training and Validation Curves for Classification Model 

(a) Training Loss (b) Validation Loss (c) Top-1 Accuracy (d) Top-5 Accuracy 

 

3.2.2 Classification Accuracy 

On the held-out validation set, the classification model achieved a final top-1 accuracy of 92.3%. 

As illustrated in the normalized confusion matrix (Figure 15), the model correctly identified 87% 

of healthy cases and 97% of paralyzed cases. Most misclassifications were false positives—

classifying healthy cords as paralyzed—an acceptable tradeoff in clinical screening contexts where 

recall is prioritized. 
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Figure 15: Normalized Confusion Matrix for Vocal Cord Classification 

To further evaluate classifier performance under different thresholds, a precision-recall (PR) curve 

was plotted (Figure 16). The curve shows high precision across a wide recall range, with a steep 

drop-off only at extreme recall values. This shape confirms the model's reliability in detecting true 

positives with minimal false positives under moderate thresholds—an essential characteristic for 

early-stage screening tools in clinical settings. 

 

Figure 16: Precision-recall curve for the classification task. The area under the curve and flatness 

of the plateau suggests the model maintains high precision even with increasing recall. 
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3.3 VIPRnet Classification Model Preliminary Results 

Training performance for VIPRnet is presented in Figure 17. VIPRnet was trained over 50 epochs 

with a batch size of 64, showing a gradual and consistent reduction in both training and validation 

loss. VIPRnet exhibited a smooth learning curve with minimal indicators of overfitting, as 

evidenced by the small gap between training and validation metrics. By the final epoch, the model 

stabilized at approximately 99.5% validation accuracy, indicating strong performance with our 

synthetic data. Further analysis was unfortunately not possible due to time constraints. 

 

Figure 17: VIPRnet training metrics 

 

3.4 Results Summary 

Despite differences in their training durations and batch sizes, both architectures achieved effective 

convergence. Furthermore, both models exhibit extremely high validation accuracies, which gives 

promise that they will perform adequately at the task they were trained for (differentiating VCUS 

images acquired from a small population of healthy undergraduate students apart from digitally 

modified versions of those same images). However, these results necessarily reflect the limitations 

of our study and should not be interpreted as a guarantee that either model will generalize to a 

clinical setting or exhibit these same levels of accuracy on VCUS images featuring genuine VCP 

anatomy. 
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4. Discussion 

VCUS may be a preferable method to look for VCP as compared to flexible laryngoscopy (FL) 

because it is non-invasive, cost-effective, quick, well-tolerated with no patient discomfort, and 

accurate as reported by experts in the technique.  However, it is widely perceived to be difficult to 

perform or interpret by those less familiar with the technique, with reported operator variability as 

a limitation of VCUS [8,9].  To mitigate human operator-dependence, machine learning models 

have the potential to provide consistently accurate analysis [13]. 

This study demonstrates the feasibility of using machine learning to detect vocal cord paralysis 

(VCP) via VCUS. By recording ultrasound videos from 30 participants, parsing the footage into 

still frames, and manually labeling ROIs containing the vocal cords, we were able to train a 

YOLOv8 based segmentation model that segmented the cords with high accuracy. Further, we 

explored the viability of multiple convolutional neural networks such as the pretrained YOLOv8n-

cls and our custom VIPRnet architecture to classify images as healthy or paralyzed. 

To address the lack of a clinical source of VCUS images showcasing true VCP, we generated 

synthetic VCP frames by “asymmetrically squishing” one half of each labeled ROI and blending 

the halves back with bilinear interpolation. This technique, combined with data augmentation, 

substantially expanded our training set to 34,816 unique images, while also mitigating class 

imbalance. Although our synthetic approach cannot fully replicate complex pathological variations 

and potentially caused model overfitting, it enabled us to rigorously train and tune several models 

with promising preliminary results. 

Looking ahead, we plan to refine our approach and expand our datasets in several ways. The most 

obvious next step is to acquire clinical VCP data to validate the models we have developed and 

potentially train new ones. Barring that, a more robust use of YOLO segmentation could allow us 

to automatically identify and label a larger number of frames from our current and future IRB-

approved data collections, thereby increasing the volume and diversity of available training images. 

Additional hyperparameter tuning, improved synthetic data generation techniques, and exploration 

of alternate classification architectures could also further boost model performance. Additionally, 

we would like to investigate the methodology of a recently published videolaryngoscopy-based 

study [13], borrowing their length measurement framework and applying it to our ultrasound 

dataset. Finally, as our work continues to evolve, we seek to collaborate both with other researchers 

to create more clinically useful tools and models, and with private medical device manufacturers 

to potentially incorporate our algorithms into commercial ultrasound hardware to run in real-time 

at the point of care. 

 

 

5. Conclusion 

Machine learning-assisted analysis of VCUS shows great promise in improving diagnostic 

accuracy over operator-dependent human interpretation. 
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Abstract

Computational skills give students agency to explore and discover mathematics on their
own, yet the development of such skills is often overlooked. Students benefit from the
ability to take an open-ended question, design and run computational experiments (in a
computer algebra system or programming environment), and formulate conjectures based
on their observations. These skills of computational exploration are important for students
to develop, as they open doors to mathematical understanding and quantitative problem
solving. This paper presents ideas for equipping students with computational inquiry skills,
with examples from the Modern Computational Mathematics course at St. Olaf College.
This course helps students develop computational fluency and skills that they can use to
discover patterns, ask good questions, test conjectures, and gain insight into mathematical
questions. Examples presented in this talk could serve as inquiry-based modules for other
courses in mathematics or related disciplines. Furthermore, computational exploration can
make abstract topics more accessible and provides transferable skills that students can apply
to tackle a wide variety of problems.
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1 Introduction

Students of mathematics should have opportunities to experience how computational ex-
ploration enhances their understanding of mathematics. Although students may encounter
computing in courses such as statistics, data science, or computer science, many of our
students still graduate with poorly developed computational skills. In particular, mathe-
matics majors do not necessarily see the role that computation plays in the exploration and
discovery of ideas from what is often called “pure” mathematics. Beyond its traditional role
in numerical analysis, computation should serve as a powerful lens through which students
can explore, discover, and understand mathematical concepts.

Despite the profound role of computation (even before electronic computers) in the dis-
covery of mathematical ideas and the growing importance of computational fluency in
the modern world, many mathematics curricula present mathematics as a static body of
knowledge, rather than a dynamic field of inquiry. The potential for computational tools
to facilitate mathematical exploration and discovery is frequently overlooked, leaving stu-
dents ill-equipped to leverage these resources effectively. While students might learn the
mechanics of using a computer algebra system or a programming environment, they of-
ten lack the skills to design and execute meaningful computational experiments. They
struggle to ask precise questions, translate mathematical questions into computational ex-
periments, interpret computational output, and formulate mathematical conjectures based
on their observations. The “how” of mathematical discovery—the process of exploration
and experimentation—remains largely unexplored.

This paper presents a framework for equipping students with computational inquiry skills,
with concrete examples from the course Modern Computational Mathematics at St. Olaf
College. This course is designed to cultivate students’ ability to ask mathematical ques-
tions, conduct computational experiments, and formulate precise conjectures. We highlight
how specific computational explorations can reveal patterns, suggest potential truths, test
conjectures, and make advanced mathematical concepts more accessible. By providing
students with the tools and techniques for computational inquiry, we aim to empower them
to become independent mathematical explorers and problem solvers, prepared to tackle the
challenges of the modern world. This capability fosters a deeper understanding of mathe-
matical principles, cultivates critical thinking, and provides students with the tools to tackle
real-world challenges.

1.1 Course Context

At St. Olaf College, the course Modern Computational Mathematics (MCM) is taken mostly
by sophomore and junior math majors, some of whom have a second major such as computer
science. The only prerequisite is a first course in linear algebra, which we teach early in
the math major. The MCM course is one of three “transition courses” in the math major,
which are courses that teach students to think like mathematicians in terms of proof and
computation. The other transition courses are Real Analysis and Abstract Algebra, which
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we teach as introductory proofs courses. In contrast, MCM teaches students to think
computationally, developing their skills of computational exploration and discovery. It is
important to note that our MCM course is not focused on numerical analysis, computer
science, or data science, yet we encourage students to also take such courses. Students are
not expected to have prior programming experience, though students coming out of our
prerequisite Linear Algebra course have some exposure to computations in Mathematica
for solving linear systems and visualizing vectors.

Our Modern Computational Mathematics course prioritizes the “how” of mathematics over
the “what,” empowering students to formulate mathematical questions, conduct compu-
tational experiments, and develop precise conjectures. The course does not necessarily
rely on specific mathematical content, but draws on many areas such as number theory,
probability, graph theory, complex analysis, and abstract algebra. This is a unique course,
though it shares some similarities with experimental mathematics courses taught at some
institutions. For a more comprehensive view of the course, we recommend our forthcoming
textbook, which will soon be published by the Mathematical Association of America. In
the following pages we provide examples illustrating not only how we teach computational
exploration, but also how computation provides access to advanced mathematical topics.
Perhaps most importantly, we want students to develop their own agency to ask their own
questions, conduct their own computational experiments, and to make their own discoveries
in mathematics and beyond.

1.2 Questions and Conjectures

For many of our students, Modern Computational Mathematics is the first course in which
they are asked to come up with their own mathematical questions. Often, we introduce a
mathematical setting and guide the students in some preliminary computations, producing
number sequences or plots that reveal interesting patterns. We then ask the students “What
do you observe?” and “What do you wonder?” Students discuss their observations in groups
and write down a list of questions that occur to them.

This sort of activity leads us to discussion of what makes a good mathematical question.
We like to highlight the following characteristics of a good mathematical question from
Barry Mazur and William Stein [MS16]:

1. The question is interesting to you.
2. You don’t already know the answer to the question.
3. You haven’t already seen the question before, or at least not exactly.
4. You can begin to make computational investigations to shed light on the question.

These principles guide students to critical and creative inquiry that will result in productive
computational exploration.
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Furthermore, many students have never formulated their own mathematical conjecture prior
to taking MCM. We guide students to choose a good mathematical question and then to
design computational experiments to gain insight into their question. Based on their insight,
students may be able to formulate a precise conjecture as a response to their question. Further
computations may support the conjecture or perhaps provide a counterexample, leading them
to revise the conjecture. Depending on their mathematical background, students may be
able to try to prove their conjecture.

We give examples of four settings in which students can experience this process of compu-
tational exploration. These four settings involve very different mathematical topics, but they
share a low bar of entry and many directions for exploration. Furthermore, computational
investigation in these settings can introduce students to areas of advanced mathematics and
open questions.

2 Generalized Fibonacci Sequences

The well-known Fibonacci sequence is the sequence of integers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, . . . ,

where each number is the sum of the previous two. Formally, the Fibonacci sequence is
usually defined recursively as:

𝐹0 = 0, 𝐹1 = 1,
𝐹𝑛 = 𝐹𝑛−2 + 𝐹𝑛−1 for 𝑛 ≥ 2.

Students can readily implement code to compute Fibonacci numbers, learning about iterative
and recursive algorithms in the process.

With the ability to compute lists of Fibonacci numbers, students can search for identities
among the Fibonacci numbers. Perhaps inspired by the algebraic identity (𝑛 + 1) (𝑛 − 1) =
𝑛2 − 1, students can compute 𝐹𝑛−1𝐹𝑛+1 and 𝐹2

𝑛 for various 𝑛. Even by hand, it is not too
hard to compile the following results.

𝑛 𝐹𝑛−1𝐹𝑛+1 𝐹2
𝑛

1 0 1
2 2 1
3 3 4
4 10 9
5 24 25
6 65 64

It appears that 𝐹𝑛−1𝐹𝑛+1 and 𝐹2
𝑛 always differ by 1. Further computations reveal that the
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pattern continues; for example,

𝐹99𝐹101 = 125475243067621153271396401396356512255626,
𝐹2

100 = 125475243067621153271396401396356512255625.

With a bit of thought, students are led to conjecture that the Fibonacci numbers satisfy

𝐹𝑛+1𝐹𝑛−1 − 𝐹2
𝑛 = (−1)𝑛

for all positive integers 𝑛. In fact this is true, and is known as Cassini’s identity. Using
mathematical induction to prove Cassini’s identity is a good exercise for students with some
exposure to proof by induction.

Cassini’s identity is also a good starting point for introducing students to the idea of
generalizing a known result. For example, we ask, “What if we replace the 𝑛 + 1 and 𝑛 − 1
with 𝑛 + 𝑟 and 𝑛 − 𝑟?” Students embark on computations similar to those described above
and discover Catalan’s identity,

𝐹2
𝑛 − 𝐹𝑛+𝑟𝐹𝑛−𝑟 = (−1)𝑛−𝑟𝐹2

𝑟 .

A further generalization and computational exploration leads to Vajda’s identity,

𝐹𝑛+𝑖𝐹𝑛+ 𝑗 − 𝐹𝑛𝐹𝑛+𝑖+ 𝑗 = (−1)𝑛𝐹𝑖𝐹𝑗 .

The Fibonacci sequence can itself be generalized in many ways. Changing the initial
value leads to the Lucas sequence, defined by 𝐿0 = 2, 𝐿1 = 1, and 𝐿𝑛 = 𝐿𝑛−1 + 𝐿𝑛−2,
which provides more identities and interesting connections to the Fibonacci sequence.
Furthermore, changing one of the recurrence coefficients leads to the Pell sequence, defined
by 𝑃0 = 0, 𝑃1 = 1, and 𝑃𝑛 = 2𝑃𝑛−1 + 𝑃𝑛−2, opening the door to yet more identities.
Exploring Fibonacci, Lucas, and Pell sequences requires a low cost of entry, yet students
can easily rediscover many known results. Such identities can be readily found online, but
for a comprehensive list we recommend the text by Koshy [Kos17].

Much more creative exploration results when we ask students to define their own general-
ization of the Fibonacci sequence. A good starting point is to ask students to choose their
own initial values 𝐺0 = 𝑎 and 𝐺1 = 𝑏, along with their own coefficients for the recurrence
relation 𝐺𝑛 = 𝑟𝐺𝑛−1 + 𝑠𝐺𝑛−2. Then they explore patterns in their sequence and, using
known Fibonacci identities as a guide, seek to formulate precise conjectures involving their
own sequence.

For example, a student could choose 𝐺0 = 1, 𝐺1 = 2, and 𝐺𝑛 = 3𝐺𝑛−1 + 1𝐺𝑛−2. This gives
the sequence

1, 2, 7, 23, 76, 251, 829, 2738, . . . .
By performing their own computations, students can readily observe that an analog of
Cassini’s identity holds for this sequence:

𝐺𝑛−1𝐺𝑛+1 − 𝐺2
𝑛 = (−1)𝑛+1.
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Students can then generalize this identity, perhaps obtaining a version of the Catalan identity
such as

𝐺𝑛−𝑖𝐺𝑛+𝑖 − 𝐺2
𝑛 = (−1)𝑛+𝑖𝑃2

𝑖 ,

where 𝑃𝑖 is the Pell number with index 𝑖.

More fruitful generalizations arise by considering expressions of the form 𝐺𝐴𝐺𝐵 ±𝐺𝐶𝐺𝐷 ,
where 𝐴, 𝐵, 𝐶, and 𝐷 are indexes often chosen to be related in some way. As one example
that is within the reach of a sufficiently motivated student, the previously-defined sequence
(𝐺𝑛) satisfies

𝐺𝑛𝐺𝑚 + 𝐺𝑛+1𝐺𝑚+1 = 𝐺𝑛+𝑚 + 2𝐺𝑛+𝑚+1,

an identity that we discovered through our own computational exploration.

While generalized Fibonacci sequences are interesting in themselves, they lead to explo-
rations that teach students broader principles, such as:

• How to generalize a known mathematical result.
• What is a mathematical identity and how to discover a nontrivial identity.
• How to state a precise mathematical conjecture.

Furthermore, many (generalized) Fibonacci identities have accessible proofs, often using
mathematical induction, thus providing an excellent setting for students to practice proving
results from their own conjectures.

3 Collatz Trajectories

The Collatz conjecture is a famous unsolved problem in mathematics. The problem is not
only easy to state, but also provides fertile ground for exploring patterns, even while a
solution the main problem remains out of reach.

The problem arises by applying the following function, which we call the Collatz function:

col(𝑛) =
{

3𝑛 + 1 if 𝑛 is odd,
𝑛/2 if 𝑛 is even.

Start with any positive integer 𝑛. Repeatedly apply the Collatz function to obtain the
sequence

𝑛 → col(𝑛) → col(col(𝑛)) → col(col(col(𝑛))) → · · · .

For example, if the starting value is 𝑛 = 5, then the sequence is

5, 16, 8, 4, 2, 1, 4, 2, 1, . . . ,
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which we call the Collatz trajectory with starting value 5. If the starting value is 𝑛 = 7, then
the Collatz trajectory is

7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, . . . .

Observe that each of these Collatz trajectories reaches the value 1, after which the sequence
repeats the cycle 4, 2, 1. The Collatz conjecture states that for any positive integer starting
value, the Collatz trajectory eventually reaches 1. Despite extensive study and computational
verification, the Collatz conjecture remains open [Guy04, Lag10].

While students can begin by computing Collatz trajectories, fascinating patterns emerge
when considering properties of these trajectories. For example, let height(𝑛) denote the
maximum value of the Collatz trajectory starting with 𝑛. If students compute and plot
(𝑛, height(𝑛)) for positive integers 𝑛 up to 4000, they obtain a plot like that shown in Fig. 1,
which contains many surprising patterns. This plot provides fertile ground for asking groups
of students to state their own observations and formulate their own questions. We like to
guide the students to create this plot and then simply ask, “What do you observe? What do
you wonder?” Student questions often focus on the lines that are visible in the plot. Some
ask specifically about the value of the unusually common height just below 10,000, or more
generally about why some heights are more common than others.

Similarly, let stop(𝑛) denote the number of iterations of the Collatz function required to first
obtain 1 from the starting value 𝑛, which we refer to as the “stopping time” of 𝑛. Students
can compute and plot (𝑛, stop(𝑛)) for positive integers 𝑛 up to 4000, reproducing Fig. 2.
Again, unexpected patterns emerge, prompting questions. For example, there appears to be
a sort of clustering in Fig. 2. Why are there consecutive (or nearly consecutive) starting
values with the same stopping times? What stopping times are most common? What values
of 𝑛 result in unusually large stopping times?
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Figure 1: Heights of Collatz trajectories for 𝑛 from 1 to 4000. (Heights
greater than 40,000 are not shown.)

6
287



0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000
0

50

100

150

200

𝑛

sto
pp

in
g

tim
e

Figure 2: Stopping times of Collatz trajectories for 𝑛 from 1 to 4000.

For many students, this exploration of Collatz trajectories is the first time that they have been
asked to embark on a creative exploration and generate their own mathematical questions.
This gives a good setting to emphasize the characteristics of good mathematical questions
from in Section 1.2 and to let students design computational experiments to gain insight
into their questions.

4 Primes and the Riemann Hypothesis

The concept of a prime number starts with simple arithmetic (i.e., multiplication of integers)
but leads to fascinating patterns, deep mathematics, and modern applications. Recall that
a positive integer 𝑛 ≥ 2 is prime if and only if its only positive divisors are itself and one.
While finding small primes is easy, determining whether a given large integer is prime can
be a significant challenge. Implementing sieve algorithms for listing primes and primality
tests for determining whether an integer is (probably) prime are good exercises for students
in a computational math course. Additionally, the primes provide a plethora of patterns to
explore, as well as an introduction to one of the most important open mathematical questions
of our day—the Riemann hypothesis.

After students have access to code (either their own implementation or that provided by a
programming environment) for creating lists of primes, we ask them to test several historical
conjectures about primes.

Conjecture A. Every integer greater than 2 is the sum of two primes.
Conjecture B. For every 𝑁 , the number of positive integers less than 𝑁 with an even

number of prime factors is less than or equal to the number of positive
integers less than 𝑁 with an odd number of prime factors. (For this, prime
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factors are counted with multiplicity; e.g., 24 = 23 · 3 has 4 prime factors,
while 588 = 22 · 3 · 72 has 5 prime factors.)

Conjecture C. For every positive integer 𝑛, there exists at least one prime between 𝑛2

and (𝑛 + 1)2.
Conjecture D. All odd numbers greater than 1 are either prime, or can be expressed as

the sum of a prime and twice a square.

Two of these conjectures are now known to be false, but two are still open questions. Students
can readily explore these questions computationally, with the goal of finding computational
evidence in support of the conjecture or possibly a counterexample. This not only gives
students good practice designing computational experiments, but also helps students think
about what makes a good mathematical conjecture.

Conjecture A above is the famous Goldbach conjecture, which remains open despite a mas-
sive amount of computational evidence. Conjecture C is known as Legendre’s conjecture,
and is also open. Conjecture D is also attributed to Goldbach, but has exactly two known
counterexamples: the numbers 5777 and 5993, which are the only odd composite Stern
numbers [Hod93].

Conjecture B, attributed to Pólya, is the most challenging of the four for students to inves-
tigate, not only because it has the most complicated statement of the four, but because its
smallest counterexample is rather large. The conjecture fails at 906,150,257, a value not
easy to find, but which can be found by students who think carefully about how to efficiently
count prime factors of a list of integers.

Beyond testing conjectures, computational exploration can introduce students to the pro-
found connections between the prime numbers and the Riemann hypothesis. This involves
introducing the Riemann zeta function, which is defined for complex numbers 𝑠 with
Re(𝑠) > 1 by

𝜁 (𝑠) =
∞∑︁
𝑛=1

1
𝑛𝑠

and extended to the complex plane via the technique of analytic continuation. We do not
expect our students to grapple with analytic continuation, but they can use computational
tools (such as those built into Mathematica or other programming environments) to create
domain-coloring plots of 𝜁 (𝑠), such as that shown in Fig. 3.

After an introduction to domain coloring, we guide students to focus on the zeros of the
Riemann zeta function. Trivial zeros occur at negative even integers. Other zeros of 𝜁 (𝑠)
are said to be nontrivial, and their locations are readily seen in a domain-coloring plot. The
Riemann hypothesis says that all nontrivial zeros of 𝜁 (𝑠) have real part exactly 1

2 .

The imaginary parts of the nontrivial zeros of 𝜁 (𝑠) form an interesting sequence, which we
call the Riemann spectrum. Letting 𝜃𝑖 denote the imaginary part of the 𝑖th nontrivial zero
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Figure 3: Domain coloring plot of the Riemann zeta function 𝜁 (𝑠).

above the real axis, we have the sequence

𝜃1 = 14.134725 . . . , 𝜃2 = 21.022040 . . . , 𝜃3 = 25.010858 . . . , 𝜃4 = 30.424876 . . . , . . . .

There are many connections between the Riemann zeta function and the primes, but the
following exploration is very accessible to students and reveals an astonishing relationship
between the Riemann spectrum and the sequence of prime numbers. First, students compute
partial sums of the following function 𝑓 (𝑠), which is a sort of Fourier transform of the
Riemann spectrum:

𝑓 (𝑠) = −
∞∑︁
𝑘=1

cos(ln(𝑠)𝜃𝑘 ). (1)
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Figure 4: Plot of 𝑓 (𝑠) from Eq. (1), computed with 500 zeros of the Riemann
zeta function. Prime powers are highlighted with dots on the horizontal axis.
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Figure 5: Plot of 𝐹 (𝜃) from Eq. (2), computed with prime powers up to 200.
The values of the Riemann spectrum are highlighted on the horizontal axis.

By computing and plotting partial sums of 𝑓 (𝑠), students observe “spikes,” as in Fig. 4,
which plots the partial sum of the first 500 terms. Examining the locations of these spikes,
students observe that the tallest spikes occur at the primes. Furthermore, shorter spikes
occur at integer powers of the primes. The function 𝑓 (𝑠), defined in terms of the Riemann
spectrum, precisely identifies the locations of all primes and prime powers.

Next, students can compute partial sums of the following trigonometric series, which is a
sum over the the prime powers:

𝐹 (𝜃) = −
∑︁

prime powers 𝑝𝑘

ln(𝑝)
𝑝𝑘/2 cos

(
𝜃 ln(𝑝𝑘 )

)
. (2)

Figure 5 shows a plot of 𝐹 (𝜃), computed with prime powers up to 200. Again, spikes
emerge as the sum is taken over more and more prime powers. This time, students observe
that the spikes occur at the values of the Riemann spectrum.

The trigonometric sequences in Eqs. (1) and (2) reveal a surprising duality between the
sequences of primes and the Riemann spectrum. Knowledge of the primes determines the
values of the Riemann spectrum, and vice-versa. The duality between these two sequences
can be made precise using the language of Fourier transforms. The text by Mazur and Stein
[MS16] explains in far more detail how this process utilizing Fourier transforms relates the
prime counting function and the Riemann spectrum.

Computational explorations involving the Riemann zeta function and its zeros helps students
to understand the statement of the Riemann hypothesis. From this, instructors can highlight
how the notion of certainty in mathematics differs from that in other scientific disciplines.
Nontrivial zeros of the Riemann zeta function have been computed up to a height of 10
trillion above the real axis, and every zero has been found to have real part exactly 1

2 . This
is an enormous amount of evidence in support of the hypothesis. In other areas of science,
this amount of evidence would lead to a scientific law, but in mathematics the Riemann
hypothesis remains a conjecture until a proof is found.
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5 Percolation Theory

For our last example, we turn to probabilistic simulation. Computational skills allow
students to explore a vast assortment of questions of the form “What is the probability
that...?” and “On average, how long does it take to...?” For these questions, it is often
difficult or impossible to find an exact (i.e., closed-form) answer, but estimates resulting
from simulation may be within reach.

One of our favorite settings for probabilistic simulations is known as percolation theory.
This setting involves geometric models that are easy to describe, lead to a depth-first search
algorithm, and reveal a surprising phase transition.

Figure 6: Two examples of grids of open (unshaded) and closed (shaded)
squares. The left grid has no percolation path of open squares from top to
bottom, while the right grid has such a path.

The setting is an 𝑛 × 𝑛 grid of squares, as illustrated in Fig. 6. Suppose that each individual
square is either open, meaning that it permits water to flow through it, or closed, meaning
that water cannot flow through it. In Fig. 6, open squares appear white, and closed squares
are shaded gray. Each square is independently chosen to be open with probability 𝑝 or
closed with probability 1− 𝑝. Now suppose that water is poured on the top edge of the grid
and flows through any open square to all of its neighbors (left, right, above, and below).
What is the probability that there exists a “percolation path” for water to flow from top to
bottom, and how does this probability depend on 𝑛 and 𝑝?

The problem is simple to state, but implementing a simulation requires some thought
about data structures and algorithms. First, students must decide how to represent the
grid in memory and how to generate a grid where each square is open with probability 𝑝.
Formulating an algorithm to search for a percolation path is a challenge for many students,
but instructors can guide students to consider a recursive algorithm. For students who lack
experience with recursive algorithms, this can be scaffolded with pseudocode and simpler
cases, such as first searching for paths that proceed only from a square to its neighbor below,
before generalizing to search all four neighbors. In order to avoid infinite recursion, students
must implement a way of tracking previously searched locations.
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Figure 7: For large grid sizes 𝑛, the probability of percolation changes from
nearly 0 to nearly 1 at the percolation threshold.

With a working algorithm that detects the presence of a percolation path from the top to the
bottom of any particular grid, students can estimate the probability of percolation for any
particular grid size 𝑛 and open-square probability 𝑝. Students observe that when 𝑝 is large,
the probability of percolation is near 1, and when 𝑝 is small, the probability of percolation is
near 0. However, when students plot the probability of percolation across a range of values
of 𝑝, an unexpected phenomenon occurs. For large grid sizes, the probability of percolation
changes abruptly from nearly 0 to nearly 1 as 𝑝 increases through a small interval near 0.6.
Further investigation reveals that the larger the grid size, the sharper this transition, which
students can observe by creating a plot such as Fig. 7. For very large grids, the probability
of percolation changes from 0 to 1 at approximately 0.595. Students thus discover a phase
transition that occurs at a value known as the percolation threshold.

This model of percolation theory can be generalized to many other lattices. One simple
extension is to allow water to flow between open squares that share only a common vertex
and not a common edge. Beyond this, any two-dimensional lattice can be the basis for a
percolation model. For each model, there exists some threshold value at which percolation
occurs. Students can readily compute these thresholds to several decimal digits. Remark-
ably, for all but a few models, closed-form expressions for the percolation thresholds are
unknown.

6 Conclusion

Math students, and especially math majors, should have opportunities to engage in computa-
tional exploration. By providing students with opportunities to formulate questions, design
experiments, and analyze results, computational skills empower students to engage with
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mathematics as a dynamic and creative discipline. The examples presented in this paper,
ranging from generalized Fibonacci sequences to the zeros of the Riemann zeta function
and the stochastic nature of percolation theory, illustrate how computation can illuminate
abstract concepts, make advanced mathematics more accessible, and foster curiosity. All
of the explorations described in this paper have been successfully employed with students
in the Modern Computational Mathematics course at St. Olaf College. Further details,
examples, and explorations can be found in our forthcoming textbook, to appear soon in the
Mathematical Association of America textbook series. We hope that faculty will consider
integrating computational inquiry into their own courses, not as a replacement for traditional
methods, but as a powerful complement.

The incorporation of computational exploration into math education offers wide-ranging
benefits. Beyond helping students understand the particular mathematical topics at hand, the
skills of computational exploration cultivate critical thinking, problem-solving abilities, and
the capacity for independent discovery—qualities that are invaluable in a rapidly evolving,
data-driven world. Perhaps most importantly, equipping students with these skills allows
them to experience the joy of mathematical discovery firsthand. By empowering students to
ask their own questions, test their own conjectures, and witness the beauty of mathematical
patterns revealed through computation, students gain appreciation of mathematics as a
creative human activity.
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Abstract: 

 

The rapid expansion of Artificial Intelligence (AI) has raised ethical concerns in 

industries such as social media, healthcare, and corporations. A critical issue is mitigating 

bias in AI, as human-made algorithms inevitably reflect societal biases. Bias often stems 

from data collection, where historical inequalities shape machine learning models, 

disproportionately affecting marginalized groups. Recognizing these biases is essential for 

refining AI systems to promote fairness. 

This paper explores strategies for reducing AI bias, focusing on individual input, 

business intent, and dataset distribution. Recent research, such as the Data Debiasing with 

Datamodels (D3M) framework, demonstrates how removing harmful training samples 

improves model robustness (Jain et al., 2024). Additionally, subgroup fairness methods 

address the worst-group performance through data rebalancing, enhancing AI reliability. The 

NIST proposal on AI bias emphasizes industry standards and best practices, highlighting 
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the importance of identifying and managing bias at the pre-design, development, and 

deployment stages (Schwartz et al., 2022). 

There is no one-size-fits-all solution to mitigating AI bias. However, recognizing and 

addressing these biases, targeted interventions in data selection, and algorithmic development 

can lead to fairer, more inclusive models. Companies can take meaningful steps toward 

ethical AI deployment by refining data collection and implementing bias detection strategies. 
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1. Introduction 

 

 

1.1 Brief Overview of Artificial Intelligence (AI) and Its Rapid Expansion 

 

Artificial intelligence (AI) is rapidly transforming various industries, revolutionizing 

how businesses operate and how individuals interact with technology. Over 50% of 

organizations have incorporated AI into their business models, with its use projected to grow 

by 26% annually (Balderson, 2025). From human resources and accounting to IT and 

machine learning, AI is reshaping workplaces and decision-making processes. 

A Pew Research survey of 11,000 people found that 55% of respondents interact with 

AI at least once a day, and 27% encounter it multiple times daily (Balderson, 2025). Despite 

this rapid expansion, there is a growing shortage of AI experts capable of overseeing its 

implementation, raising concerns about unintended consequences such as bias, privacy risks, 

and accountability (Schwartz et al., 2022). 

As AI becomes increasingly embedded in our daily lives, it is crucial to examine its 

origins, datasets, and ethical implications. This paper explores the ethical concerns associated 

with AI, particularly in social media, healthcare, and corporate decision-making, where 

issues of bias, fairness, and transparency continue to shape their impact (Schwartz et al., 

2022). 
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Figure 1: Projected Economic Growth of AI Usage Adapted from Explainable AI market size, 

share & trends analysis report, by Grand View Research, 2023 

(https://www.grandviewresearch.com/industry-analysis/explainable-ai-market-report). © 

2023 Grand View Research. 

 

1.2 Introduction to Ethical Concerns Related to AI, Particularly in Social 

Media, Healthcare, and Corporations 

 

One of the most well-documented cases of AI bias occurred at Amazon, where the 

company implemented an AI-driven hiring system to evaluate job applicants. The system 

was trained on past hiring data, which primarily favored male candidates due to historical 

hiring trends in the tech industry. As a result, the AI sanctioned resumes containing words 

associated with women, such as "women’s chess club" or "women’s college" (Holdsworth, 

2023). Amazon ultimately abandoned the AI tool after recognizing its inherent bias, but this 

case shows a broader ethical issue—AI can inherit and reinforce systemic discrimination 

when trained on biased datasets (Holdsworth, 2023). 

Beyond Amazon, other companies have faced similar challenges with biased AI 

algorithms, particularly in facial recognition software used for hiring, security screenings, 

and the criminal justice system. Studies have shown that these systems misidentify 

individuals of color at significantly higher rates than white individuals, leading to wrongful 

rejections in job applications, discriminatory hiring practices, and unfair treatment in law 

enforcement (Srinivasan & Chander, 2021). 
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A 2012 study tested facial recognition algorithms on criminal mugshots from Pinellas 

County, Florida, comparing their accuracy across police departments in California, 

Maryland, and Pennsylvania. A senior FBI technology specialist who co-authored the study 

found that all three algorithms performed 5 to 10 percent worse when identifying African 

American individuals, sometimes failing to recognize them at all (Cavazos, 2025). 

This raises serious ethical concerns regarding transparency and accountability. Many 

organizations using AI-driven hiring or law enforcement tools do not disclose how their 

algorithms function, making it difficult to detect and correct biases (Schwartz et al., 2022). 

Without proper oversight, these technologies risk reinforcing systemic discrimination and 

worsening existing racial disparities in employment and criminal justice (Srinivasan & 

Chander, 2021). 

 

 

1.3 AI in Social Media: Misinformation, Privacy, and Bias 

 

Social media platforms such as Facebook, Instagram, Snapchat, and Twitter rely 

heavily on AI for content moderation, targeted advertising, and data analysis. While AI 

enhances user experience, it also raises ethical concerns in several areas: 

 

 

1.3.1 Misinformation and Echo Chambers 

● AI-driven recommendation algorithms prioritize engagement over accuracy, often 

amplifying fake news or sensational content (Schwartz et al., 2022). This is 

particularly concerning because if accurate information is spread, it could lead to 

public panic. This was evident in the Cambridge Analytica scandal, where AI-based 

microtargeting was used to manipulate political opinions by tailoring misleading 

content to specific users (Schwartz et al., 2022).  

 

 

1.3.2 Privacy and Data Exploitation 

● AI gathers vast amounts of personal data, analyzing user behavior, location, and 

interactions for targeted ads (Schwartz et al., 2022). 
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● This raises concerns about user consent and data security, as many social media 

platforms have faced lawsuits for selling user data without explicit permission 

(Cavazos, 2025). 

 

 

1.3.3 Bias in AI Content Moderation 

● AI-powered moderation tools often fail to detect hate speech or wrongfully censor 

certain communities (Holdsworth, 2023). 

● Studies have shown that automated moderation disproportionately flags content from 

marginalized groups, leading to unjust account suspensions (Holdsworth, 2023). 

 

The use of AI in spreading misinformation is deeply concerning, as it can lead to 

misleading content about individuals, incites public panic, and distorts public perception. 

Most social media users entrust these platforms with their personal information, often 

without considering the implications of that data being shared or sold. While AI is beneficial 

for creating personalized advertising experiences, it's critical to ensure that sensitive user data 

does not contribute to biased or unethical AI outcomes. Since AI models learn from the data 

they are given, social media companies must use caution when implementing AI for content 

moderation and censorship. As more platforms integrate AI into their systems, it becomes 

increasingly important to curb the spread of misinformation, safeguard user privacy, and 

apply censorship responsibly. Doing so will help build public trust in these platforms—trust 

that, in turn, can strengthen and grow the companies themselves. 

 

 

1.4 AI Bias in Healthcare: Unequal Diagnoses and Ethical Risks 

 

The healthcare industry has increasingly adopted AI to assist with disease diagnosis, 

patient care, and workflow optimization. Deep-learning models have been used since the 

2000s, improving efficiency and medical predictions (Norori et al., 2021). However, bias in 

healthcare AI has life-or-death consequences, particularly for underrepresented groups 

(Norori et al., 2021). 

 

 

1.4.1 Racial and Gender Bias in Medical AI 
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● Research from IBM and other studies have shown that computer-aided diagnosis 

(CAD) systems are less accurate for Black patients than white patients (Norori et al., 

2021). 

● Women and minority groups are often underrepresented in medical datasets, leading 

to misdiagnosis and inappropriate treatments (Norori et al., 2021). 

 

 

1.4.2 Real-World Consequences of AI Bias 

● AI misdiagnoses can lead to delayed treatment, incorrect medication, or even denial 

of life-saving procedures (Norori et al., 2021). 

● Some predictive AI models in hospitals allocate fewer resources to Black patients, 

assuming they need less care based on flawed data (Norori et al., 2021). 

 

 

1.4.3 Efforts to Reduce Bias in Healthcare AI 

Companies like EXAI are working to eliminate bias by developing AI systems that generate 

information solely from data analysis, without external human input that could introduce 

prejudice (Norori et al., 2021). 

Ethical AI development includes: 

● Using diverse and representative medical datasets (Norori et al., 2021). 

● Employing participatory science—involving diverse communities in AI development 

(Norori et al., 2021). 

● Open science initiatives, such as code sharing and data transparency, as discussed by 

Natalia Norori (Norori et al., 2021). 

As AI becomes more integrated into industries such as healthcare, it is crucial to 

recognize and address potential biases within the datasets used to train these systems. Two of 

the most significant sources of bias in healthcare are related to gender and race. As AI-driven 

technologies continue to produce biased outcomes, we must acknowledge the historical 

inequalities found within this data. Companies have a responsibility to mitigate these biases 

by ensuring that AI is used ethically and primarily for data analysis—not decision-making—

when fairness cannot be guaranteed. Healthcare is one of the most critical sectors in society, 

and ensuring equal treatment for all patients must be a top priority. Doing so will not only 

reduce errors but also ultimately save lives. 
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1.5 The Need for AI Ethics, Regulations, and Accountability 

 

Bias in AI is not confined to a single sector; it is a cross-industry concern rooted in 

how algorithms are trained and applied. In healthcare, underrepresentation of women and 

minority groups in medical datasets has led to misdiagnoses and unequal treatment (Norori et 

al., 2021). In social media, AI-powered moderation tools disproportionately censor 

marginalized communities and spread misinformation due to biased training data and opaque 

algorithmic processes (Holdsworth, 2023; Schwartz et al., 2022). Similarly, in business and 

corporate hiring, AI tools trained on historical hiring patterns have discriminated against 

women and minorities, reinforcing long-standing workplace inequities (Cavazos, 2025; 

Holdsworth, 2023). These examples reveal a shared challenge: AI systems trained on flawed 

or incomplete datasets are likely to replicate and even worsen systemic discrimination across 

sectors. Therefore, a unified ethical approach—grounded in transparency, inclusivity, and 

accountability—is essential to mitigate bias and ensure equitable AI outcomes industry-wide. 

Given the growing ethical concerns in AI-driven industries, regulatory standards and 

transparency measures are crucial. Several approaches can help mitigate bias and promote 

ethical AI use: 

●  Implementing fairness audits to detect and correct biases in AI systems before 

deployment (Schwartz et al., 2022). 

● Requiring transparency in AI decision-making so that companies disclose how 

algorithms function (Holdsworth, 2023). 

● Developing policies and regulations that hold organizations accountable for 

AI-driven discrimination, particularly in hiring, social media, and healthcare 

(Cavazos, 2025). 

The recurring theme across healthcare, social media, and business is clear: AI systems 

are not inherently neutral—they reflect the values, assumptions, and inequalities embedded 

in the data and design choices made by humans. Whether denying patients equitable care, 

amplifying misinformation, or reinforcing discriminatory hiring practices, these examples 

show how unchecked AI can deepen social divides rather than bridge them. These real-world 

consequences underscore the urgent need for ethical frameworks, transparency, and 

accountability at every stage of AI development. Without systemic changes, the risks of 

biased outcomes will continue to rise alongside AI’s influence. 

Thesis Statement 

This paper argues that addressing AI bias requires integrated ethical and technical 

frameworks at every stage of AI development, going beyond existing mitigation methods to 

proactively prevent discriminatory outcomes.  
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2. Understanding Bias in AI 

 

 

2.1 Definition of AI Bias 

 

James Holdsworth describes AI bias as the occurrence of biased results due to 

human biases embedded in training data or AI algorithms, which can lead to harmful or 

unfair outcomes (Holdsworth, 2023). AI bias arises when machine learning models inherit 

prejudices from historical data or when biases occur in how data is collected, labeled, or 

processed (Schwartz et al., 2022). Understanding the types of biases that AI models can 

contain is crucial for identifying, addressing, and developing effective solutions to mitigate 

biased outcomes. In this paper we will specifically discuss the following types of biases: 

 

 

Figure 2: Visual explaining key concepts of bias and fairness in AI systems. From Bias and 

Fairness in AI Systems: Basics, by Bias and Fairness in AI Systems, n.d. (https://bias-and-

fairness-in-ai-systems.de/en/basics/). © Bias and Fairness in AI Systems. 
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2.2 Types of AI Bias 

 

 

● 2.2.1 Sampling Bias – Occurs when datasets are created by over-representing or 

under-representing certain groups, leading to skewed outcomes. This makes the AI 

model less accurate for marginalized populations (Jain et al., 2024). 

○ An example of sampling bias in facial recognition software occurs when the 

AI model underperforms on individuals with darker skin tones because it was 

primarily trained on lighter-skinned faces. This lack of representation in the 

training data results in a model that does not accurately reflect the diverse 

population it is intended to serve. 

 

● 2.2.2 Label Bias – Happens when inconsistencies in the labeling process cause AI 

models to misinterpret the same objects differently. This can introduce subjective 

human bias into AI decision-making (Srinivasan & Chander, 2021). 

○ An example of labeling bias arises when datasets reflect the personal or 

cultural perspectives of annotators—for instance, misinterpreting slang or 

sarcasm. This can lead AI systems to incorrectly label content, such as tweets, 

as toxic, thereby reinforcing biased stereotypes and marginalizing certain 

linguistic communities. 

 

● 2.2.3 Data-Creation Bias – Similar to sampling bias, this occurs during the dataset-

creation process, leading to AI models learning from incomplete or unbalanced data 

(Norori et al., 2021). 

○ An example of data creation bias occurred when Twitter first deployed an 

interactive AI chatbot and users fed it biased language targeting certain 

individuals. As a result, the AI internalized those biased inputs and began 

producing discriminatory responses, particularly against minority groups. 

 

● 2.2.4 Negative Set Bias – Arises when datasets lack enough diverse samples. 

Businesses often use AI to maximize profit, but if the AI is trained on biased data, it 

may make unfair predictions and decisions, even if not intentionally discriminatory 

(Cavazos, 2025). 

○ An AI trained to identify spam emails may incorrectly classify legitimate 

emails as spam if it was only trained on spam examples from a single domain. 

Without exposure to a diverse range of email sources, the model lacks the 
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context needed to accurately distinguish between spam and non-spam 

messages across different domains. 

 

● 2.2.5 Human Evaluation Bias – Occurs when humans are responsible for validating 

an AI model’s performance. If human evaluators have preconceived biases, these can 

influence AI behavior, reinforcing pre-existing stereotypes or unfair practices 

(Schwartz et al., 2022). 

○ Human evaluation bias can emerge in chatbot development when evaluators 

consistently rate responses from female personas as less authoritative. This 

reinforces gender stereotypes in the training process, leading the AI to 

replicate and amplify those biases in future interactions. 

 

● 2.2.6 Automation Bias – Happens when users place too much trust in AI outputs, 

assuming the AI is always correct. This can lead to overlooking errors or ignoring 

alternative perspectives, especially in high-stakes environments (Schwartz et al., 

2022). 

○ An example of automation bias can happen by users such as doctors relying 

on an AI diagnosis and accepting that without second guessing, which can 

lead to incorrect treatment to patients.  

 

● 2.2.7 Representation Bias – Occurs when certain groups are entirely missing or 

significantly underrepresented in the training data. This leads to AI systems 

performing poorly or inaccurately for those groups, often impacting facial 

recognition, voice recognition, and healthcare AI tools (Norori et al., 2021). 

○ An example of representation bias is when organizations use AI models for 

job application by using data from tech companies, where most past hires 

were men. The AI may learn to favor male applicants over equally qualifies 

women or minorities due to the dataset’s underrepresentation.  

 

● 2.2.8 Measurement Bias – Arises when the features used in the dataset do not 

accurately capture what they are intended to measure. For example, using ZIP codes 

as a stand-in for income or race can distort outcomes and lead to inaccurate 

predictions (Srinivasan & Chander, 2021). 

○ An example of measurement bias occurs when law enforcement uses arrest 

data—often collected from heavily policed areas—as the basis for AI training. 

This can lead the AI to unfairly associate certain demographics with higher 

crime rates, reinforcing existing patterns of over-policing and discrimination. 
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Understanding these different types of biases is important for recognizing how they 

appear in AI models and datasets. By becoming familiar with the sources and effects of each 

bias, developers, researchers, and policymakers can more effectively detect harmful patterns, 

assess the fairness of AI outputs, and implement strategies to reduce or eliminate bias. This 

foundational knowledge enables us to build more ethical, inclusive, and trustworthy AI 

systems that serve all users equitably. 

 

2.3 How Bias is Introduced Through Human-Made Algorithms 

 

AI models do not create bias on their own—they learn it from the human-made 

algorithms and historical data used to train them. These systems reflect the values, decisions, 

and patterns embedded in their training environments, meaning any existing societal 

inequalities or prejudices can be absorbed and reproduced by AI. When AI is trained on 

historically biased data—such as records that underrepresent certain racial, gender, or 

socioeconomic groups—it often perpetuates those same disparities in its outputs. This can 

result in discriminatory outcomes for marginalized communities, reinforcing systemic 

injustice in areas like hiring, healthcare, education, and law enforcement. As Schwartz et al. 

(2022) note, these issues highlight the urgent need for critical oversight in AI development to 

ensure fairness, accountability, and ethical responsibility.  

The Wall Street Journal reports that as AI adoption grows, corporations and 

organizations struggle to address biases within their models. If left uncorrected, AI bias can 

result in unfair outcomes in hiring, criminal justice, financial decisions, and healthcare 

(Schwartz et al., 2022). This is especially concerning because automated systems can 

reinforce systemic discrimination at a much larger scale and speed than human decision-

making alone (Holdsworth, 2023).  

 

 

2.4 Role of Historical Inequalities in Shaping Machine Learning Models 

 

Training AI models requires large datasets to make accurate predictions and informed 

decisions. However, if these datasets reflect historical discrimination—such as biased hiring 

practices, unequal access to healthcare, or racial disparities in policing—the AI systems will 

inevitably learn and reproduce these inequities. Instead of offering neutral or objective 

insights, the AI may unintentionally reinforce the very patterns of injustice it was meant to 

help eliminate. For instance, an AI used in hiring could favor candidates from majority 

groups if past hiring data was skewed against minorities, or a medical AI could 

underdiagnose certain populations due to underrepresentation in healthcare data. As Norori et 
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al. (2021) emphasize, without intentional efforts to diversify and audit training data, AI 

systems risk amplifying systemic biases and widening existing social gaps rather than closing 

them. 

 The Gender Shades facial recognition evaluation project describes the poor 

performance of facial recognition systems when trying to detect face types (by gender and 

skin type) that are not present in the training data. This is an example of representation 

bias—a type of sampling bias that pre-dates AI—where trends estimated for one population 

are inappropriately generalized to data collected from another population (Norori et al., 

2021). Ensuring that all ethnic groups are adequately represented in AI models, especially 

those involving facial recognition, helps promote fairness in outcomes and transparency for 

all users. 

Historically, medical research has been skewed towards white, male populations, 

which leads AI models to fail to account for genetic, environmental, and socioeconomic 

differences in minority groups. Bias in AI models for the healthcare industry often stem from 

representational bias. When gender and racial groups are underrepresented in AI models, it 

can lead to misdiagnoses, unequal treatment, and inadequate medical care for those 

populations (Norori et al., 2021). 

 

 

2.5 Impact of Bias on Marginalized Groups and the Broader Implications 

for Society 

 

While AI is often viewed as a tool for progress and efficiency, unchecked bias can have 

far-reaching consequences. If AI continues to produce discriminatory outcomes, public 

confidence in AI-driven decision-making will decline, making it harder for industries to 

implement AI ethically (Schwartz et al., 2022). 

● Marginalized communities will face greater disadvantages if AI reinforces bias in 

employment, healthcare, social media, and finance (Cavazos, 2025). 

● The legal and ethical dilemmas from AI bias could lead to lawsuits and ethical 

scrutiny for organizations (Holdsworth, 2023). 

● If AI systems are perceived as biased and unethical, it could slow down innovation 

and adoption of AI and machine learning models (Srinivasan & Chander, 2021). 

AI has the power to transform society, but if left unchecked, it will continue to harm 

marginalized groups and reinforce systemic discrimination. This will set back the 

advancement of artificial intelligence and hinder its full potential in society. Correcting 

biases in AI model datasets now is essential to prevent potentially catastrophic outcomes in 

the future. To ensure AI serves as a tool for fairness and inclusivity, businesses, 
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policymakers, researchers, and developers must take proactive steps toward ethical AI 

development (Norori et al., 2021). 

 

 

 

3. Strategies for Reducing AI Bias 

 

 

3.1 Individual Input and Human Oversight 

 

AI systems are increasingly integrated into decision-making processes across various 

sectors; however, concerns about bias and fairness remain significant. While Machine 

Learning (ML) models can recognize complex patterns, aligning their output with societal 

values continues to be a major challenge (Norori et al., 2021). Bias in AI does not solely stem 

from training data—it is also deeply rooted in institutional policies and human decisions that 

influence how AI systems are developed, deployed, and applied (Schwartz et al., 2022). 

Although human oversight is essential for mitigating biases and preventing incorrect 

outcomes, it is equally important to recognize and address the biases that human actors may 

unintentionally embed in these systems. We explore multiple strategies for identifying and 

reducing bias in AI, and I argue that a combination of technical, ethical, and policy-based 

approaches is necessary to create more equitable and trustworthy AI systems. 

 

 

3.1.1 Techno-Solutionism and Its Limits in Addressing Bias 

 

A major issue in AI governance is techno-solutionism, the belief that bias can be 

solved purely through better algorithms or more data (Srinivasan & Chander, 2021). This 

perspective overlooks the importance of human judgment, ethical considerations, and 

organizational structures. AI does not operate independently of its environment, they interact 

with human users, decision-makers, and institutional policies, all of which influence how 

bias manifests and whether it is corrected. 

One way to offset techno-solutionism is through model risk management, which 

requires organizations to establish, document, and review the real-world impact of AI 
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(Holdsworth, 2023). However, such measures are insufficient if they fail to incorporate 

human oversight in a meaningful way. Bias is not just a technical flaw but an ingrained issue 

that requires human intervention to identify, interpret, and mitigate. 

 

 

3.1.2 Why Human Judgment is Essential in AI Bias Mitigation 

 

Bias in AI is deeply linked to intuitive judgements and decision-making processes. 

Human biases are often implicit, meaning that simply raising awareness of bias does not 

ensure control over it. Instead, organizations must take deliberate steps to integrate human 

judgment in AI systems by: 

● Ensuring diverse human oversight: AI models should not be left to make high-

stakes decisions without human review. A human-in-the-loop (HITL) approach 

allows for critical evaluation of AI outputs, reducing the risk of automated bias 

reinforcement (Schwartz et al., 2022). 

● Encouraging participatory design techniques: AI systems should be developed 

with input from diverse stakeholders to reflect a broad range of perspectives and 

avoid embedding the biases of a select group (Norori et al., 2021). 

● Developing institutional frameworks for human accountability: Human decision-

makers should be responsible for interpreting AI-generated recommendations, rather 

than blindly trusting or implementing them (Holdsworth, 2023). 

● Recognizing when AI should not be used: Bias is present not just in model 

development but in the assumptions about where AI is applied. Human judgment is 

essential in determining whether AI is appropriate for a given task (Cavazos, 2025). 

Bias in AI is neither new nor unique, nor can it be eliminated. However, without human 

judgment, even the most advanced AI models will fail to recognize the ethical, cultural, and 

contextual dimensions of fairness (Schwartz et al., 2022). The challenge is not just to 

improve AI but to ensure that human oversight remains central in AI governance and 

decision-making. 

 

 

3.1.3 Strategies for Increasing Awareness of Biases During AI Development 

 

Increasing awareness of AI biases requires a multi-pronged approach that integrates 

education, socio-technical perspectives, transparency, bias testing, and ongoing human 

oversight. By implementing these strategies, AI developers can proactively identify and 

mitigate biases, resulting in more ethical, inclusive, and trustworthy systems (Jain et al., 
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2024). While artificial intelligence has the potential to drive remarkable advancements, it is 

not always reliable. Without diverse perspectives and meaningful human intervention, AI 

systems may rely solely on data-driven decisions that overlook ethical, contextual, or 

emotional considerations. Human oversight remains essential to ensure that AI reinforces 

responsible and equitable decision-making. 

Involve a Human-in-the-Loop (HITL) for Bias Mitigation: 

To ensure ethical and impartial AI implementation, it is essential that AI-generated 

decisions are reviewed by human experts before being put into practice (Schwartz et al., 

2022). Involving human oversight helps catch potential errors and biases that automated 

systems may overlook. Additionally, collaborative decision-making should be adopted, 

allowing impacted communities to provide feedback on AI models prior to deployment 

(Norori et al., 2021). This approach ensures that diverse perspectives are considered and 

helps prevent the reinforcement of systemic inequalities. Furthermore, integrating 

mechanisms that allow users to report biased AI outcomes promotes ongoing accountability 

and enables continuous refinement of AI systems based on real-world experiences 

(Srinivasan & Chander, 2021). 

Promote a Socio-Technical Approach to AI:  

Addressing AI bias requires moving beyond techno-solutionism and acknowledging 

that bias is not merely a technical flaw, but a complex issue rooted in human behavior, 

societal structures, and institutional practices (Cavazos, 2025). To build more equitable AI 

systems, developers must adopt collaborative design techniques that involve diverse 

stakeholders, especially marginalized communities who are most affected by AI-driven 

decisions (Jain et al., 2024). Furthermore, performing comprehensive impact assessments 

prior to deployment is crucial for identifying potential societal implications of AI systems 

and ensuring they reflect ethical and inclusive principles. 

Integrate Bias Education into AI Development Teams:  

Promoting ethical AI development begins with education and collaboration. Regular 

training sessions on implicit bias, systemic discrimination, and responsible AI design can 

help developers recognize the deeper social implications of the systems they build 

(Srinivasan & Chander, 2021). Incorporating real-world case studies—such as biased hiring 

algorithms or racially discriminatory facial recognition tools—provides valuable insight into 

how AI bias manifests in practice and the harm it can cause (Holdsworth, 2023). 

Additionally, fostering interdisciplinary collaboration between AI developers, ethicists, 

sociologists, and domain experts is essential to broaden perspectives and ensure that diverse 

viewpoints inform AI design and deployment (Norori et al., 2021). Human judgment is 

essential for identifying, mitigating, and preventing AI bias. While AI models can process 

vast amounts of data, they lack the contextual understanding and ethical reasoning needed to 

make fair and socially responsible decisions. By adopting a socio-technical approach, 

involving diverse users, and promoting transparency and accountability, businesses and 

researchers can develop AI systems that are more ethical, inclusive, and aligned with societal 

values (Schwartz et al., 2022). 
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Moving forward, AI governance should prioritize human oversight and bias 

mitigation strategies, ensuring that AI does not amplify systemic inequalities but instead 

works toward equitable and fair decision-making processes. This will allow us to further 

explore the possibilities of AI without the influence of bias that could set us back to times 

when systemic inequalities were most prevalent. 

 

 

3.2 Business Intent and Ethical Responsibility 

 

AI-driven technologies have the potential to transform industries, but ethical concerns 

surrounding bias, transparency, and inclusivity highlight the need for responsible AI 

governance. Companies must align AI development with corporate values and ethical 

principles to ensure that AI systems serve diverse populations fairly and do not perpetuate 

discrimination or bias (Schwartz et al., 2022). This section explores the role of corporate 

values in AI design, highlights companies implementing ethical AI practices, and discusses 

the importance of aligning AI objectives with fairness and inclusivity when ethical 

considerations are appropriate. 

 

 

3.2.1 The Role of Corporate Values and Ethical Considerations in AI Design 

 

Corporate values play a crucial role in shaping AI development, influencing how 

companies approach fairness, transparency, and accountability in their AI models. Ethical AI 

is not only a social responsibility but also a business imperative—organizations that fail to 

address AI bias risk losing consumer trust, facing regulatory scrutiny, and perpetuating social 

inequalities (Holdsworth, 2023). 

Key ethical considerations in AI design include: 

● Fairness: AI systems must be designed to avoid discrimination against marginalized 

groups and mitigate biases in data and decision-making processes (Norori et al., 

2021). This builds consumer trust in corporations that use AI models and ultimately 

reinforces the company’s values in the eyes of their users. 

● Transparency: Companies should make AI decision-making interpretable and 

explainable to users, regulators, and stakeholders (Schwartz et al., 2022). Allowing 

this transparency will enable users to better understand how their data is being used, 

and how AI models conduct their reasonings.  

● Accountability: Businesses must establish clear oversight structures to ensure that AI 

decisions do not reinforce systemic biases (Srinivasan & Chander, 2021). When 
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corporations uphold strong accountability standards, it shows consumers that there is 

a commitment to maintaining the company’s values, fostering trust, and ensuring 

responsible use of AI technologies. 

● Inclusivity: AI should be developed with input from a diverse range of stakeholders, 

including individuals from different cultural, racial, gender, socioeconomic, and 

geographic backgrounds. Involving these voices in the design, testing, and 

implementation of AI systems helps ensure that the models reflect the needs and 

experiences of a broad user base. Without inclusive representation, AI technologies 

risk reinforcing existing inequalities or overlooking the unique challenges faced by 

underrepresented communities. By prioritizing inclusivity, developers can build AI 

systems that serve global populations more equitably, reducing bias and promoting 

fairness in real-world applications (Jain et al., 2024). 

● Regulatory Compliance: Implementing regulations for AI models within businesses 

will help promote transparency between corporations and stakeholders, ultimately 

fostering greater trust and accountability. With the rise of AI regulations, businesses 

must align their AI models with legal and ethical standards, such as bias mitigation 

frameworks and data transparency laws (Cavazos, 2025).  

Despite growing awareness of the importance of ethical AI, many companies face 

significant challenges in putting these principles into practice. One major obstacle is the lack 

of technical expertise and organizational infrastructure to evaluate and mitigate AI bias 

effectively, especially for small- and medium-sized enterprises with limited resources 

(Schwartz et al., 2022). Additionally, balancing fairness with business efficiency can create 

tension, as bias mitigation techniques may reduce model accuracy or increase development 

time and cost (Jain et al., 2024). Companies may also struggle with internal resistance to 

transparency, especially in competitive industries where AI decision-making processes are 

seen as proprietary. Moreover, without standardized ethical guidelines or mandatory 

regulations, businesses often adopt a reactive rather than proactive stance, implementing 

ethical safeguards only after public backlash or legal scrutiny. These challenges reveal the 

importance of institutional support, cross-disciplinary collaboration, and long-term 

investment in building ethical AI systems that are not only effective but also socially 

responsible. 

Many AI failures stem from techno-solutionism—the flawed assumption that AI alone 

can solve complex social problems without human intervention or oversight. In contrast, a 

socio-technical approach that incorporates human judgment, institutional accountability, and 

fairness considerations is essential for ethical AI development. This approach empowers us 

to take an active role in shaping the future of AI while addressing ethical concerns and 

ensuring that human values remain central to its evolution. 

 

 

4. Industry Standards and Best Practices 
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4.1 Discussion of the NIST proposal on AI bias 

 

The NIST proposal, Towards a Standard for Identifying and Managing Bias in 

Artificial Intelligence (Schwartz et al., 2022), critically examines the real-world implications 

of widespread AI adoption. A key insight from the authors is the importance of evaluating 

the social impact that AI applications have when deployed. The proposal emphasizes the 

necessity of considering broader societal effects and particularly highlights the significance 

of a Human-Centered Design (HCD) approach. The HCD methodology focuses on satisfying 

user needs at a macro level, recognizing that developing AI tools for specific organizational 

or group interests inherently introduces bias due to narrowly defined problem scopes (IEEE, 

2019). 

 

 

4.2 Importance of addressing bias at pre-design, development, and 

deployment stages 

 

Addressing biases proactively at the pre-design stage directly influences data 

selection and system training choices. For instance, designing a loan-approval AI without 

accounting for historical inequities risks embedding discrimination before coding even 

begins (Cavazos, 2025). Similarly, healthcare AI models trained predominantly on data from 

a single demographic can lead to misdiagnosis for other populations (Norori et al., 2021). 

Algorithmic choices further compound bias; selecting data features that unintentionally proxy 

protected attributes (like zip codes correlated with race) can amplify discriminatory outcomes 

(Holdsworth, 2023). Therefore, techniques such as fairness-aware algorithms, re-weighting, 

or adversarial debiasing become essential (Jain et al., 2024). Even with thorough pre-design 

efforts, some biases only become apparent post-deployment, as exemplified by facial 

recognition systems underperforming on darker skin tones due to previously untested 

scenarios (Srinivasan & Chander, 2021). Hence, bias mitigation must persist through ongoing 

monitoring and feedback after the AI tools are in real-world use (Schwartz et al., 2022). 
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4.3 Recommended industry standards and ethical guidelines for AI 

development 

 

Addressing the complexities and the scalable nature of modern AI systems aligns 

closely with ISO standard 9241-210:2019 [252], an advancement over ISO 13407:1999, 

emphasizing usability and accessibility through human-centric approaches. Complementing 

this standard are IEEE’s Ethically Aligned Design guidelines and the OECD’s AI Principles 

(IEEE, 2019). Key recommended industry standards and ethical guidelines include: 

 

 

4.3.1 Diverse and Representative Data: 

 

Datasets must accurately reflect the demographics of populations affected by AI, with regular 

audits identifying and correcting data skews or omissions (Norori et al., 2021). 

 

 

4.3.2 Bias-Aware Algorithms: 

 

Developers should employ fairness-aware methodologies like fairness constraints and 

adversarial debiasing, thoroughly documenting algorithmic choices (Jain et al., 2024). 

 

 

4.3.3 Interdisciplinary Collaboration: 

 

AI design teams should involve social scientists, ethicists, and community representatives to 

provide context and critique of technical decisions (IEEE, 2019). 

4.3.4 Robust Testing and Validation: 

 

Systems must undergo rigorous testing across diverse scenarios, emphasizing fairness 

metrics alongside traditional accuracy measures (Schwartz et al., 2022). 
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4.3.5 Transparency and Explainability: 

 

AI solutions should provide clear, understandable rationales behind decisions, enabling users 

to question, challenge, and comprehend AI outcomes (Srinivasan & Chander, 2021). 

 

 

4.3.6 Continuous Monitoring: 

 

Post-deployment strategies, including user feedback mechanisms and independent audits, 

must be in place to continually identify and address emerging biases (Holdsworth, 2023). 

 

 

4.3.7 Ethical Frameworks: 

 

Organizations must adopt ethical principles that uphold human rights, privacy, and social 

justice, incorporating these principles into their internal governance processes (IEEE, 2019). 

Adopting these comprehensive standards enables the AI community to innovate responsibly, 

share accountability for bias mitigation, and voluntarily align with regulatory expectations, 

reflecting NIST’s non-regulatory stance (Schwartz et al., 2022). This voluntary adoption 

resonates with research indicating that unbiased information requires minimal external 

influence during its collection and analysis (Norori et al., 2021). 

 

5. Challenges and Limitations 

 

 

5.1 Discussion of the complexities in eliminating AI bias 
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Eliminating AI bias is inherently complex due to its multidimensional origins. Bias emerges 

from systemic inequalities (such as historical inequities embedded in hiring data), statistical 

limitations (including unrepresentative or incomplete datasets), and human factors (like 

implicit assumptions or beliefs held by developers) (Srinivasan & Chander, 2021). These 

diverse sources make bias a deeply rooted socio-technical challenge rather than a singular 

issue that can be simply fixed. Additionally, the pursuit of perfectly representative data is 

often impractical, particularly for marginalized populations lacking substantial digital 

footprints, leaving persistent gaps that reinforce statistical bias (Norori et al., 2021). 

 

 

5.2 Potential drawbacks of current mitigation strategies 

 

Current bias mitigation strategies, although aligned with NIST's foundational 

concepts and industry standards, encounter significant practical limitations (Schwartz et al., 

2022). Techniques like re-weighting data or enforcing fairness constraints often lead to a 

reduction in overall accuracy. For example, predictive policing AI adjusted for racial equity 

may lose predictive effectiveness, raising operational concerns (Jain et al., 2024). 

Furthermore, these mitigation strategies typically demand considerable resources, including 

expertise, time, and funding. Such requirements disproportionately burden smaller 

organizations and could widen disparities within industry (Holdsworth, 2023). 

Additionally, over-reliance on purely technical solutions, such as algorithmic 

debiasing, risks overlooking deeper systemic problems—biased institutional policies—that 

require broader, more fundamental societal interventions (IEEE, 2019). Another key 

limitation arises from the voluntary nature of many standards, like NIST’s proposal. Without 

binding rules or enforced accountability, companies might superficially adopt fairness 

guidelines to satisfy market demands or prevent stricter regulations, resulting in uneven and 

inconsistent implementation (Schwartz et al., 2022). The lack of audits or certifications 

further reduces transparency, making it challenging for external stakeholders—such as 

consumers and regulators—to verify genuine adherence versus mere compliance in 

appearance. 

 

 

5.3 Consideration of future research and advancements in AI fairness 
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Given these complexities, future research should address persistent trade-offs, notably 

between accuracy and fairness, as well as resource-intensive demands versus scalability (Jain 

et al., 2024). Advancements could include developing more sophisticated fairness-aware 

algorithms that minimize accuracy loss or exploring innovative methods to achieve truly 

representative datasets (Norori et al., 2021). Addressing systemic issues will require 

interdisciplinary research bridging technology, policy, ethics, and social sciences to create 

holistic and context-aware solutions (IEEE, 2019). Additionally, research could explore 

accountability frameworks and certification processes to ensure transparency and genuine 

compliance with fairness standards, thereby addressing gaps in current voluntary standards 

(Schwartz et al., 2022). 

To overcome current limitations in mitigating AI bias, organizations should invest in 

ongoing ethics training for developers, establish internal audit teams dedicated to fairness 

and accountability, and adopt open-source benchmarking tools to evaluate model 

performance across demographic groups. Government and industry coalitions can also work 

together to develop standardized bias testing protocols, ensuring consistent measurement 

practices. Furthermore, incentivizing collaboration between tech companies, academic 

institutions, and impacted communities can foster innovation while grounding AI 

development in real-world experiences and needs. By combining regulatory guidance with 

community-driven feedback and technical improvements, the field can move toward more 

equitable and trustworthy AI systems. 

 

6. Conclusion 

 

 

6.1 AI Bias as a Critical Challenge 

 

AI bias remains a critical challenge that impacts the fairness, transparency, and 

inclusivity of AI-driven decision-making across various industries. As AI models become 

increasingly embedded in our daily lives, addressing these biases is more important than 

ever. It is essential that human values and ethical considerations are actively integrated into 

the development and application of AI systems. This paper has examined the sources of AI 

bias, the vital role of human judgment in mitigating these biases, the importance of ethical AI 

governance, and strategies for data debiasing to promote fairness and equity in AI outcomes. 
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This paper has demonstrated that mitigating AI bias cannot rely solely on technical 

solutions or ethical theory in isolation; rather, it requires a cohesive, interdisciplinary 

framework that combines both approaches throughout every stage of AI development. 

 

6.2 Key Takeaways 

 

● AI Bias is a Socio-Technical Issue: Bias is not just a technical flaw—it stems from 

historical inequalities, biased data collection, and institutional decision-making 

(Schwartz et al., 2022). Addressing AI bias requires human oversight, ethical 

considerations, and governance frameworks. 

● Techno-Solutionism is Insufficient: The assumption that AI bias can be resolved 

solely through improved algorithms or larger datasets overlooks the critical role of 

human judgment, organizational policies, and societal values (Srinivasan & Chander, 

2021). Relying exclusively on techno-solutionism to address AI bias risks allowing 

these systems to cause more harm than good, as it neglects the complex social and 

ethical dimensions that must be considered in responsible AI development. 

● Human Judgment is Essential for Fair AI: AI models require continuous human 

oversight to identify and correct biases before deployment. This includes 

participatory design, diverse stakeholder involvement, and human-in-the-loop (HITL) 

decision-making (Holdsworth, 2023).  

● Dataset Bias Must be Addressed at the Source: AI models are only as fair as the data 

they are trained on. Strategies like subgroup fairness techniques, data rebalancing, 

and synthetic data generation are crucial for improving representation in training 

datasets (Jain et al., 2024). 

● The D3M Framework Enhances Fairness: The Data Debiasing with Datamodels 

(D3M) framework helps optimize data selection to reduce bias while maintaining 

model accuracy. It significantly improves subgroup fairness and AI robustness in 

diverse applications (Jain et al., 2024). 

● Ethical AI Governance is Crucial for Fair AI Outcomes: Organizations must adopt 

ethical AI principles, such as Microsoft’s Responsible AI framework, IBM’s AI 

Fairness 360 Toolkit, and Google’s AI Principles, to create trustworthy AI systems 

(Schwartz et al., 2022). 

 

 

6.3 Strategies for Mitigating AI Bias 

 

 

6.3.1. Implement Ethical AI Governance 
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To ensure ethical and responsible use of artificial intelligence, it is essential to 

develop and enforce AI fairness guidelines that align systems with core ethical principles 

such as transparency, equity, and accountability (Schwartz et al., 2022). These guidelines 

serve as a foundational framework for preventing harmful outcomes and fostering public 

trust. In addition to establishing clear principles, organizations must implement 

accountability structures that mandate human oversight in high-risk AI applications, 

particularly in areas like healthcare, criminal justice, and employment, where biased 

decisions can have serious consequences (Holdsworth, 2023). Furthermore, ensuring 

compliance with global regulatory standards—such as the EU AI Act and the U.S. AI Bill of 

Rights—is critical for maintaining legal and ethical consistency across international markets 

(Cavazos, 2025). Together, these measures provide a comprehensive approach to governing 

AI systems in ways that uphold societal values and protect vulnerable populations. 

 

6.3.2. Improve Dataset Distribution and Data Quality 

 

To reduce sampling bias and promote fairness in AI systems, it is essential to use 

diverse and representative datasets that accurately reflect the populations the AI is intended 

to serve (Jain et al., 2024). This helps to ensure that underrepresented groups are not 

excluded from the decision-making processes driven by AI. In addition to diverse data 

collection, developers should apply data rebalancing techniques—such as reweighting, 

synthetic data generation, and adversarial debiasing—to correct imbalances within training 

datasets and improve model accuracy across demographic groups (Norori et al., 2021). 

Moreover, implementing real-time data audits allows organizations to continuously monitor 

AI systems for fairness, detect emerging biases, and make necessary adjustments as societal 

conditions or data patterns change. These combined efforts are critical for building AI 

models that are equitable, reliable, and socially responsible. 

 

6.3.3. Integrate Human Oversight and Participatory AI Design 

 

Ensuring ethical and unbiased AI outcomes requires active human involvement 

throughout the development and deployment process. One effective strategy is implementing 

human-in-the-loop (HITL) frameworks, which allow AI-generated decisions to be reviewed 

and validated by human experts before being applied in real-world settings—particularly in 

high-stakes domains like healthcare, finance, and criminal justice (Srinivasan & Chander, 

2021). Additionally, involving a wide range of stakeholders in the AI design process, 

including ethicists, policymakers, and members of affected communities helps ensure that 

diverse perspectives and ethical considerations are integrated into the system from the start. 

To support these efforts, it is also essential to train AI development teams on bias awareness 

and responsible design practices. By equipping developers with knowledge about systemic 

319



25 

discrimination and ethical AI principles, organizations can foster the creation of more 

equitable, inclusive, and socially accountable technologies (Holdsworth, 2023). 

 

6.3.4. Leverage Fairness-Aware AI Algorithms 

 

To build fair and accountable AI systems, developers must apply subgroup fairness 

techniques—such as equalized odds, demographic parity, and counterfactual fairness—which 

ensure that model outcomes are consistent and equitable across different demographic groups 

(Schwartz et al., 2022). These statistical methods help reduce disparities in predictions and 

support more inclusive decision-making. In addition to designing for fairness, it is critical to 

use algorithmic audits and explainability tools to uncover hidden biases within AI models. 

These tools not only improve transparency but also allow developers and stakeholders to 

better understand how decisions are made, enabling more informed oversight and correction. 

Furthermore, AI systems should be equipped to flag potential biases in real-time, particularly 

when handling sensitive or critical tasks. Requiring human validation before executing such 

decisions ensures an added layer of accountability and helps prevent the automation of 

harmful outcomes (Holdsworth, 2023). Together, these strategies contribute to the 

development of AI systems that are not only technically robust but also socially responsible. 

 

6.4 The Importance of Continuous Evaluation and Refinement 

 

AI bias cannot be fully eliminated, but continuous evaluation and improvement can 

significantly reduce its impact. This approach not only upholds ethical values but also 

ensures that users receive more thoughtful, responsible, and fair outcomes from AI models. 

Industries must prioritize: 

● Regular AI audits to ensure ongoing fairness and transparency (Schwartz et al., 

2022). 

● Bias monitoring systems that detect and mitigate evolving biases in real-time (Jain et 

al., 2024). 

● Updating AI governance policies to reflect emerging ethical considerations and 

societal values (Holdsworth, 2023). 

● Public transparency reports that document AI fairness efforts, model evaluations, and 

improvements over time (Norori et al., 2021). 

The future of AI relies on adaptive frameworks that can evolve in response to emerging 

biases, rapid technological advancements, and shifting societal needs. As the potential 

applications of AI continue to expand across industries—from healthcare and finance to 

education and social media, proactive measures must be taken now to guide its development 

responsibly. I believe that mitigating bias within AI requires a well-rounded, multi-faceted 

approach that addresses both technical and societal factors. Ensuring fairness in AI is not a 
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one-time fix, but a continuous, evolving process that demands ongoing attention, 

collaboration, and accountability.  

With sustained commitment, cross-sector collaboration, and evolving policy frameworks, 

the future of AI can be one of shared progress—where technology reflects the diverse needs, 

values, and voices of all communities it touches.  

 

 

6.5 Call to Action: Industries Must Adopt Ethical AI Practices for 

Inclusive and Fair Outcomes 

 

To ensure AI is used responsibly, governments, businesses, and researchers must work 

together to embed fairness, transparency, and accountability into AI systems. Organizations 

must: 

● Adopt ethical AI frameworks that align with fairness, inclusivity, and regulatory 

compliance. 

● Invest in bias mitigation research to improve AI decision-making across industries. 

● Collaborate across disciplines to incorporate socio-technical perspectives into AI 

design. 

● Commit to transparency and public accountability in AI fairness efforts. 

AI should enhance human decision-making, not reinforce existing societal inequalities. 

By implementing robust bias mitigation strategies, the industry can build more inclusive, 

equitable, and trustworthy systems. Addressing AI bias is a complex issue that grows 

alongside the rapid integration of AI into our daily lives. It is not something that can be 

solved with a single solution, but rather through a combination of technical, ethical, and 

policy-driven approaches. As AI continues to shape how we work, communicate, and access 

services, it is essential that these technologies produce outcomes that are accessible and fair 

for everyone. All individuals—regardless of race, gender, or socioeconomic status—deserve 

equal treatment and opportunity in AI-driven systems. The time to act is now. AI must be 

developed with fairness, ethics, and human-centered values at its core—because the future of 

technology should serve all people, not just a privileged few.  
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Abstract 

In general, a flipped classroom is an instructional strategy where traditional learning 

environments are reversed. Instead of introducing new content during class time, students 

first engage with new material at home, typically through video lectures or reading 

assignments. Then, class time is dedicated to exercises, projects, or discussions that deepen 

understanding and allow for practical application of the material. 

I have been a strong proponent in the flipped-classroom for at least a decade now.  My 

current approach to applying the flipped classroom is to require students to watch a short 

(15 to 30 minute) video followed by taking a short five question multiple-choice quiz 

before coming to each class. 

Unfortunately, in both of the last two semesters, I have been assigned to teach “new” 

courses without much lead time. Wanting to keep the flipped classroom model without 

taking the time to create video-quiz pairs encouraged me to revisit the possible options. 

This paper reports on a couple of approaches taken.   
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1 Background 

In general, a flipped classroom is an instructional strategy where traditional learning 

environments are reversed. Instead of introducing new content during class time, students 

first engage with new material at home, typically through video lectures or reading 

assignments. Then, class time is dedicated to exercises, projects, or discussions that deepen 

understanding and allow for practical application of the material. 

I have been a strong proponent in the flipped-classroom for at least a decade now, and have 

previously presented a MICS 2015 paper on the pedagogy of the flipped classroom 

approach [1].  My current approach to applying the flipped classroom is to require students 

to watch a short (15 to 30 minute) video followed by taking a short five question multiple-

choice quiz before coming to each class. These videos typically provide an introduce to the 

topic for the class, thus freeing up class time for more challenging application or in-depth 

coverage of the topic.   Since I teach 75-minute classes on Tuesday and Thursday, there 

are roughly 25 pre-class video-quiz pairs in a course which are weighted from 10% to 20% 

of a student’s grade depending on the course. 

While I am reasonably satisfied with my current “pre-class video-quiz pair” application of 

the flipped classroom, there are some down-sides.  For new courses, it is very time 

consuming to create these pre-class videos and corresponding quizzes.  For existing 

courses, course modifications might have a cascading on existing video-quiz pairs. 

Generally, I create these video-quiz pairs during the summer when I have more free time.  

Unfortunately, in both of the last two semesters, I have been assigned to teach “new” 

courses without much lead time. Wanting to keep the flipped classroom model without 

taking the time to create video-quiz pairs encouraged me to revisit the possible options. 

This paper reports on a couple of approaches taken.  The first approach is to provide 

students with a list of prompts to some Generative Artificial Intelligence tool (e.g. 

ChatGPT and Microsoft Copilot).  The results of these prompts provided a basic 

introduction to the topic of the class.  The second approach was to use a required zyBook 

textbook which is an online textbook containing embedded “participation activities” (PA).  

These participation activities are like interactive quizzes allowing multiple attempts until a 

student successfully answers and tracks their progress providing a report for the instructor.  

This paper reports on the application of these approaches in practice and provides some 

conclusions for their usage in a flipped classroom. 

2 Flipped Classroom using Generative AI Tools  

During Fall 2024 I was assigned to teach a brand-new course Introductory Programming 

for Data Science (CS 1170). This course is one of four courses comprising the Data Science 

certificate within the University of Northern Iowa (UNI) general education program called 

UNI Foundational Inquiry (UNIFI).  It is a 3-hour/credit course, that has no prerequisites 

and has a course description of: 
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“Explores use of software development and tools to explore data sets, find patterns, 

and solve complex problems in the area of data science. Topics include introductory 

programming methodologies, data visualization, and an introduction to data 

mining.” 

The Student Learning Outcomes (SLO) from the syllabus are: “After this course you 

should be able to: 

1. write small programs that process data from files using branching, looping, 

functions, and lists/arrays 

2. apply Data Science modules for data analytics (supervised and unsupervised 

machine learning) and data visualization” 

Before the class started, I had decided to experiment using some generative Artificial 

Intelligence (AI) tool to easily flip the classroom. Since UNI had a license for Microsoft 

Copilot and was encouraging its use, I decide to use it.  Originally, I planned to: 

1. providing students with a list of “canned” prompts for them to submit to some 

generative AI tool before coming to class. The results of these prompts provided a 

basic introduction to the topic of that day’s class. 

2. to show completion, I asked students to submit a copy of Microsoft Copilot’s 

response to these prompts on UNI’s learning manage system (LMS) BlackBoard. 

These had a due date and time before the class starts.    

Since I wanted students to start using Microsoft Copilot before the first day of class, I 

provided them with UNI’s brief Microsoft Copilot Guide, and Elon University’s online 

student guide to AI [2]. This seemed sufficient to get students started using Microsoft 

Copilot with no difficulties. 

The first couple weeks of class I followed this model. Appendix A contains a copy of the 

PRE-Lecture 1 assignment instructions and corresponding Microsoft Copilot responses. 

The prompts for this PRE-Lecture 1 assignment were: 

1. Explain to a college freshman how a computer program works 

2. How do I get started with Python programming? 

Microsoft Copilot’s responses consistently provided strong answers and a basic 

introduction to the topic of that day’s class. It was important to provide in the prompts to 

Microsoft Copilot the appropriate level of answer like “to a college freshman.”  

Students were completing these PRE-Lecture generative AI assignments, but I was 

concerned that students were only superficially engaging with the Microsoft Copilot 

responses.  With a little work I could have developed short multiple-choice question 

quizzes to force more engagement with the Microsoft Copilot responses before coming to 

class. Fortunately, by this time all students had purchased the required online zyBook 

textbook.  The next section describes how the zyBook textbook was used to flip the 

classroom for the rest of the semester.   
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3 Flipped Classroom using Online zyBook  

When looking for a textbook for this course, a colleague (Dr. Sarah Diesburg) who teaches 

our CS-1 Introduction to Computing CS 1510 course recommending the zyBook she uses: 

Programming in Python 3 [3] because they recently added a couple chapters focusing on 

data science, and she really likes their interactive online learning content. While the 

interactive online learning content was intriguing, I mostly picked this zyBook textbook 

because I could highly customize the basic textbook to match the goals of my course by 

rearranging chapters/sections, omitting chapters/sections, and mark chapter/sections as 

optional. 

The “About zyBooks” statement summarizes their approach as: 

“zyBooks provide interactive, online learning content that replaces a traditional 

textbook with less text and more action. Content is presented in small chunks and 

extraneous information is removed, helping to manage a student's cognitive load. 

This innovative pedagogy—supported by learning science and zyBooks' own 

research—can motivate students to learn more, improve their classroom 

preparedness, and earn higher grades. 

Students can read, apply concepts, do homework and labs, and access instructor-

created content without leaving the zyBooks platform. Animations help students 

visualize concepts, and learning questions engage students and provide immediate 

answer-specific feedback. Many zyBooks also contain built-in, algorithmic 

challenge activities that can be assigned as practice or graded homework. Activities 

are auto-graded, and all student participation on in-book activities is recorded for 

instructor review and analysis.” 

For my purpose of flipping the classroom without a huge amount of work, the zyBook 

textbook was ideal. I could create a PRE-lecture activity introducing that day’s topics by 

picking sections for students to read including embedded “participation activities” (PA).  

These participation activities are like interactive quizzes allowing multiple attempts until a 

student successfully answers. Plus, it tracked students’ progress providing a report for the 

instructor.  Figure 1 shows an example of a participation activity about string slicing that 

is embedded within zyBook text.  Changing the numeric values within the print 

statement causes a different “Output:” string and changes the highlighting of the portion of 

the string. While anyone can get all PA points just by participating, research conducted by 

zyBook indicates that 89% of students will earnestly try when completing these 

participation activities with only 10% of overall course points allocated to them [4].  

In addition to participation activities, zyBooks also has challenge activities (CA) which is 

the zyBook version of a homework problem. A CA allows students to apply and practice 

what they have learned. Students must eventually get the answer to a CA right on their own 

to get points, so the CAs serve as a lightweight assessment. Figure 2 shows an example of 

a challenge activity about string slicing where students must type in a sequence of correct 

code to complete the CA. 
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Figure 1: Example of Participation Activity Embedded within Text. 

Figure 2: Example of Challenge Activity. 

Initially, when I switched to creating PRE-lecture activities introducing that day’s topic, I 

picking all the participation activities and all the challenge activities. I quickly discovered 

that this was very time consuming for the students to complete, so I switched to assigning 

all the participation activities and only a few challenge activities.     
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4. Conclusions 

Switching my current “pre-class video-quiz pair” application of the flipped classroom, to 

either using generative AI prompts or zyBook participation activities did reduce the 

overhead of applying the flipped classroom approach.  The generative AI prompts were 

probably less effective, unless a more engaging pre-class activity could be developed like 

an online quiz. The use of a zyBook textbook and assigning pre-class reading plus 

completion of embedded participation activities is a good solution. Unfortunately, you have 

to be teaching a course for which a zyBook textbook (or something similar) has be written.   
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Appendix A:  PRE-Lecture 1 Generative AI Assignment and 

Corresponding Microsoft Copilot Response 

 PRE-Lecture 1 Generative AI Task 
 

Before the first class (8/27), please prepare by entering the following prompts into 

Microsoft Copilot and read the responses. Directions are below. 

Prompts: Type or paste prompt into the “Ask me anything” 

text box. 
1. Explain to a college freshman how a computer program works 

2. How do I get started with Python programming? 

What is Microsoft Copilot?  
Microsoft Copilot is an AI-powered tool that can be used to generate content, 

summarize information, and assist with various tasks through prompt-based 

interactions. Copilot uses the GPT-4o architecture, which is a state-of-the-art language 

model developed by OpenAI.  

How to Access Microsoft Copilot 
Copilot is available to all current UNI community members with active CATID login 

credentials. For help, login to Service Hub and search for “Copilot” for additional 

information. 

· Web Browser  

o Visit copilot.uni.edu to access Copilot directly from your browser. 

o When prompted, input your UNI CATID credentials.  

· Mobile App 

o Download the Copilot app from your app store. 

o Select “Sign in”. 

o When prompted, input your UNI CATID credentials. 

Submission 
· Copy prompt responses and submit them on course UNI eLearning site in Unit 1: … | 

Week 1: … | PRE-Lecture 1 Generative AI Task 

 

Course AI Usage Policy 
AI is rapidly changing the face of software engineering. Artificial Intelligence tools (e.g. 

chatGPT and Bard) are rapidly developing that can generate full programs or act as a 

"copilot" by suggesting lines of code as you are writing. These tools hold great promise 

to increase your future productivity as a programmer, but only if you are a proficient 

enough programmer to assess the correctness and quality of code that the AI 

produces.  

  

To achieve programming proficiency, you need to put in the practice. You will not get 

any better at programming by having an AI tool write code for you. Thus, in this course, 

you must write all your own code for programming homework without the use of AI. 
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Microsoft Copilot Response to: Explain to a college freshman how a computer program works 

Sure! Let's break it down step-by-step: 

1. What is a Computer Program? A computer program is a set of instructions that tells 

a computer what to do. These instructions are written in a programming language, 

which is a special language designed to communicate with computers. 

2. Programming Languages: There are many programming languages, such as Python, 

Java, and C++. Each language has its own syntax (rules for writing code) and is used 

for different types of tasks. 

3. Writing Code: When you write a program, you are essentially writing a list of 

instructions. For example, if you want the computer to add two numbers, you would 

write code that tells the computer to take two numbers, add them, and then display 

the result. 

4. Compiling/Interpreting: Once you've written your code, it needs to be translated 

into machine language (binary code) that the computer can understand. This is done 

by a compiler or an interpreter, depending on the programming language you're 

using. 

5. Executing the Program: After the code is translated, the computer can execute the 

program. This means it follows the instructions step-by-step to perform the tasks 

you've written. 

6. Debugging: Sometimes, your code might not work as expected. Debugging is the 

process of finding and fixing errors (bugs) in your code. 

7. Running the Program: Finally, you run your program to see the results. If everything 

is correct, the computer will perform the tasks as you intended. 

Here's a simple example in Python: 

# This program adds two numbers and prints the result 

 

# Define two numbers 

num1 = 5 

num2 = 3 

 

# Add the numbers 

result = num1 + num2 

 

# Print the result 

print("The result is:", result) 

In this example: 

• We define two numbers (num1 and num2). 
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• We add these numbers and store the result in a variable called result. 

• We print the result using the print function. 

Does that help clarify how a computer program works? Feel free to ask if you have any more 

questions! 

Microsoft Copilot Response to:  How do I get started with Python programming? 

Getting started with Python programming is a great choice! Here's a step-by-step guide to 

help you begin: 

1. Install Python: 

o Download and install Python from the official website python.org. Make sure 

to check the box that says "Add Python to PATH" during installation. 

2. Choose an Integrated Development Environment (IDE): 

o An IDE is a tool that helps you write and test your code. Some popular 

options for beginners are: 

▪ IDLE: Comes with Python installation. 

▪ PyCharm: A powerful IDE with many features. 

▪ VS Code: A lightweight and versatile code editor. 

3. Learn the Basics: 

o Start with basic concepts like variables, data types, and simple operations. 

There are many free resources available online, such as: 

▪ Python.org's official tutorial: Python Tutorial 

▪ Codecademy's Python course: Codecademy 

▪ W3Schools Python tutorial: W3Schools 

4. Practice Coding: 

o Practice is key to learning programming. Try solving problems on platforms 

like: 

▪ LeetCode: LeetCode 

▪ HackerRank: HackerRank 

▪ Codewars: Codewars 

5. Build Projects: 

o Start with small projects to apply what you've learned. For example, you can 

create a simple calculator, a to-do list app, or a basic game. 

6. Join a Community: 

o Join online communities to get help and share your progress. Some popular 

communities are: 

▪ Stack Overflow: Stack Overflow 

▪ Reddit's r/learnpython: r/learnpython 

▪ Python Discord: Python Discord 

7. Keep Learning: 

331



9 

 

o Programming is a continuous learning process. Explore more advanced topics 

like object-oriented programming, web development, and data science as 

you progress. 

Here's a simple Python program to get you started: 

# This program prints "Hello, World!" 

 

print("Hello, World!") 

This program uses the print function to display the text "Hello, World!" on the screen. 

Feel free to ask if you have any questions or need further guidance! Happy coding!       
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Abstract 

This paper discusses the pre-capstone to capstone project sequence in computing at the 

University of Wisconsin-Stevens Point, covering the pre-capstone course's purpose, 

development history, and key lessons learned over five years.  

Three useful elements are highlighted. First, pre-capstone students attend two agile sprint 

reviews completed by capstone students, to experience diverse projects and adaptations to 

Agile methodology. Second, a prescriptive project plan template and in-class activities 

help students develop their own capstone objectives, requirements, resource management, 

schedules, risks, and mitigation plans. Students create a five-sprint schedule emphasizing 

key tasks and deliverables. Third, continuous improvement and flexibility are fostered 

through feedback from peers and instructors, with multiple rounds of feedback and peer 

review exposing students to various project topics and strategies.  

Additionally, potential solutions for resource and credit constraints are outlined, such as 

integrating project planning and management concepts across the shared computing 

curriculum for all majors.  
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1 Introduction 

Capstone experiences provide students with the opportunity to integrate and apply their 

learning in a comprehensive project prior to graduation. These courses often involve real-

world problems requiring application of discipline specific knowledge and skills and 

foster critical thinking, communication, and collaboration. In computing, capstone 

courses are a form of practicum that can help address weaknesses in areas relevant to 

employment, such as practical experiences, project management skills, and problem 

solving [1]. In this paper, we describe the development process of a pre-capstone course, 

an intentional experience to prepare students for the capstone course, and the lessons we 

have learned along the way. 

Initially, our capstone course – Applied Development Project (CNMT 480) – included all 

stages of project planning and management from initiation to deployment and took place 

over one semester (16 weeks) in a team-based environment. This aligns with widespread 

practice; 66% of institutions in a recent review [2] of software engineering capstone 

courses completed the capstone in one semester. Our capstone course was, and remains, 

multi-disciplinary within the broad umbrella of computing and new media technologies. 

Graduating seniors from the department’s Computer Information Systems (CIS) and Web 

Development (WD) programs are integrated into a single course that covers a variety of 

project types. The CIS program includes emphasis areas (options) in application 

development and support, cybersecurity, and networking. The WD program, while 

technically a “single track” curriculum, allows for students to specialize in front-end 

development or user experience design/research through the selection of elective courses. 

Although our decision to implement a combined course was by design, sometimes 

integrated capstone experiences are introduced by necessity [3]. 

The development of the pre-capstone course discussed in this paper grew out of the 

realization that attempts to cover both project planning and implementation within the 

confines of a single semester led to less-than-ideal student outcomes. It was common for 

the initial planning stage of the projects to consume valuable development time, which 

resulted in project scopes being cut significantly to finish in time. Our adopted a 

sequence is similar to what Pettiford [4] describes as a “3-course capstone sequence” – an 

introductory preparation course combined with a capstone project.  

We had discovered that additional preparation was also required for any students who 

needed any more than a cursory review of the modified, Scrum-like Agile methodology 

used to manage their projects in the capstone course. Similar to prior findings in the 

management information systems [5] and electrical and computer engineering fields [6], 

the goal here was to address knowledge gaps, which in our case were due to the differing 

curricula of the department’s programs that exposed students to varying degrees of 

project planning and management processes. 
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2 Development of the Pre-Capstone Course 

The department began the planning process for the pre-capstone course, Applied 

Development Project Planning (CNMT 479), in 2020 and the new course was offered for 

the first time in Spring 2021 by the first author (who has taught the course every semester 

to date). To accommodate existing students, the pre-capstone course ran as a hybrid and 

included both students taking the capstone course that same semester and students 

planning for their capstones the following semester. Because of COVID-19 restrictions, 

the course ran in an asynchronous online format. The first iteration already included some 

of the key elements we further revised in subsequent semesters, including 1) attendance 

in capstone course sprint reviews and writing a reflection paper on lessons learned; 2) 

peer and instructor feedback of project plan drafts and revisions to the project plan; and 

3) a prescriptive project plan template to guide planning efforts. 

2.1 Initial Transition Period 

We immediately identified the lack of formal instruction and hands-on experiences with 

project planning as a challenge. Because of the asynchronous format, students were 

instructed to schedule “catch up” sessions with the instructor and conduct independent 

learning based on materials provided. In the following Fall and Spring 2022 semesters, 

the course ran as an 8-week hybrid offering after most COVID-19 restrictions were lifted. 

This enabled class time to be used for discussing project planning fundamentals and 

hands-on activities such as paired peer review project plan drafts. As the course was still 

being introduced into students’ graduation plans, the enrollment included both capstone 

and pre-capstone students, which complicated practical classroom management. 

Moreover, a non-trivial number of students were concurrently registered in the pre-

capstone and capstone courses owing to upstream scheduling conflicts and advising 

issues in prior semesters. 

In Fall 2022, we addressed the above issues by scheduling the pre-capstone course as a 

16-week in-person course with a split design. This additional time allowed for more in-

class time to be dedicated to instruction on project planning, discussion, and feedback for 

pre-capstone students. Students concurrently registered in the pre-capstone and capstone 

followed a more compressed project planning cycle at the start of the semester. 

2.2 Current Developments 

The pre-capstone course assumed the schedule that is currently followed in Spring 2023. 

The project planning process is split into three discrete stages. By week four, students 

submit their initial project plan definition, which includes client and project 

identification, and the completion of an initial draft of project goals and objectives. In 

week nine, students submit a draft of the completed project plan with requirements, 

project schedule, resource management plan, and risk management plan. A revised plan 

follows in week 14, followed by a one-on-one review meeting with the instructor. We 
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wanted to err on the side of caution and provide students with ample time to work 

through the planning process with their clients. However, students were also required to 

attend two capstone course sprint reviews in weeks 5 and 8, to coincide with the 3-week 

sprint cycle of the course. The first seven weeks also included an expanded timeframe for 

discussion of project planning techniques and informal exercises around identifying 

project goals, objectives, requirements, and risks. 

# Course topics Course Activities/Assignments 

1 Syllabus review & course introduction    

2 Course & capstone organization  Identify project topic/client  

3 Project planning fundamentals: 

Technical communication   

Identify project topic/client  

4 Project planning fundamentals: 

Agile; project goals and objectives  

Submit project plan topic definition  

5 Sprint reviews  Attend capstone sprint review 

6 Project planning fundamentals: 

Requirements gathering, deliverables 

and scheduling  

Develop project goals and objectives  

7 Project planning fundamentals: 

resource and risk management 

Define project requirements  

8 Sprint reviews  Attend capstone sprint review  

9 Project plan draft Q&A  
 

Submit project plan draft & meet with 

instructor 

10 Peer reviews   Submit peer reviews 

11 Project plan drafts general feedback   Submit sprint review reflection  

12 Risk management planning Revise risk management & 

communication plans  

13 Guest presentation: Real world project 

management  

  

14 Revised project plan review & 

feedback 

Submit revised project plan & meet 

with instructor  

15 Revised project plan review & 

feedback  

Meet with instructor 

Table 1: Course schedule, Spring 2025 

The current schedule in Spring 2025 (Table 1) follows the patterns set in 2023. The main 

difference is that we have formalized the in-class project planning tasks as a part of the 

course structure. In the weeks when students are not attending capstone sprint reviews, 

they work on developing goals and objectives (week 6), define initial project 
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requirements (week 7), conduct peer reviews on project plan drafts (week 10), and revise 

their risk management and communication plans (week 12). Students are also required to 

meet with the instructor for initial review of their project plan drafts to provide 

immediate, actionable feedback. 

2.3 Future Plans 

While we are pleased with the student outcomes using the current 16-week model with 

50-minute class meetings (all that is allowed for in a 1-credit hour course), the lack of in-

person class time is a problem. We are exploring initiatives to ensure that students are 

sufficiently prepared for project planning prior to entering the pre-capstone course. This 

would allow us to focus primarily on planning activities, instead of splitting time between 

“remedial” coverage of planning and agile methodology and practical planning tasks. We 

will discuss these plans in more detail in section 4. 

3 Lessons Learned 

Though the next section discusses additional revisions we are considering in better 

preparing students for the pre-capstone, we have already learned that: 1) students are 

more successful when they take the pre-capstone in advance of the capstone course; 2) 

students learn best from not only observing sprint reviews in the capstone course, but in 

actively reflecting on what they observed, and directly applying it to their own project 

plans and projects; and 3) through peer reviews and formative instructor feedback, 

students start developing a trust relationship with their instructors and each other so that 

they are more able to not only identify potential risks, but feel comfortable when they 

encounter issues with their projects during their capstone experiences. These findings 

echo those reported by Schmidt and Clark [7]: exposing students to the capstone process 

in advance provides benefits towards the capstone experience. Importantly, our pre-

capstone course also directly builds the project plan, in addition to providing exposure to 

the capstone experience.  

For the first and third point, we believe that the introduction and formalization of 

scaffolded planning exercises and formative feedback sessions have been helpful in 

improving the overall success of the capstone projects for students who buy in to the 

process. While the project scope and goals frequently change for individual capstone 

projects, the experience in building out a project schedule with associated tasks and 

deliverables is likely to help students adapt to changing circumstances down the line.  

For the second point, we posit that an additional benefit is that students have an 

opportunity to observe the lifecycle of the capstone projects from sprint 2 (early design 

and development activities) to sprint 3 (typically the most intense development period). 

What is frequently demonstrated through the sprint review presentations are issues that 

students will face the next semester but are challenging to proactively capture in a project 

plan. These include the need for troubleshooting, addressing communication and 

approval delays, adapting to changes in project scope and technologies, and more. 
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The pre-capstone and capstone courses are scheduled to run in the same timeslot 

throughout the semester. This allows students to attend capstone course sprint reviews 

without interfering with the rest of their class schedule. The scheduling also presents a 

practical challenge – the same instructor cannot feasibly teach both courses. We have 

learned over the past five years that similarly to students building trust and comfort with 

each other, it takes time for instructors to align their respective approaches to managing 

the capstone process. The authors taught the pre-capstone and capstone, respectively, for 

multiple semesters before a new instructor was recruited to teach the capstone in Spring 

2023 (who has since taught the course to date). What we have collectively learned is that 

it is important for both instructors to share a vision for what a good project plan is in 

terms of scope and measures of success. Our recommendation is to set up multiple 

checkpoints to review the project plans, specifically at the project identification and draft 

stages, to avoid downstream challenges. 

4 Integration of Project Planning and Management in a Shared 

Computing Curriculum 

One of the continuing challenges we face in our department is having one pre-capstone 

and capstone sequence for all our majors, and their corresponding options or tracks. 

While this approach has integrative benefits, the most significant issue already discussed 

previously is that not all our majors gain as much experience with project management 

generally, and Agile methodology specifically. This issue is confounded by the reality 

that we only have 1-credit hour to devote to the pre-capstone experience to keep the size 

of the programs manageable.  

Starting this semester, Spring 2025, we are experimenting with Project Management 

Institute’s (PMI) Project Management Ready certification [8] as part of a hybrid course in 

Professional IT Communication (CNMT 410). The course is required of all students, 

ideally in their junior year, and before the pre-capstone course. CNMT 410 is a 3-credit, 

hybrid course, where one credit is taught asynchronously, and seems to lend itself to 

leading up to certification by our students. Because the certification covers predictive, 

adaptive, and hybrid approaches to project management, we are hopeful that it will help 

address the most acute knowledge gaps for students prior to enrollment in the pre-

capstone course.  

Longer term, and when enrollments allow for it, we expect to offer at least a second 

section of the capstone course. Currently, one course needs to serve students with an 

array of projects topics in software development, cybersecurity, networking, web design 

and development, and UX design and research. With the pending addition of a new major 

in artificial intelligence and the associated projected enrollment increases, we have the 

opportunity to tailor the capstone experience more specifically to students with 

increasingly different projects. This will require different emphases on how they receive 

feedback from both their peers and instructors. We may also need to revise the pre-

capstone course to include a selection process to direct students into the section best 

suited for their talents and interests.  
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5 Conclusion 

Including a pre-capstone preparation course benefits students by exposing them early to 

the capstone process and its expectations. This paper provides an example of a combined 

pre-capstone course designed to serve students from several computing disciplines. Our 

experiences are that students are more successful after taking the pre-capstone course, 

which can be attributed to directly observing the capstone experience, creating an initial 

project plan, and starting to build relationships with the instructors and each other in 

advance of the capstone course. For programs that are constrained in adding new project 

planning courses or expanding existing courses, it is recommended to introduce students 

to project management topics as a part of the shared curriculum. 
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Abstract 

High-Performance Computing (HPC) has become an essential resource for 

AI engineers, data scientists, and researchers across various disciplines. 

However, it still presents significant barriers to entry for newcomers to the 

field. To address these challenges, we introduce a microservices-based 

platform, Osire, that abstracts complex HPC interactions, integrating with 

institutional systems for security and ease of use. This platform automates 

resource creation and allocation while standardizing LLM workflows, 

academic authentication, and containerized Open-API compatibility. By 

providing modular services for retrieval-augmented generation (RAG) and 

on-demand access to open-source large language models (LLMs), it 

simplifies HPC access and management for users. Originally developed and 

tested at the Milwaukee School of Engineering (MSOE), the system is 

designed to be extensible and adaptable to the majority of Academic HPC 

systems. This platform lowers barriers to HPC access, fostering 

collaboration, optimizing resource use, and bridging traditional HPC 

infrastructure with modern AI workflows. 
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1 Introduction 

Over 90% of academic institutions with access to High-Performance Computing (HPC) have 

invested in AI, underscoring its growing role in research (Glick, 2024). Since 2017, research 

involving LLMs has grown exponentially, surpassing 2,100 papers by 2022 (Fan, et al., 2023). 

Traditionally, HPC systems have been optimized for batch processing workflows, effectively 

serving applications such as scientific simulations, computational fluid dynamics, and large-scale 

data analyses. However, as academic research increasingly incorporates modern AI techniques—

particularly interactive machine learning methods involving large language models (LLMs)—

these traditional HPC systems have begun to show limitations in usability and user experience. 

 

Figure 1: Trend of the number of publications utilizing LLMs for their research over time (Fan, et al., 2023). 

Large language models, which have become central to various AI-driven research projects, often 

require interactive environments that allow rapid prototyping, iterative development, and real-

time feedback. These needs conflict directly with the batch-oriented design of traditional HPC 

architectures. Tools such as Open OnDemand (OOD) (Hudak, et al., 2016) have improved access 

to HPC resources for standard computational tasks but still fall short in accommodating the 

interactive workflows required by modern AI research. 

For those performing research with LLMs, commercial cloud-based AI services offer user-

friendly interfaces and streamlined interactions. However, their high costs can be prohibitive for 

academic researchers and students working with limited budgets. Consequently, students and 

institutions frequently face a difficult choice: either accept the financial burden of industry-based 

AI services or navigate the complexities and limitations of traditional HPC environments. 

Thus, there is a clear and pressing need for a new approach that combines user-friendliness, 

interactive capabilities, and cost-effectiveness, specifically designed to address the evolving 

requirements of LLM-centric academic research in HPC settings. 
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In this paper, we propose Osire, a microservices-based platform that abstracts away the 

complexities of working with LLMs in an academic HPC setting, while ensuring efficient 

resource utilization and security using proven frameworks and practices. 

The core design question behind Osire is how to create a living, adaptable framework capable of 

continuously evolving alongside rapid advancements in the AI and HPC domains. Given that AI 

research—particularly involving large language models—is progressing at unprecedented rates, 

Osire’s architecture must remain responsive and extensible to integrate emerging tools, models, 

and methodologies without extensive redevelopment. 

To accomplish this, our solution must support several keys features. First, it must be able to have 

new programs integrate natively with the platform with the most minimal of requirements. 

Second, it must be able to navigate the complexity of managing varying job needs automatically. 

Finally, it must have a mechanism for sharing approved programs with other researchers. 

2 Design Philosophy 

Integrating interactive AI workflows into traditional High-Performance Computing (HPC) 

systems poses multiple challenges. 

2.1 Batch Scheduling 

This first challenge is that for a given task involving LLM research, the precise amount of 

compute is unknown. Compute can vary widely from a simple case with a single chat model, to 

complex agentic workflows with compute varies with details such the size of the chat model, 

embedding model, vector stores, tools, databases, and other pieces of software. 

In a conventional operating system this is not a problem. Conventional operating systems excel at 

interactive computing—they dynamically allocate resources to processes on-demand, instantly 

responding to user inputs, and fostering a rapid cycle of experimentation. HPC systems, in stark 

contrast, are inherently batch oriented. They require researchers to predict and explicitly specify 

resource needs, such as CPU, memory, and time allocations, in advance. Given the uncertainty 

around exact resource needs for each changing component, users must repeatedly adjust detailed 

batch scripts to accommodate new requirements. Alternatively, they might request excessively 

large resource allocations to avoid frequent script modifications, resulting in inefficient resource 

utilization. This approach significantly limits flexibility, making rapid prototyping and iterative 

experimentation cumbersome or even infeasible.  

This leads us to the conclusion that HPC is good in cases where you have discrete units of 

resource-intensive tasks with known resource needs, and HPC fails with tasks that have scaling or 

dynamic resource requirements. This led us to a microservices-based architecture, where each 

conceptual unit of work is split into its own service. This paradigm allows us to independently 

preconfigure the resources needed for each aspect of the LLM workflow and control their 

communications through a centralized gateway. 
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2.2 Data Privacy 

The next critical challenge is maintaining data privacy. In an HPC environment, researchers can 

be working with data or code that is confidential or protected. Typically, Open OnDemand (OOD) 

sandbox services are created without appropriate authentication mechanisms, making them 

automatically accessible from any device on the same network. This poses significant security 

risks for researchers wishing to prototype applications with independently configuring complex 

security measures. Osire mitigates this vulnerability by enforcing structured authentication 

schemes, providing secure environments by default. Consequently, researchers can confidently 

prototype and develop sensitive projects without inadvertently exposing confidential data or code 

to unauthorized access. Additionally, Osire makes use of HPC standard architecture for its 

services code protection, which is isolated user and public shared directories, a standard first 

developed by the Ohio Supercomputer Center (OSC) (OSC, 2014). 

2.3 Security 

Security is also crucial, especially within academic environments where sensitive research takes 

place. Preventing unauthorized users from gaining access to HPC resources is a top priority. 

While most HPC systems have authentication schemes in place, adding an additional layer of 

security internal to the platform itself allows tracking and analyzation of usage patterns on the 

platform, providing insights into how users engage with Osire. To address this, Osire employs 

OAuth-based authentication, providing secure and reliable user verification that safeguards 

resources from unauthorized access and misuse. Osire’s user key generation system links directly 

to users' institutional SSO (Cohesity, 2021), using a returned custom key after sign-in for all 

requests afterwards. A nonce variable is also used, allowing users to rotate keys as needed. The 

final key is generated using JWT (Jones, Bradley, & Sakimura, 2015). Linking access keys to 

institutional SSOs not only secures the authentication process but also allows tracking and 

analyzing usage patterns on the platform, providing insights into how users engage with Osire. 

2.4 Extensibility 

Finally, the platform must be expandable and flexible to remain useful long-term. It needs to 

easily accommodate new features, improvements, and community-driven enhancements. Osire 

meets this requirement by having low barriers for adding new code and supporting both officially 

maintained and community-developed "unofficial" microservices. This design encourages 

collaboration and ongoing development within the academic community, ensuring continuous 

improvement and adaptability. 

Given that Osire should be as portable as possible to encourage both intra-university and inter-

university development, Osire hosts its Gateway component by default on commonly accessible 

computing devices, such as personal computers, servers, or virtual machines, rather than directly 

on HPC hardware. This means that the gateways reside on familiar, interactive operating systems 

like Windows, Mac, or Linux, while computational tasks are dynamically managed as batch jobs 

in the HPC backend. This approach allows researchers to interact seamlessly and iteratively with 

their experiments, receiving instant feedback through intuitive interfaces, while computationally 

demanding tasks are efficiently executed using HPC’s optimized resource management. 
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3 Architecture 

Osire itself follows the standard microservice design, with a gateway which users will use to 

make requests to services that Osire supports. Osire makes minor modifications to the standard 

for ease of use on users and admins while still permitting proper authentication. 

3.1 Overview 

The Osire platform leverages a sophisticated microservice architecture explicitly engineered to 

mitigate the inherent limitations of traditional HPC frameworks concerning interactive and 

contemporary AI workflows. At its core, Osire establishes a rigorous and explicit delineation of 

service classifications and associated management layers, thereby achieving a harmonious 

balance between user convenience, robust security protocols, and architectural extensibility. 

 

Figure 2: An overview of the complete Osire architecture, separated by level of trust. 

3.1.1 Sandbox Services 

Sandbox services constitute fundamental elements within Osire, instantiated and governed 

exclusively by individual users within their own gateway environments. These services, 

accessible solely by their creators and developers, effectively satisfy immediate user demands for 

interactive computing, enabling expedited prototyping and iterative development process without 

dependency on HPC batch scheduling constraints. Despite their private instantiation, these 

services utilize HPC computational resources, access restricted by the SSO API keys, ensuring 

data privacy, integrity, and resource allocation control. Users build their own local service from a 

provided template which is immediately connectable to the Osire platform (Haile, Rosie FastAPI 
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Template, 2024). Applications built from the standardized template have the capability to make 

full use of Osire. 

3.1.2 Production Services 

Production services, in contrast, are standardized services maintained centrally and stored within 

a shared directory accessible by all Osire users at a given institution. Any user within said Osire 

ecosystem can instantiate their own isolated instance of these services for personal use. Although 

each instantiation is accessible solely by the initiating user, the underlying production service 

code and execution scripts are universally available, facilitating consistency in resource 

availability, optimized operational performance, and uniform integration capabilities across 

heterogenous user contexts. Access to these instantiated services is also managed via SSO API 

keys, maintaining same security measures for authorized use of HPC resources. 

3.1.3 Gateway 

The gateway component operates as a decentralized service, executed locally by users outside the 

HPC system but within the institutional network. This gateway performs essential API calls 

required to utilize both local and global services. Due to the decentralized nature of the gateway, 

inherit trust cannot be guaranteed, necessitating the stringent security protocols, notably the 

employment of the SSO API keys. Utilizing dynamic interactions with the centralized service 

registry, the gateway actively monitors and identifies the current operational state, network 

location, and accessibility of services. Automated initiation of service launches by the gateway 

ensure uninterrupted, reliable resource availability and minimizes the necessity of manual 

administrative intervention. 

3.1.4 Access Key Management 

Osire further incorporates a stratified security model, structured into distinct layers to maintain 

robust access control and secure operation. The Privileged layer houses officially sanctioned 

applications alongside the central service registry, ensuring secure, controlled dissemination of 

standardized computational resources. Meanwhile, the Protected layer encapsulates critical 

services, notably the SSO/Key Manager, designed to facilitate secure generation issuance and 

validation of user-specific access keys explicitly linked to institutional identities. This multi-

tiered security framework enforces rigorous access control protocols, mitigates unauthorized 

resource exploitation, and guarantees authenticated, secure interactions throughout the system. 

3.1.5 Service Requirements 

All Osire services adhere to specific operational requirements. Each service must maintain a 

configuration file detailing critical information such as the latest software version, the repository 

or location of the service’s code, and the defined interval for periodic heartbeat communications. 

Services are required to send heartbeat checks at these configured intervals, enabling the gateway 

to monitor their operational status accurately. Additionally, services mandate authenticated 

requests containing valid API keys. Production services authenticate these keys by cross-

referencing them with the centralized Key Manager, while local services necessitate manually 

configured API keys assigned explicitly by the developing user. 
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3.2 Service Level 

3.2.1 OsireLLM 

OsireLLM serves as a foundational component within the Osire ecosystem, providing a unified 

and intuitive interface for managing large language model (LLM) workflows. Designed as an 

orchestrator of multiple LLMs across varying engines (such as NVIDIA NIM (NVIDIA, 2024) or 

vLLM (Kwon, et al., 2023)), OsireLLM enables users to effortlessly launch, terminate, monitor, 

and interact with LLM instances from a single point. By abstracting the complexity of direct 

model management and providing a single interface for inference, it simplifies LLM usage for 

other services within Osire. 

Primarily, OsireLLM prioritizes compatibility with familiar OpenAI-standard APIs (OpenAI, 

2022), such as completions, chat completion, and embeddings endpoints, ensuring seamless 

adoption by existing applications and workflows. Additionally, due its primary use case being an 

orchestration tool, it automatically supports new API schemas as they become available. 

Beyond these straightforward use cases, OsireLLM also supports advanced interactions with 

distinct LLM engines through dedicated route prefixes. For instance, vLLM has endpoints related 

to tokenizing requests. To access this endpoint, a separate route is used where the request is 

prefixed with the engine name ("vllm") and the model name (such as "meta/llama-3.1-70b-

instruct"). This allows for the straightforward requests to be in the format expected by the 

OpenAI API client, which allowing advanced users access to more detailed requests. 

By centralizing model interactions behind a standardized gateway, OsireLLM streamlines both 

basic and complex LLM usage, reducing the overhead typically associated with interactive and 

flexible AI workflows in HPC environments. 

3.2.2 OsireRAG 

OsireRAG (Haile & Yoder, Building Democratized RAG Systems in High Performance 

Computing, 2024) is one of the predesigned services within Osire that provides basic RAG 

capabilities to a user, with modularity to use components as needed. OsireRAG is served as an 

API to the user, with an interactive dashboard as well to manage their RAG projects. OsireRAG 

is built by default to be generalizable for any RAG service, however the modularity allows for a 

user to just use specific elements to their advantage if they have pieces, they would rather custom 

design and improve for their own needs. OsireRAG also integrates with OsireLLM for its LLM 

responses, showcasing the compatibility of two distinct services with each other within the Osire 

platform. 

3.3 Authentication 

Osire mitigates reliance on institutional network configurations by adopting a structured and 

robust system of protected and shared files within the High-Performance Computing (HPC) 

environment. To maintain rigorous security standards and ensure comprehensive user isolation, 

Osire implements a sophisticated, multi-tiered authentication architecture that is explicitly 

segmented into three distinct but interconnected tiers: the User, Privileged, and Protected tiers. 

This tiered protection system is not much unlike the standard for HPC developed by NIST, 
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however with updates to permit the real-time architecture over batch architecture (Guo, et al., 

2024). 

The User tier encapsulates all data and services originating directly from individual users, 

including personal configuration files, locally executed applications, and decentralized services 

that are entirely managed by the user, notably the user-operated Gateway. Given the inherently 

decentralized and user-controlled nature of this resource, data and service requests from this tier 

are treated as inherently untrusted until properly authenticated. Authentication and subsequent 

verification of trust are exclusively managed through valid API keys issued, recognized, and 

validated by the centralized Key Manager. Furthermore, the User tier accommodates the 

development and testing of new services by individual users, allowing flexible and secure 

experimentation without risk of compromising the broader Osire infrastructure. By implementing 

strict authentication protocols, this tier effectively prevents unauthorized user-developed services 

from exploiting sensitive resources, accessing protected data, or otherwise extending their 

influence beyond clearly delineated and explicitly defined authorization boundaries. 

The Privileged tier is explicitly allocated to globally accessible and officially sanctioned services 

that are fundamental to the operational functionality of Osire. This tier prominently features the 

central Service Registry, a critical component responsible for tracking and managing active global 

services available within the Osire ecosystem. Services residing within the Privileged tier are 

intentionally designed to be universally executable and readable, enabling streamlined user 

interactions, transparent resource discovery, and efficient utilization across diverse user contexts. 

Crucially, modifications to the Service Registry are strictly controlled; write permissions are 

exclusively restricted to formally approved and vetted global services. This stringent restriction 

ensures that unauthorized users or services cannot compromise or maliciously manipulate registry 

data, thus safeguarding the accuracy, consistency, and integrity of the registry. Moreover, the 

Privileged tier supports dynamic updates, allowing global services to register their operational 

states securely, enhancing real-time responsiveness and ensuring continuous, reliable availability 

of approved services. 

The Protected tier is built in such a way as to replicate the design philosophy of OAuth2, but for 

entirely internal HPC systems (Hardt, 2012), and models standard AAA framework ideology 

(Panek, 2019). It is uniquely dedicated to housing the SSO/Key Manager and its associated secure 

database containing user-specific access keys. Unlike resources located in the Privileged tier, 

direct access to the access key database within the Protected tier is explicitly prohibited for 

general users and global services alike. Instead, global services interact with the Key Manager 

through carefully secured and authenticated communication channels specifically designed to 

facilitate safe and efficient validation of API keys without direct database access. The Key 

Manager itself is strategically segmented into multiple specialized operational components to 

optimize security and efficiency. These components include the Key Manager Creator, 

responsible for securely generating and distributing individualized access keys (via institutional 

SSO) linked explicitly to user identities, and the Key Authenticator, which efficiently and 

securely validates API keys for global service requests. This meticulous and deliberate structural 

segmentation substantially mitigates potential security vulnerabilities, minimizes authentication 

response latency, and significantly enhances the overall robustness and reliability of Osire’s 
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authentication framework. Consequently, the Protected tier represents a critical security layer that 

underpins trust and operational integrity throughout the entire Osire architecture. 

3.4 File Management 

Effective file management is crucial within Osire for ensuring security, operational efficiency, and 

ease of maintenance. Osire employs an organized approach to file management that clearly 

separates user data, shared global resources, and authentication-related information, aligning with 

the platform's structure of User, Privileged, and Protected tiers. 

 

Figure 3: Diagram of the File Management for usage and storage. 

As depicted in Figure 3, Osire's file management framework revolves around three main 

repositories: Service Versions, Service Registry, and Auth Usage, along with an Access Keys 

database. 

• Service Versions Repository: This repository tracks all versions of services deployed in 

Osire. It stores essential details like the service name, version number, storage location, 

and version status (latest or outdated). Actual service software is stored in containers, 

enabling straightforward version management and updates. When a user requests a 

service, the Osire gateway queries this repository to ensure the user receives the latest 

secure version of the requested service. 

• Service Registry: The Service Registry acts as a centralized catalog, maintaining a list of 

all active global services. It records vital information such as service names, URLs, 

heartbeat intervals, and version numbers. Osire periodically logs service status through 

heartbeat signals to ensure up-to-date records, allowing dynamic management of service 

availability. Gateways refer to this registry to initiate or verify the availability of services, 

providing uninterrupted user access. 
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• Auth Usage Repository: Every user interaction within Osire is recorded in the Auth 

Usage repository. Logs include user institutional usernames, services accessed, service 

versions, and precise timestamps. This detailed logging is essential for monitoring and 

auditing, supporting efficient resource management, performance optimization, and 

maintaining robust security standards. 

• Access Keys Database: Located securely in the Protected tier, this database contains 

JSON Web Tokens (JWT) linked explicitly to verified accounts. These tokens 

authenticate users, ensuring only authorized access to global and local services. Key 

generation, management, and verification are handled by the Key Manager, providing 

secure and reliable authentication processes. 

In practical operation, Osire’s gateways and services continuously interact with these repositories. 

When a service request is initiated, the gateway verifies the appropriate version from the Service 

Versions repository and confirms the service's operational status using the Service Registry. At 

the same time, user authentication and access logging are seamlessly conducted through the Auth 

Usage repository and Access Keys database. This integrated approach, clearly shown in Figure 3, 

maintains secure, efficient, and transparent file management operations, essential for reliable 

performance and administrative ease in academic HPC environments. 

3.5 Novel-Service Pipeline 

 

Figure 4: Diagram of the control flow for building a novel service, and getting it deployed to the global services 

repository. 

To support ongoing flexibility and growth, Osire utilizes a clearly defined yet user-friendly 

pipeline for adding new services, illustrated in Figure 4. This Novel Service Pipeline standardizes 

the transition of user-created local services into globally accessible tools, ensuring each addition 

meets strict quality and security standards. 

Initially, users clone a provided template repository designed specifically to simplify initial setup 

and guarantee compatibility with Osire's framework. Users then develop and tailor their services 

to meet specific prototype objectives. With the service is linked to the local Osire environment, 
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users can perform thorough local testing and make iterative improvements without affecting the 

broader HPC infrastructure. 

When local testing concludes successfully, users submit their service for formal registration and 

review within Osire. This registration notifies administrators to conduct an initial compliance 

assessment, verifying the service aligns with technical and security guidelines. Administrators 

evaluate template adherence, API compatibility, resource efficiency, and security compliance at 

this preliminary stage. 

Following this preliminary review, administrators conduct a more thorough evaluation, analyzing 

the service's overall reliability, security risks, code quality, and possible effects on HPC resource 

usage. If the service falls short of Osire’s standards, administrators provide detailed feedback to 

users for necessary improvements and resubmission. 

Services that pass this comprehensive vetting process are officially approved and incorporated 

into the Global Services Repository. Once included, these services become available to the entire 

Osire user base, enabling users to securely and conveniently create individual instances as 

needed. This structured pipeline supports continuous innovation and collaborative advancements 

within the Osire ecosystem, enhancing researchers' abilities to adapt and expand their AI-focused 

workflows. 

4 Integration 

The Osire platform was designed with a general architecture to ensure compatibility with a wide 

range of academic High-Performance Computing (HPC) systems. However, several specific 

implementation choices were influenced significantly by the unique characteristics and 

requirements of the Milwaukee School of Engineering’s (MSOE) HPC environment. Key HPC 

design principles, such as clearly separating user-specific directories from shared public 

directories and the use of cluster-based computational resources, guided the foundational design 

of Osire. This approach allowed Osire to integrate effectively with standard academic HPC 

structures, ensuring broad usability and interoperability. 

Despite its generalized design, some components of Osire required detailed customization due to 

administrative and operational constraints unique to MSOE. For instance, MSOE’s HPC 

environment utilizes Slurm for scheduling computational jobs and Singularity containers for 

software deployment. These are chosen as the standard compared to other offerings such as 

Kubernetes, PBS Pro, Torque, HTCondor, and Docker as these are generally accepted at most 

academic institutions (Doosthosseini, Decker, Nolte, & Kunkel, 2024). These MSOE-specific 

technological choices strongly influenced Osire’s implementation, emphasizing ease of use by 

minimizing administrative setup and ongoing management. By reducing the complexity of 

administrative tasks, Osire empowers researchers to independently manage and extend the 

platform, substantially decreasing reliance on cluster administrators. 

Furthermore, Osire was specifically tailored to accommodate MSOE’s capability for flexible and 

unrestricted access to computing resources. With these capabilities, Osire is able to create 

decentralized abstractions via the user-operated gateways situated externally to the main HPC 
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cluster. These gateways interact directly with structured authentication protocols and precise 

resource management mechanisms, balancing robust security with user flexibility. This design 

enables researchers to freely conduct interactive and iterative research within secure boundaries.  

Another essential integration feature involves the adoption of OAuth-based authentication 

systems linked directly to institutional SSO, utilizing preconfigured MSOE resources. This 

authentication method provides a reliable and transparent verification mechanism, preventing 

unauthorized access without adding administrative complexity. Utilizing MSOE’s institutional 

identity systems ensures streamlined user identification, access control, and comprehensive 

security management within everyday operations. 

Additionally, Osire makes explicit assumptions about the underlying HPC system utilizing Open 

OnDemand (Hudak, et al., 2016), developed by the Ohio Supercomputer Center (OSC). This 

assumption is critical because Osire relies on OOD’s ability to perform HTTP requests directly 

from the user interface, enabling seamless interaction with services hosted by Osire. The 

integration with OOD enhances Osire’s capability to provide intuitive, web-based interfaces, 

greatly simplifying the user experience and promoting accessibility to HPC resources. 

Osire’s integration also makes use of MSOE’s established storage practices and data-sharing 

policies. It leverages existing user-specific and shared directory structures, enhancing resource 

accessibility and promoting effective collaboration among researchers within secure and 

controlled environments. Adhering to these established data management practices helps maintain 

data integrity and privacy, effectively preventing unauthorized access. 

Beyond technical integration, Osire’s design aligns closely with the operational and cultural 

norms of MSOE’s research community. It promotes long-term sustainability and independence by 

providing researchers the necessary tools and flexibility to manage their computational resources 

autonomously. The platform encourages collaborative innovation and knowledge sharing, 

fostering an active, community-driven research culture within MSOE. 

5 Discussion and Future Work 

The effectiveness and quick adoption of the Osire platform became clear during a hackathon 

hosted at the Milwaukee School of Engineering (MSOE). At this event, the Osire FastAPI 

Template was released and rapidly became an essential tool for nearly all participating teams. Its 

user-friendly and straightforward design significantly sped up project development during the 

hackathon. Furthermore, the template's value extended beyond the event itself, as many teams 

chose to continue using and customizing the Osire template for their ongoing research and 

development activities. This extensive adoption emphasizes Osire’s capability to lower entry 

barriers to high-performance computing environments and illustrates its role in promoting 

sustained innovation and collaboration within the academic community. 

Osire and its templates are currently publicly available, allowing institutions to incorporate them 

into their HPC systems. Moving forward, we plan to thoroughly analyze Osire’s performance by 

testing various service setups and workloads. This analysis will focus on measuring container 

startup speeds, response times of APIs, system capacity under multiple simultaneous requests, 
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and resource efficiency for different types of jobs and service arrangements. These assessments 

will help improve Osire’s scalability and performance to better serve diverse academic users. 

We also plan future analyses to understand which institutions use Open OnDemand and which do 

not, as well as to develop an alternative approach using SSH-based request protocols to 

accommodate institutions that lack Open OnDemand, which normally provides the HTTP 

protocols necessary to perform direct requests over the internet. 

Additionally, we intend to partner with other academic institutions, with interest in LLM 

workflows and prototype development, to evaluate Osire’s performance and adaptability in 

different HPC settings. Insights from these implementations will be documented and shared in 

future reports. Furthermore, we aim to expand the Osire platform by developing additional 

services, enhancing its functionality, and providing researchers with more specialized tools 

tailored for AI and LLM workflows in HPC environments. 

6 Conclusion 

We have presented Osire, a microservices platform designed to make high-performance 

computing more accessible for AI-focused academic research. Osire provides an effective balance 

between ease of use, security, and modularity, making it suitable for large language model 

workflows, which traditional HPC systems often struggle to support. The successful adoption and 

application of Osire components at a university hackathon confirmed its practical utility and 

appeal to student researchers. By simplifying complex HPC interactions through easy-to-use 

templates and APIs, Osire enables researchers and students to quickly create and deploy scalable 

solutions without needing extensive systems expertise. Ongoing performance evaluations and 

collaborations with multiple institutions will further demonstrate Osire’s potential to support 

widespread AI research within the academic community. 
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Abstract

Sport analysis is crucial for team performance since it provides actionable
data that can inform coaching decisions, improve player performance, and en-
hance team strategies. To analyze more complex features from game footage, a
computer vision model can be used to identify and track key entities from the
field. We propose the use of an object detection and tracking system to predict
player positioning throughout the game. To translate this to positioning in
relation to the field dimensions, we use a point prediction model to identify key
points on the field and combine these with known field dimensions to extract ac-
tual distances. For the player-identification model, object detection models like
YOLO and Faster R-CNN are evaluated on the accuracy of our custom video
footage using multiple different evaluation metrics. The goal is to identify the
best model for object identification to obtain the most accurate results when
paired with SAM2 (Segment Anything Model 2) for segmentation and track-
ing. For the key point detection model, we use a CNN model to find consistent
locations in the soccer field. Through homography, the positions of points and
objects in the camera perspective will be transformed to a real-ground perspec-
tive. The segmented player masks from SAM2 are transformed from camera
perspective to real-world field coordinates through homography, regardless of
camera angle or movement. The transformed real-world coordinates can be used
to calculate valuable tactical insights including player speed, distance covered,
positioning heatmaps, and more complex team statistics, providing coaches and
players with actionable performance data previously unavailable from standard
video analysis.
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1 Introduction

In sports analysis systems, precise statistics describing player performance are es-
sential for understanding the game at a larger level. While professional teams can
invest significant amounts of money into additional technology and sensors for track-
ing player performance, other teams may only have a camera for recording games,
making the tracking of these statistics more challenging. With only camera data
available, a computer vision solution becomes necessary to track players.

Beyond simply detecting and tracking players, to gain statistical insights such as
player speed or distance traveled, the players’ coordinate locations must be mapped
to their physical locations on the field, so that the known field dimensions can be
applied to the players positions to estimate distances. To address this problem,
key point detection models can be used to take images as input and then predict
where key locations are so that known distances can be linked to the images. Using
point homography, we can translate points extracted from the images onto a two-
dimensional representation of the field, which can then be used for further post-
processing to collect player statistics.

Working with the Milwaukee School of Engineering (MSOE) men’s soccer team, we
proposed the creation of a computer vision system that combines these techniques
to create a system that analyzes games using only video data. Due to a lack of
labeled data, we leveraged pre-trained models such as YOLO and Faster R-CNN to
identify players in a given frame. Using these predictions, we prompted Meta’s SAM2
with predicted player locations to segment and track players throughout the game
footage. To perform key point identification, we trained a custom CNN model on
a small dataset of labeled field points to identify these key points on the field and
then perform point homography on these identified points. For classifying players
into their respective teams, we use clustering techniques as a lightweight method for
dividing up players. Combining these components, we can create a video feed of a
two-dimensional field with player positioning, separated by team, which can be used
for analyzing larger trends about team behaviors and gaining insights from game
footage.

With this paper we demonstrate the application of an AI system to create a 2D field
representation from video frames in a completely unlabeled and raw dataset. This
pattern of keypoint recognition, player detection, team classification, and homography
is fairly common in sports analysis systems with AI. However, most of them are
applied into a highly curated and labeled dataset. We wanted to replicate this pattern
in data that had no kind of preprocessing, labels, or preparation for machine learning
tasks. We show that it is possible to create an automated system that can derive
insights from just footage of games. We believe we are paving the way for more
flexible and scalable sports analytics solutions, available for the associations with
limited resources.
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2 Related Works

In recent years, advancements in object detection and tracking have significantly
improved the ability to analyze player movement in sports applications. Our work
leverages previous detection and segmentation models. This section discusses the key
methodologies and models that informed our approach.

Segment Anything Model 2 (SAM2)

SAM2 is a transformer architecture with streaming memory for real-time video pro-
cessing [Ravi et al., 2024]. It addresses challenges like occlusions, lighting variations,
and temporal consistency by using a memory attention mechanism to store and utilize
contextual information across frames. This enables SAM2 to retain object identities
and improve segmentation predictions, making it highly effective for long-term track-
ing applications such as player detection in sports analytics.

You Only Look Once (YOLO)

YOLO (You Only Look Once) revolutionized object detection with its single-stage
detection framework, treating the task as a regression problem [Redmon et al., 2016].
Unlike traditional models that generate region proposals, YOLO directly predicts
bounding boxes and class probabilities from input images in real-time [Alkandary
et al., 2025]. YOLOv5 uses CSPDarknet53 as its backbone and incorporates Fea-
ture Pyramid Network (FPN) and Path Aggregation Network (PAN) for multi-scale
detection [Alkandary et al., 2025]. YOLOv8 builds on YOLOv5 with improvements
such as CSPLayer for better accuracy, a new loss function for unbalanced data sets,
and improved data augmentation [Jegham et al., 2024]. YOLOv11, the latest version,
introduces innovations such as the C3k2 block and C2PSA for enhanced small-object
detection and occlusion handling [Khanam and Hussain, 2024].

These versions were chosen for evaluation due to their advancements in real-time
object detection. YOLOv5 is the most commonly used and is widely accessible,
making it a reliable choice. YOLOv8 was selected for its direct improvements on
YOLOv5 and positive performance in studies like “A Comparative Study of YOLO
Series” [Alkandary et al., 2025]. YOLOv11 was included for its use of significantly
less parameters while still offering enhanced precision and faster inference due to
its state-of-the-art optimizations that are particularly useful for detecting players in
complex scenes [Khanam and Hussain, 2024].

Faster R-CNN

Faster R-CNN is a two-stage object detection model that differs from YOLO’s single-
stage approach [Ren et al., 2016]. While YOLO predicts bounding boxes and class
probabilities in one pass, Faster R-CNN first generates region proposals using a Re-
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gion Proposal Network (RPN), followed by object classification and bounding box
refinement [Ren et al., 2016]. The architecture includes a backbone for feature ex-
traction, the RPN for generating proposals, and a detection head for classification
and refinement [Ren et al., 2016]. We chose to evaluate Faster R-CNN to compare its
two-stage approach with YOLO’s single-stage detection, providing insights into the
strengths and limitations of both frameworks.

Field registration is crucial for converting camera measurements into real-world dis-
tances. Traditional methods—such as sensor-based calibration, which fuses data from
GPS, accelerometers, and gyroscopes, or template matching that aligns the current
view with a stored 2D field representation—often struggle when the field is viewed
from non-standard angles or under extreme variations. In soccer, where cameras fre-
quently zoom and shift, these conventional techniques may fail to capture the dynamic
nature of the field.

To overcome these challenges, our approach follows a typical sports field registration
pipeline: (i) extracting field-specific features (in our case, keypoints), (ii) establishing
correspondences between these features and a 2D field template, and (iii) estimating
the homography matrix for mapping camera coordinates to real-world distances [Chu
et al., 2022]. Recent advances in deep learning have shown that CNNs are particularly
effective in this domain. For instance, [Zhang et al., 2024] introduced a cascaded CNN
achieving 95.62% keypoint detection accuracy under challenging conditions, while
[Falaleev and Chen, 2024] and [Theiner and Ewerth, 2022] demonstrated the benefits
of CNN-based pipelines in enhancing 3D camera calibration and field registration
accuracy. Furthermore, optimization-based approaches like PnLCalib and Bayesian
frameworks proposed by [Gutiérrez-Pérez and Agudo, 2024], as well as [Claasen and
de Villiers, 2024], have significantly improved homography estimation metrics. These
developments highlight the power of integrating CNN-based keypoint detection with
robust homography estimation to derive precise real-world metrics from raw, dynamic
game footage.

3 Data

Our primary dataset consists of comprehensive footage from 10 home games during
the 2024 season of the MSOE Men’s Soccer team. It captures diverse environmental
conditions including daytime, nighttime, and rainy weather scenarios. The video
footage was recorded using a high quality elevated BePro camera, providing extensive
field coverage while incorporating dynamic movement to track the ball and adjusting
zoom levels as needed during gameplay.
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3.1 Player Bounding Boxes

To generate accurate labels for our dataset, we leveraged the Segment Anything Model
(SAM2) for ground truth annotations on 390 consecutive frames. To accelerate the
labeling process, we used YOLO predictions to get a inference point to pass as initial
prompts to SAM2. While these YOLO predictions had to be manually reviewed, the
predictions were often correct, minimizing time manually defining the prompt points
for SAM2 when creating a ground truth dataset.

To create bounding box predictions that could then be used for evaluation against ob-
jection detection model bounding boxes, we reverse-engineered the SAM2-generated
segmentation masks into ground truth bounding boxes using the minimum bounding
box rectangle for each mask.1

3.2 Field Key Points

Since the original dataset contained no keypoint labeled annotations, the first step in
the research involved creating our own ground truth data to support model training
and evaluation. We needed to identify and annotate key structural points on the
soccer field that could serve as reference points for homography estimation.

We manually labeled key points across 146 frames extracted from soccer footage,
ensuring a diverse representation of field views and camera angles. These frames were
extracted from 2 different games, one where there was glare on the field (92 frames),
and an overcast day (54 frames), giving us a small dataset that could be evaluated in
different weather conditions. Each frame was annotated typically including 4 to 12
per frame depending on visibility An example of a labeled frame is shown in Figure
1 (right).

The selected keypoints were chosen to accurately align each frame with a top-down 2D
field template. By focusing on intersections of prominent field markings—such as the
penalty arc, center circle, and midfield line—these points serve as strong, consistent
visual anchors. Their spatial distribution across the field supports stable homography
estimation, while avoiding line extremities helps reduce annotation ambiguity. Addi-
tional non-intersecting points were selected to define a perpendicular axis at midfield,
further facilitating the transformation. This strategy enables precise alignment for
downstream tasks like player localization and tactical analysis.

1One challenge presented by this data labeling approach was player entry/departure from the
camera frame. This led to a reduction in ground truth points collected for specific players, but the
process for dataset collection still allowed for an efficient collection of quality ground truth data
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Figure 1: The set of all keypoints to predict in the field (left) and an example
labeled frame from game footage (right).

4 Methodology

Since creating a soccer computer vision system is a complex task, we define several
workflows to process the game footage to produce meaningful results that can be used
for further game analysis, as seen in Figure 2. The main capabilities we need for a
minimal system include: some form of player detection, a way to classify individual
players/members of a team, key point predictions to identify the camera’s current
perspective, and point homography that can transform the frames of game footage
onto a 2D representation of the field with physical field measurements. We discuss
each of these components further below.

Figure 2: Full workflow for transforming video feed into a 2D representation of the
feed. Core model pieces are defined with colors while different states of the data are

defined in white.
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4.1 Player Detection

Our approach to player detection and tracking combines an Object Detection model
with SAM2 (Segment Anything Model 2). The Object Detector identifies soccer
players in the first frame and generates associated bounding boxes. From it we can get
the centerpoint of the bounding box for the identified players and use these points as
prompts for SAM2, which segments and tracks the players throughout the rest of the
video. By leveraging SAM2’s unique memory component, we can maintain consistent
tracking of individual players, assigning each a unique ID and ensuring continuity
even in challenging conditions such as occlusions, players partially moving out of
frame, low video resolution, lighting inconsistencies, and varying weather conditions.

The combination of an Object Detector Model and SAM2 offers several key advan-
tages over traditional approaches like using DeepSORT [Wojke et al., 2017] for track-
ing. SAM2 provides pixel-accurate tracking and a fine-grained understanding of ob-
ject shape and position, enabling more precise measurements. Its memory-based
design is robust to occlusions and changes in player appearance. Unlike DeepSORT,
which relies on continuous detection, SAM2 allows YOLO to be used only once for
initialization—after which SAM2 handles the tracking, reducing computational over-
head while improving consistency [Wojke et al., 2017].

Since an Object Detection model alone does not track players across frames, it is used
to detect players in the first frame, and its detections serve as input to SAM2 for con-
tinuous tracking. These detection models lack ability to associate a detected player in
one frame with the same player in the next, which makes them unsuitable for track-
ing. SAM2 addresses these issues by assigning unique IDs to each segmented player
and leveraging memory to track them persistently throughout the video, ensuring
robust and reliable player tracking across frames.

The data generated mentioned in section 3.1 will be used as ground truth to measure
different Object Detection model performances.

4.2 Field Key Point Detection

4.2.1 Preprocessing

To prepare the raw images for training and evaluation of the key point prediction
model, we developed a preprocessing pipeline tailored to enhance the visibility of
field markings. A thresholding filter was applied to isolate white field lines. The
resulting binary mask was then dilated using a morphological kernel to thicken and
strengthen the detected field lines. This mask was applied to the original image,
and all detected field markings were overwritten with bright white pixels to ensure
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Figure 3: Keypoint prediction model workflow.

consistency across samples. The enhanced image was then converted to RGB, resized
to 710×400 pixels, to speed up neural network training, and normalized to [0, 1], as
seen in the second image of Figure 3.

For key points, original points were processed so that points not in the given frame
were imputed with a coordinate of (-1, -1). Additionally, key point coordinates were
paired up with a status of their visibility denoted with 0 for points not in the frame
and 1 for points in the frame.

4.2.2 Augmentation

To improve model robustness and dataset diversity, we applied horizontal flipping for
data augmentation. Each frame was flipped and its keypoint annotations adjusted by
inverting the normalized x-coordinates (1 − x) and swapping left/right labels. This
encouraged the model to focus on field line patterns rather than extraneous features,
effectively doubling the dataset while preserving spatial structure. The dataset was
split 80/20 for training and testing.

4.2.3 Model Architecture

We designed a multi-task convolutional neural network to jointly predict the visibility
and location of 12 predefined soccer field keypoints. The model outputs a visibility
probability (between 0 and 1) and normalized coordinates (also in the range [0, 1])
for each keypoint.
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To manage keypoints that are not visible due to occlusion or camera angles, we
employ a custom loss function that calculates the mean absolute error (MAE) only
over visible keypoints (ignoring those labeled as (-1, -1)) and binary cross-entropy
loss for visibility (defined in Equation 1). These losses are combined with weights of
10 for the coordinate loss and 1 for the visibility loss.

We trained this network using the Adam Optimizer with an exponential decay learn-
ing rate schedule. Additionally, to find a strong set of model hyperparameters, we per-
form a Bayesian Optimization hyperparameter search over factors including dropout
rate, layer size, and learning rate. An example output of the model can be seen in
the right side of Figure 3.

4.3 Homography

In terms of the homography, the real life dimensions of the field were collected with
the use of Google Maps API. Combined with official NCAA collegiate soccer rules
for measurements on the field, we defined all keypoint locations on the 2D field
mapping. This image and dimensions were used to align predicted key points from
each video frame with a standardized 2D representation of a soccer field; we estimated
a homography transformation based on a set of corresponding points.

For the calculation of the homography matrix we used different algorithms. The most
successful one was the Direct Linear Transformation (DLT), commonly used in the
homography field [Kang et al., 2014]. The DLT estimates the homography matrix
by solving a linear system built from point correspondences, using Singular Value
Decomposition. It assumes all input points are accurate and does not account for
outliers, making it highly sensitive to keypoint placement.

Once we obtained the homography matrix between the 3D and 2D view, any point in
the image could be converted from one to another by applying the matrix to it. This
gave us what we needed to jump from the camera perspective to a top down angle,
in which real world metrics and measures can be taken.

4.4 Player Mapping and Team Recognition

Once we had both parts separate, player detection and homography, we tried to
connect them and utilize clustering to classify each of the players into a team. For
each person detected by the model, we computed the average color within a small
patch (5× 5 pixels) centered at the middle of the bounding box, ensuring robustness
to noise and avoiding background influence. The resulting color vectors, represented
in RGB space, were then clustered using the K-Means algorithm. We used k = 2 to
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detect both teams involved in a soccer game. Each bounding box was then assigned
to a cluster based on its color similarity, allowing us to group players by team without
requiring manual labeling. This process served as a lightweight and effective method
for unsupervised team classification based on visual appearance, as demonstrated in
Figure 4.

Figure 4: Team assignment based on pixel color clustering of player bounding
boxes. This example uses player detections from YOLOv8.

5 Results

5.1 Player Detection Model Performance

In evaluating different object detection models for identifying soccer players as prompts
for SAM2, F1-score, IoU (Intersection over Union), recall, and precision each play a
crucial role in determining effectiveness. Of these metrics, F1-score is the most valu-
able in our application, as it balances both precision and recall. Recall was deemed
the next most critical metric since missed detections means that players will not be
passed to SAM2 for segmentation, limiting tracking completeness. Precision, while
important, is slightly less critical in our application because false positives outside
the typical player size are unlikely to result in valid segmentation by SAM2 since we
are filtering by the size of the mask. Finally, IoU is used to measure the alignment
of the bounding box, but small misalignments are less problematic if the object is
still successfully segmented. Based on these priorities and the comparative results
shown in this results section, we have chosen to pursue YOLOv5x as the best model
for our application. As seen in Table 1, it offers the highest F1-score (0.8451) while
maintaining strong recall (0.7995), precision (0.8963), and IoU (0.7644), making it
highly reliable for consistent player detection and optimal integration with SAM2.
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We evaluated four models: Faster R-CNN, YOLOv5x, YOLOv8x, and YOLOv11x.
Each model was tested on its ability to generate accurate bounding boxes that identify
players on the soccer field to serve as prompts to SAM2. Table 1 represents the results
of these key performance metrics. Note that in each version, the ”extra-large” model
was tested to ensure a fair assessment.

Model Mean IoU Recall Precision F1-Score
Faster R-CNN 0.6837 0.6574 0.7942 0.7194
YOLOv11x 0.7934 0.6805 0.9229 0.7834
YOLOv8x 0.7466 0.8152 0.8765 0.8447
YOLOv5x 0.7644 0.7995 0.8963 0.8451

Table 1: Comparison of different object detection models on SAM2 generated
ground truth samples.

YOLOv5 indicated the best balance between precision and recall. YOLOv8x followed
closely behind with a slightly higher recall but slightly lower precision. YOLOv11x
had the highest IoU and precision, but its recall was significantly lower, which can
lead to missed detections, which is crucial in our application. All three YOLO mod-
els tested outperformed Faster R-CNN across every key metric, demonstrating the
superior effectiveness of modern YOLO architectures in this application.

Using YOLOv5x, we successfully identified 17/22 players without any fine-tuning.
These players initially identified were successfully segmented and tracked through
SAM2, where their positions and movements are accurately monitored across sequen-
tial frames. Despite minor exceptions with player re-identification and identifying
fans, the pipeline demonstrates promising performance. With potential YOLO fine-
tuning, the tracking process can be further optimized, leading to a more robust and
reliable player tracking system.

5.2 Keypoint Prediction Model Performance

We defined tailored metrics for the evaluation of our CNN. For the evaluation of the
key points prediction we used a masked Mean Absolute Error (MAE) as described in
Equation 1, which computed the error only for visible keypoints, ensuring key points
that are not in the frame (denoted by a special value) do not negatively impact the
model’s performance evaluation. This approach provides a more reliable assessment
of localization accuracy by focusing on keypoints with valid ground truth data.

MAEmasked =
1

N

N∑
i=1

∑C
j=1 vi,j(|xi,j − x̂i,j|+ |yi,j − ŷi,j|)∑C

j=1 vi,j
(1)
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Meanwhile, accuracy was employed to evaluate visibility predictions by comparing
the rounded model outputs to the ground truth labels as described in Equation 2.
This metric is particularly useful in binary classification tasks, such as determining
whether a keypoint is visible or not. Together, these metrics provide a comprehensive
evaluation of both the spatial accuracy of the detected keypoints and the model’s abil-
ity to correctly classify their visibility, ensuring robust and interpretable performance
analysis.

Accuracy =
1

N

N∑
i=1

1

C

C∑
j=1

[round(ŷi,j) = yi,j] (2)

As shown in table 2, the proposed convolutional neural network demonstrated strong
performance across both keypoint visibility classification and coordinate regression
tasks. On the training set, the model achieved a visibility accuracy of 99.89%, with
still high accuracy of 97.18% on the validation set, indicating strong generalization and
minimal overfitting. For keypoint localization, the model achieved a mean absolute
error (MAE) of 0.0107 in normalized image coordinates on the training set and 0.0138
on the validation set, corresponding to pixel errors of 5.96 and 7.65 pixels, respectively.
These results suggest that the model is capable of precisely identifying and localizing
field keypoints under varying visual conditions, providing a reliable foundation for
downstream tasks such as homography estimation.

Metric Training Set Testing Set
Accuracy 0.9989 0.9718
MAE (% image) 0.0107 0.0138
MAE (pixels) 5.9648 7.6531

Table 2: Results of the keypoint prediction model on training and testing sets.

5.3 Full System Analysis

In order to measure the performance of the system as a whole, the integration of the
homography and keypoint detection, we calculated the MAE and projection errors
with the actual data. Our MAE of the actual keypoints was 0.225 meters for the
ground truth points and 0.26 meters for the predicted points. When comparing the
homography of the predicted vs the ground truth, we obtained an average projection
error of 0.499 meters in the keypoints transformed.

Looking at the results qualitatively, from a general perspective, there are several areas
of improvement. As we can see in figure 5, our player detection model suffers from
false positives, such as a ballboy being recognized or a referee. As well, the clustering
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Figure 5: An example frame with player detection/keypoint predictions (left) and
then applying homography to create a 2D field representation (right).

algorithm mistakes players when they are affected by the glare or shadows, assigning
them to the opposite team. Furthermore, our keypoint detection model is not perfect,
which can lead to innaccurate positions in the top down perspective or misleading
stats. These are some of the challenges that we are facing at the moment, and that
make the system not being ready yet.

6 Future Work

In future work, we plan to improve player tracking by addressing the problem of
re-identification for players entering and leaving the frame. Using YOLO, we can
maintain player counts and identify and track these players as they exit and re-enter
the frame. When a player returns, we aim to re-prompt SAM2 using their previ-
ous YOLO coordinates, focusing only on re-prompting that player. By maintaining
specific player attributes like the player’s team and their exit location when leaving
the frame, we can ensure consistent player identification, even after they leave and
re-enter the field. Additionally, being able to track single players across the entirety
of the game would allow for stat estimation at the player-level, rather than at the
team-level as our system currently can do.

Additionally, for our trained parts of the system (specifically our key point detection
model), we have only collected our dataset from game footage from MSOE’s home
field, potentially making our models overfit to the camera and field at MSOE. This
makes the system less advantageous when there are away games that we want to
analyze statistics from. To improve on this, we would want to augment our dataset
with samples from other fields with different camera angles and backgrounds so the
trained portions of our models generalize across all fields. As well, we will work on
ball detection in order to create statistics related to the actual game flow.
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7 Conclusion

In this work, we introduced our computer vision system for extracting a 2D field
representation of players from soccer game footage. Because of a lack of data for more
complex tasks like player detection, we leverage pretrained foundation models such
as YOLO and SAM2 to classify players and segment the video based on the predicted
player locations, respectively. We use a clustering approach based on predicted player
bounding boxes to classify teams without needing to develop a supervised classifier.
To connect predicted players and team affiliations to their corresponding physical
distances, we train a custom CNN model on a limited dataset of key points, so we
may predict these points and perform homography of known locations in frames to a
consistent two-dimensional plane. Combining all these pieces, we can evaluate team
statistics over the course of a game using only camera footage. While there are more
statistics that can be computed based on these initial outputs our computer vision
system generates, we hope that these initial results can begin to be used by the
Milwaukee School of Engineering soccer teams to gain further insights about player
activity during games.
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Abstract

In Reinforcement Learning (RL), models are often trained against each other with
only one objective in mind: winning. Real life scenarios, however, aren’t zero-sum
games, where one’s success is at the expense of another. Applications such as au-
tonomous vehicles, for example, require far more cooperation as well as the ability to
handle imperfect knowledge of the environment. To test these conditions, we present
the cooperative trick-taking card game The Crew. Succeeding in The Crew requires
cooperating with and compensating for other agents in a partially observable environ-
ment with only limited information sharing. As it correlates cooperation with victory,
we believe the game is suitable for testing a reinforcement agent’s ability to function
in a team setting with restricted communication. In this work, we introduce an envi-
ronment for The Crew compatible with the major multi-agent reinforcement learning
(MARL) library Petting Zoo, and evaluate both search-based and DQN-based agents
on their ability to succeed on cooperative tasks within the game. We present a set of
benchmarks based on The Crew environment and demonstrate that both our heuristic
solver and RL based agent achieve better than random performance.
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1 Introduction

Reinforcement learning (RL) is a widely applicable subfield of artificial intelligence
which trains agents to maximize cumulative rewards over some time horizon by taking
actions in an environment. RL trains a model using a reward-based strategy, where the
agent receives either positive or negative incentives based on the action in chooses to
take in an environment. Reinforcement is broadly applicable in complicated domains
where the goal is known but not necessarily the steps to implement. Recent exam-
ples of applications of reinforcement learning are its use to create grandmaster level
game players [Vinyals, 2019], train reasoning models of large languages [DeepSeek-
AI et al., 2025], and increase safety in self-driving cars [Lu et al., 2022].

Multi-agent reinforcement learning (MARL) is a domain within classical rein-
forcement learning that consists of multiple agents acting in the same environment.
A key challenge is that agents need to decide how to act while taking into account
potential decisions that other agents may make. This could mean attempting to predict
what the other agents may do in order to win in an adversarial setting, or determining
how to combine forces in collaborative settings to work towards a common objec-
tive. Although MARL is by no means a new field, training agents capable of acting
and cooperating in a constrained environment remains a challenging task [Huh and
Mohapatra, 2024].

In this paper, we introduce a novel environment based on the popular hidden infor-
mation game The Crew: The Quest for Planet Nine1 (The Crew hereafter), compatible
with the Petting Zoo API [Terry et al., 2021], meant to train collaborative agents. The
game is based on cooperative trick-taking where players must determine which cards
each other has while only having a limited ability to communicate what is in their
hand. The majority of information must be inferred from the way each player plays.

Figure 1: The Crew Gameplay

1https://store.thamesandkosmos.com/products/the-crew
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We train a Deep Q-Learning based agent [Mnih et al., 2013] on a simplified variant
of the problem posed by the full environment where there is a single agent with perfect
information. Even in the simplified variant, the space of possible games remains quite
large so we introduce a method to warm start the agent’s policy using monte carlo
search trees. This approach has similarities to existing work for the game Pommerman
[Yang et al., 2021]. The actions taken in Pommerman, much like in our environment,
do not always lead to immediate results. This causes delayed rewards based on pre-
vious actions taken. Some key differences between The Crew environment and the
Pommerman study is that, in our case, the agents are working together in a coopera-
tive setting instead of competing against each other, in addition to having the ability to
communicate small pieces of information to each other.

2 Methods

2.1 Environment

The Crew is a cooperative trick-taking card game where players work together to com-
plete missions by fulfilling specific tasks. There are 40 total cards available in the
game, split between four suits (blue, green, pink, yellow) with card ranks 1 through
9, as well as a fifth suit (black) with card ranks 1 through 4. At the start of the game
all cards are dealt out among the available players 2, with the player who receives the
black suited 4 being designated as the lead player. Players may not share what cards
they have received with the rest of the table. After the cards are dealt, a number of
goals are designated and randomly assigned to players at the table. Goals indicate that
a specific player must ”take” a specific card by winning the trick which that card is
played in. Several additional conditions may be applied to goals, such as the stipula-
tion that goal ga must be completed before gb, or that gc must be the nth completed
goal. These conditions may be composed together. Satisfying all goals results in a
win. Failure to complete all of the goals is considered a loss.

Tricks are played sequentially starting from the lead player, and traveling clock-
wise, who plays one of the cards from their hand. That suit is designated as trump and
all following players must play a card of the same suit if they are able. The greatest
rank card of the trump suit will ”take” the trick, with the winner becoming the new
starting player. Cards taken in a trick are not playable thereafter. The only exception
to this is if a black suited card is played when black is not already trump; black suited
cards will always surpass any non-black suited trump. If multiple black suited cards
are played, the highest rank takes. For example, if Alice leads with a green four and
Bob does not have any green suited cards, he may play his black one. Bob will win
the trick unless someone plays a higher ranked, black suited card.

Between tricks players may take the Reveal action once per game. Players are
allowed to place one card c from their hand satisfying the following condition face up
on the table:

• c is the highest ranked card of that suit in their hand

• c is the lowest ranked card of that suit in their hand

• c is the only card of that suit in their hand

2the game can support between 2 and 5 players
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They additionally place a token on the card indicating which of the three cases the card
fulfills. The card is still playable.

2.1.1 Modeling The Crew

The Crew can be formulated as a Partially Observable Markov Decision Process (POMDP).
A POMDP is described by the tuple (S, A, T, R ,Ω, O, γ) where

• S is the set of states describing the environment which the agent interacts with

• A is the set of actions the agent can take

• T is the set of conditional transition probabilities between states

• R : S×A → R specifies the immediate reward for taking

• Ω is the set of observations

• O is the set of conditional observation probabilities

• γ ∈ [0,1) is the discount factor, which controls the degree to which the agent
cares about future rewards

At each time step within the environment, the agent receives s ∈ S. The agent then
chooses some a ∈ A according to π(s). Note that π ̸∈ POMDP. π is known as the
policy and represents the agent’s decision making process as a probability distribu-
tion over the actions A given some state s ∈ S. The environment transitions to s′ with
probability T (s′|s,a) and the agent receives the reward r = R(s,a,s′). The agent also
receives an observation o∈Ω dependent on the next state s′ and the action a with prob-
ability O(o|s′,a). Note the distinction between observations o and states s. Because
POMDPs explicitly model partially observable systems, there may be information in
the state that the agent is not privy to. In the case of The Crew the agent does not know
what cards are in other players hands.

The goal of a POMDP is for the agent to maximize the future, discounted rewards
earned over time, E[∑inf

t=0 γ trt ].

2.1.2 Simplifying the Model

While The Crew is properly a POMDP, we chose to model it as a pure Markov Decision
Process. We chose to model the problem as a MDP to simplify the initial task of
creating an agent. A MDP is represented by the tuple (S, A, T, R, γ). Note that the
difference between a POMDP and a MDP is that the agent observes the full state so
we do not need the concept of observations.

2.1.3 State Space

We chose to model the state S as follows. We encode each player’s hands, assigning
each player a 40 element section in the state array. Each card in a player’s hand is
given a value which is then normalized by dividing it by the number of cards in the
deck. The cards that are out of play are marked within the state array with a value of 1
indicating they have been played, and a 0 otherwise.

Each task is allocated six elements within the state array. The first element is a
value of 0 or 1 to indicate if the task has been completed. Ownership of the task is
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assigned as a 0 or 1 to indicate if it belongs to the current player. If the task has a
numeric restriction the next element is assigned a 1 and 0 otherwise. The normalized
index of the card and the normalized index of the player who owns the task are given
in the next to elements. The final element is filled with the normalized value of the
restriction if one exists. We encode space in the state for up to 16 tasks, which is more
than ever specified in the game.

Information about the current trick is encoded via a dummy card with the value
of the leading suit, played cards are encoded with their relative strength, their rank
normalized by the highest rank in the trick. Metadata about the game is also encoded
in our tensor such as what tasks have been completed, communication information
(in our current implementation this remains unused due to perfect information), player
indexes, and attempts on the mission. The metadata is encoded as such: the normalized
index of the current player, 1 if the player can communicate, 0 otherwise, the number
of mission attempts normalized by 3, and the number of completed tasks normalized
by the total of tasks in the current mission.

2.1.4 Action Space

The action space A is defined as all the cards that the player has in their hand. We
chose not to include the Reveal action from the game due to our simplified environment
giving the agent perfect knowledge. From the available actions, illegal actions such as
not following suit when possible are masked so the agent is unable to select them.

2.1.5 Petting Zoo

In the reinforcement learning (RL) world, there exist several libraries to efficiently
build and manage agents and environments. One such specific library is Gym 3 [Brock-
man et al., 2016]. Gym provides a fairly straightforward API and is mostly utilized for
single agent reinforcement learning. A multi-agent API, RLlib [Liang et al., 2018],
already exists; however, with the way it is implemented, there are two main problems:
Turn-based games require passing dummy actions for non-acting agents. A variable
number of agents is very awkward to deal with for the environment. As such, in order
to avoid such problems, our approach to make our game more universal and accessible
was to use the PettingZoo API [Terry et al., 2021].

PettingZoo uses a Gym-like API to ensure support for environments with: large
number of agents; agent death and creation; participation of different agents within
each episode; and access to low level features for learning methods. Petting Zoo
integrates cleanly with other reinforcement learning libraries like RLlib and CleanRL
[Huang et al., 2021] which allows the use of existing agents in The Crew environment
with minimal overhead.

2.2 Agent

We created a Deep Q-Learning [Mnih et al., 2013] based agent for solving our simpli-
fied version of The Crew.

3Since migrated to Gymnasium

4
373



Deep Q-Learning (DQN) is a value based reinforcement learning (RL) algorithm
that extends traditional Q-learning by utilizing deep neural networks as function ap-
proximators. Introduced by Mnih et al., DQN enables agents to learn optimal policies
in high-dimensional state spaces such as ours.

In value-based reinforcement learning, the agent learns to predict the long term
expected value for state-action pairs by repeatedly estimating the Q-values, defined
recursively for a given policy π as

Qπ(s,a) = ∑
s′∈S

p(s′|a,s)

[
r(s′,a,s)+ γ ∑

a∈A
π(a|s′)Qπ(s′,a)

]

for all s and a. The goal is then to update the policy to put high probability on actions
with large Q-values, for example by using an ε-greedy approach where

π(a|s) =

{
1− ε + ε

|A| if a ∈a∈A {Qπ(s,a)}
ε

|A| otherwise.

DQN replaces the Q-table with a deep neural network Q(s,a;θ), parameterized by
θ , to approximate the Q-values.

2.3 Search Trees for The Crew

The Crew plays with 40 cards in five suits, four regular suits containing nine cards
each, and a trump suit with four cards. In a four-player game of The Crew, a number
we maintain during training, we estimate the worst-case number of permutations of
possible games to be approximately 1.6× 1023. This estimation comes from the as-
sumption that each player is dealt a regular suit in its entirety, plus a trump card. If the
first player leads a non-trump card and all following players play their trump card, no
player will be able to follow suit for the duration of the game, resulting in a total order
9×∏

9
k=1 k4. Only dealing four cards to each player, this number drops to 331,776.

A number this large motivates a method to reliably find a winning playthrough in
a reasonable amount of time. Because of this, we developed a heuristic approach to,
at any given state, generate a subset of potential actions for all players to take that
our algorithm found likely to lead to a winning solution. This algorithm was used to
generate tree structures containing the results of expanding through every subset of
actions returned by the algorithm. This data was used to warm-start our agent’s policy
and to evaluate how well the heuristic algorithm performed.

2.4 Training

We approached the problem of a multi-agent by first training with one set of weights
given to all the players to have “one agent” controlling all of the players during a game.
Once we began seeing results with that approach, we shifted to using a different set of
weights for each of the players, using the set originally generated as a baseline for the
other agents to expand on. Due to the scope and constraints of this research, all agents
had perfect information on the hands of all the other players.

To gather training data for our model, we utilized a few different methods. One,
we created trees that represented some of the possible states that the game could be
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Figure 2: Training the agent with expert actions from the MCTS trees

in. Using those trees, we used the data to train the agent to imitate the tree. Another
is we let the agent play games that we knew had a winnable state without trees. In our
training, one episode was an entire hand, in other words, a complete set of tricks.

The latest attempt made to train our agent involved a step of pretraining the model
using Monte Carlo Tree Searches [Nunes et al., 2018]. Due to the vast size of the action
space even after filtering into trees, we chose to limit our trees to games where each
player is only dealt four cards, in order to still be able to generate all tree permutations
in a reasonable amount of time. The approach we took to pretraining trees focused
on training our DQN to imitate the paths that we had solved to win the game. The
way our rewards worked was for each trick that the agent(s) played, we would reward
them the probability of winning the state i.e. how many of the children nodes to that
trick were winning, assuming the agent(s) played a trick that we had generated. For
the instances that the agent(s) played a trick that we did not account for, we simply
reset them back to their previous legal node and let them play again from there without
altering their reward. This approach is depicted in Figure 2.

After progressing past the imitation pretraining, we shifted to unassisted learning.
In this stage, we shifted to using a more classical reward function. This function,
instead of rewarding based on the probability of winning as dictated by a tree, was
instead rewarded based on how good a specific play was. For example, if a task card
was played on a trick and it is now the turn of the player who is assigned to win that
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Figure 3: Training the agent with expert actions from the MCTS trees

task card plays a card to take the trick, the agent will be rewarded and if they fail to take
it or another player takes the trick before or after, those agents will be punished. We
also provided large rewards for winning and large punishments for losing with the idea
that the agent(s) would learn that winning is very advantageous while losing causes
them to lose most of the reward they gained during playing tricks. This approach is
depicted in Figure 3.

As part of the training, we elected to go with a curriculum based approach. While
using this method, we began by training the model on a mission with a single task.
The idea was that starting with a single task would allow the DQN to learn what
actions would allow for the completion of a task, and what the repercussions of taking
specific cards were. From there we went to missions with two tasks. This was to help
the agents to generalize to situations where multiple goals had to be considered as
actions were chosen. The third category of missions trained on were two missions that
could be completed in any order, and one that had to be completed after another. This
was so the agents were able to learn how to complete the tasks in a specified order
to receive a reward. After we shifted to using an imitation based learning approach
to train the DQN, we implemented a new curriculum based structure to our training.
In this new training methodology, we began by doing the imitation learning on trees
with a depth of four. After experiencing significant results on performing on these
trees, the curriculum moved onto trees of the full game. The next stage of training
following imitation of the full trees was to shift to a more traditional reward function
very similar to the one used in our first attempt at training the DQN. We followed
a similar structure to the imitation stage of the curriculum, beginning with hands of
four until experiencing results significantly better than random before migrating to full
games. Once this training was completed, we then evaluated the agent on the trees to
recognize if it could still perform after independent training. We replicated all of these
methods in a multi-agent environment, assigning each player their own model weights,
using the initial trained model as a branching off point as the initial weights for each

7
376



player.
We evaluated our agent by having it play iterations of games that we know are

solvable due to generating trees. We opted to evaluate both trees that the agents have
seen before as well as trees that they have not. For the results, we looked at both total
reward as well as the win rate that the agents experienced while playing through the
game. In the evaluation stage, we determined wins and loses not based on if it was
a winning or losing path in the tree, but on if the tasks were completed by the end.
This was to ensure that even if the agent(s) won using a path we did not generate, that
episode would still be evaluated as a win.

3 Results

We were only able to train a single agent on about 3,000 episodes. We saw minor
improvements in performance, but we speculate ways to improve our results in the
future work section. We were, however, able to obtain better-than-random results for
our agent.

3.1 Tree Generation

Of the 500 trees generated of depth four, the average score was 0.455. Over 150 trees
had a score above 0.9, however. Most of these trees had very few nodes, as the initial
player hands were conducive to a quick victory. In general, we noticed that higher
scores were indicative of smaller trees.

Figure 4: Tree sizes of depth 4
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Figure 5: Root node scores of depth 4

An example of a tree is shown below. As the trees themselves are too large to
show, in this graph all nodes fall into bins with score less than or greater than 0.5. In
this example, the failing nodes far outweigh the successful ones, but because trees are
traversed by picking each path with equal weight and not the ending nodes with equal
weight, we are more likely to end up at a successful node than a failing one, thus the
root score is 0.65.

Figure 6: Example layout of a tree
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3.2 DQN Training Results

3.2.1 Rewards during Training

The below graph shows rewards as a function of tricks during a portion of the training,
where four tricks is equal to one episode. The blue line shows the reward adjusted for
the root scores of the trees. It is important to account for this because we would expect
a random player to obtain, on average, the same rewards at the root nodes. Ideally, the
trend of the adjusted rewards would be greater than zero, but the training window may
be too narrow to judge whether the rewards are actually improving.

Figure 7: Smoothed rewards compared to tricks played

3.2.2 Performance compared to Heuristic Method

After training, we evaluated the agent on the same 500 trees that it was trained on. This
is compared to the performance of the heuristic agent in red. The agent and heuristic
approach are correlated, but this could be due to the tree scores as a confounding
variable instead of the imitation learning working. That is, the easier a mission is, the
more likely both methods are to succeed.
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Figure 8: Agent success compared to heuristic success

3.2.3 Testing different Starting Hand Lengths

When evaluating starting conditions the agent hasn’t seen, we tested 500 trials, dealing
a different number of cards to each player for every batch. An unexpected result of this
experiment was that the heuristic approach performed worse on shorter hands. We are
unsure why this happened, but it could be due to randomly dealing a smaller number
of cards to each player instead of starting from the regular ten cards per player and
playing randomly until we get to our target. Smaller numbers of cards likely resulted
in a higher likelihood of impossible scenarios.

Figure 9: Agent success compared to heuristic success
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4 Future Work

Although our results show only minor improvements, they offer a proof-of-concept
for warm starting the agent’s policy on search trees. Many possibilities for extension
of this work exist.

The agent itself could be improved. Tweaking the reward function and model
hyperparameters would likely obtain more promising results, as well as modifying
the underlying deep network architecture to include recurrent blocks [Hausknecht and
Stone, 2017].

Extending the training to multiple distinct agents is also a promising possibility, as
it may be necessary to develop an ensemble of player models rather than one model to
fully foster cooperation. It would also be desirable to scale up the environment to the
full POMDP formulation rather than the simpler MDP we used in this work.

5 Conclusion

The Crew remains a novel RL problem with a variety of factors contributing to a suc-
cessful game. The size of the action and state spaces provides a promising environment
with much potential for further study of MARL and POMDP, particularly due to the
partially observable and collaborative nature of the actual game. Such ambiguity of
the problem, when solved, will open the field to highly efficient MARL models that
operate off of pure observation of their environments. Even though we have not yet
experienced promising results using our agents, we believe this work to be useful be-
cause of the environment itself. Furthermore, the viability of porting The Crew into
PettingZoo demonstrates the adaptive nature of external libraries to help with devel-
opment of MARL environments, which has been a challenge in the community. The
Crew is unique in that it allows for independent agents to communicate small bits of in-
formation (via revealing), which has strong applications to the real world where many
agents, while not having perfect information, may still have ways to communicate
small pieces of what they contain to other agents. We believe that this environment,
combined with more time to tune an agent, can see promising results that perform at
or above what a human would be able to do.
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Abstract

The American Cancer Society estimates two million new cancer diagnoses and 618,120
deaths in 2025. For prostate cancer, early detection yields a 5-year survival rate of 99.97%,
but that rate worsens to approximately 34% when the cancer spreads. This research im-
proves multi-modal image registration between histology slides and corresponding MRIs
using multi-range attention and hierarchical feature encoding. Building on Ruchti et al.’s
work, we propose a novel Hierarchical Multi-Range Attention Transformer architecture
that integrates focal modulation as an alternative to self-attention for capturing long-range
dependencies. Our method reduces the max distance of a predicted point in a slice by
66.36% (t=11.8940, p=0.0000). We also leverage data-distributed parallelism and hierar-
chical spatial encoding with cross-modality attention to improve runtime 50 times. These
enhancements enable more accurate homologous point detection between image modalities
and advance the potential for early, cross-modal cancer diagnosis.
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1 Introduction
Cancer remains one of the leading causes of death worldwide, highlighting the need for
improved diagnostic tools and strategies. Accurate early diagnosis is critical to guide treat-
ment and improve patient outcomes. Magnetic Resonance Imaging (MRI) is a powerful
noninvasive imaging modality that allows clinicians to visualize tumors, monitor disease
progression, and detect recurrence. In contrast, histological analysis of biopsied tissue
remains the gold standard for definitive cancer diagnosis [18]. Biopsy provides highly
detailed information on tissue architecture and cellular morphology, enabling classifica-
tion. However, biopsy is inherently invasive and has risks such as infection, bleeding, and
discomfort in the patient. An ideal diagnostic framework would combine the detailed cel-
lular information of histology with the non-invasive nature of MRI. Achieving this requires
developing imaging techniques and computational models capable of extracting histology-
like detail from noninvasive scans. This study investigates the use of various deep learning
architectures to improve the registration of histology slides to MR Space to enable process-
ing of high quality training data in MR space.

2 Related Work

2.1 Vision Transformer (ViT)
Transformers, originally designed for natural language processing, have been successfully
adapted to computer vision tasks through the Vision Transformer (ViT) architecture [1].
ViTs segment an image into patches and treat each patch as a token, enabling the model to
learn long-range dependencies and global context more effectively than traditional convo-
lutional approaches. Recent adaptations of ViTs have demonstrated competitive or superior
performance on classification and segmentation benchmarks across multiple domains, in-
cluding medical imaging [2].

2.2 Image Classification in Medical Imaging
Deep learning has played an important role in image classification tasks within medical
imaging. Convolutional Neural Networks (CNNs) have long been the foundation of image-
based diagnostics, particularly in cancer detection [3]. However, the transition toward
transformer-based models has opened avenues for models that capture global relationships
between anatomical structures — relationships that may be relevant in imaging modali-
ties like MRI, and something that CNNs do not do. ViT variants have shown promise in
improving classification accuracy and model interpretability in pathology and radiology
[4].

2.3 Challenges in MRI-Based Classification
MRI presents unique challenges in classification tasks due to variability in acquisition pro-
tocols, intensity distributions, and spatial resolution. Additionally, the scarcity of data with
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pixelwise annotations and classifications makes training high-performing models difficult.
Many studies have addressed these issues using data augmentation, domain adaptation,
or synthetic data generation [6]. However, inconsistencies between MRI and histolog-
ical ground truths often hinder model reliability and generalization [7]. In addition, non-
quantitative MRI means that the voxels don’t have absolute, replicable, values, thus making
voxel values relative per image, and adding more complex relationships for models to learn.

Our work builds on this by applying point registration techniques to align and transfer
information across modalities. This enables the generation of high-quality, histologically
informed MRI datasets, potentially reducing reliance on invasive procedures while improv-
ing classification fidelity.

2.4 The Homologous Point Transformer
This work extends the homologous point prediction framework introduced by Ruchti et al.
(2023), which demonstrated transformer-based homologous point estimation followed by
thin plate spline registration as an effective strategy for multi-modality image alignment
[8]. While following the same high-level pipeline, the proposed architecture introduces
several technical advancements. The Hierarchical Multi-range Attention Transformer dif-
fers from Ruchti et al. in its use of a multi-stage Hierarchical Patch Embedding approach,
whereas Ruchti et al. used single-level linear patch embeddings with CNNs. This architec-
ture introduces Multi-Range Attention to explicitly model local, medium, and global spatial
relationships, in contrast to Ruchti et al.’s use of LocalViT-style attention. Our proposed
framework incorporates Rotary Positional Embeddings and Fourier Feature Mappings for
spatial and point-based encoding, adding flexibility and precision absent in Ruchti’s im-
plementation. Furthermore, components like Gated Cross-Attention, Focal Modulation,
and Feature Pyramid Networks are used to enhance cross-modal interactions and compu-
tational efficiency, representing a more modular and scalable design than Ruchti et al.’s
unified transformer encoder block.

3 Data
The data used for this study was provided by the Medical College of Wisconsin (MCW)
after being reviewed by their Internal Review Board. At the beginning of this particular
study, all data was anonymized. The initial set provided consisted of 275 pairs of MRI and
Histology slides as well as labeled control points between each to act as the ground truth.
The histology slides are converted to grayscale and both images are set to R512×512. One
sample is shown in Figure 1.
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Figure 1: This image is a grayscale histology slide and the points the pathologist labeled
on it. In the right half of the image, there is an MRI with those same points translated to
the MR domain

In the original data set, there were 275 total samples spread across 48 patients. The train
test split was performed at the patient level to prevent target leakage and led to 225 samples
in the train set, 12 samples in validation, and 38 samples in the test set. The visualizations
of the samples by test set are shown below in Figure 2 (by image pair) and Figure 3 (by
patient).

Figure 2: This is the split of slices within the dataset split
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Figure 3: This is the split of patients within the dataset split

4 Methods

4.1 Model Architecture
The Hierarchical Multi-range Attention Transformer is a transformer-based model devel-
oped to predict homologous anatomical landmarks between histology and MRI images.
The architecture introduces several components to effectively capture complex spatial cor-
respondences between imaging modalities with differing resolutions and visual character-
istics. While no individual component is novel, connecting hierarchical feature extraction
with Multi-Range attention is novel to medical applications.

4.1.1 Hierarchical Patch Embedding

To extract multi-scale features from input images, the model employs a Hierarchical Patch
Embedding module in place of traditional patch embeddings based on the idea of a nested
Vision Transformer [9]. This module processes images through multiple sequential stages,
each consisting of convolution and down sampling layers. This hierarchical structure en-
ables the capture of both local details and global structural patterns. While the methodology
proposed in Ruchti et. al used down sampling and linear patch embeddings, this approach
uses multi-scale simultaneous down sampling.

Given an input image x ∈ RC×H×W , where C, H , and W are the channel, height, and
width dimensions respectively, the hierarchical embedding process can be formulated as:

x(1) = Stage1(x) ∈ RD/4×H×W (1)

x(2) = Stage2(x
(1)) ∈ RD/2×H/2×W/2 (2)

x(3) = Stage3(x
(2)) ∈ RD×H/P×W/P (3)
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where P represents the final patch size and D is the embedding dimension.

4.1.2 Multi-Range Attention

A Multi-Range Attention mechanism is integrated into the transformer blocks based on
the work done by Xie et. al on super resolution [10]. Unlike standard self-attention, this
mechanism operates over three spatial ranges: local, medium, and global. Local atten-
tion captures fine-scale information, medium-range attention models regional context, and
global attention accounts for long-distance relationships.

For a given query Q, key K, and value V matrices, the multi-range attention is com-
puted as:

Attention(Q,K, V,M) = Softmax
(
QKT ⊙M√

dk

)
V (4)

where M is a masking matrix defining the attention range, and dk is the dimension of
the key vectors. The final multi-range attention output is a weighted combination where
the weights were chosen empirically:

MultiRangeAttn = 0.4 · Attention(Q,K, V,Mlocal)

+ 0.3 · Attention(Q,K, V,Mmedium)

+ 0.3 · Attention(Q,K, V,Mglobal) (5)

4.1.3 Rotary Positional Embedding

The model incorporates Rotary Positional Embeddings (RoPE) to encode relative spatial
positions directly within the attention mechanism [11]. For a 2D grid with coordinates
(x, y), the RoPE applies the following transformation to query and key vectors:

Θi(x, y) = xω
(1)
i + yω

(2)
i (6)

ω
(j)
i = 10000−2(i−1)/d, j ∈ {1, 2} (7)

For each query and key vector with dimension d, the rotary embedding is applied as:

qrot = [q1 cos(Θ1)− q2 sin(Θ1), q2 cos(Θ1) + q1 sin(Θ1), . . .] (8)
krot = [k1 cos(Θ1)− k2 sin(Θ1), k2 cos(Θ1) + k1 sin(Θ1), . . .] (9)

4.1.4 Fourier-Based Point Embedding

Landmark coordinates are embedded using a Fourier Feature Mapping strategy [12]. This
helps the model learn a more generalized understanding of the image translation process
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between modalities. For normalized point coordinates p ∈ [−1, 1]2, the Fourier embedding
is:

Φ(p) = [p, sin(B · p), cos(B · p)] (10)
B = s ·B, B ∼ N (0, σ2) (11)

where s is a learnable scaling factor, and B ∈ Rm×2 contains m random frequency
vectors.

4.1.5 Gated Cross-Attention

A Gated Cross-Attention module facilitates information exchange between the histology
and MRI branches of the network [13]. In our case, gated cross-attention will help keep the
outputs scaled as well as keep from overfitting to a local minima. For histology tokens Xh

and MRI tokens Xm, the cross-attention with gating is:

Attnh→m = Attention(Xh, Xm, Xm) (12)
Gh = σ(WgXh) (13)
X ′

h = Xh +Gh ⊙ Attnh→m (14)

where σ is the sigmoid function, Wg is a learnable weight matrix, and ⊙ represents
element-wise multiplication.

4.1.6 Focal Modulation

To reduce the computational cost of global self-attention in selected layers, Focal Modula-
tion is used. For input features X , the focal modulation process is:

Q = WqX (15)
K = WkX (16)
V = WvX (17)

The context features are computed through sequential convolutions at different scales:

C0 = K (18)
Ci = Convi(Ci−1), i ∈ {1, 2, . . . , L} (19)

C =
L∑
i=0

Ci (20)

The final modulated output is:

Y = GELU(C)⊙ V (21)

the focal modulation layer helps reduce computational costs and is more easily scaled.
This will also pair with the other changes made to a standard architecture [14].
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4.1.7 Feature Pyramid Network

A Feature Pyramid Network (FPN) is integrated to combine feature maps across trans-
former layers [15]. The goal of this layer is to maintain different levels of details for all
tiers of features in the system, covering the gap between histology and MR detail. For
features {F1, F2, . . . , FL} from L layers, the FPN computes:

PL = Convlat(FL) (22)
Pi = Convlat(Fi) + Convup(Pi+1), i ∈ {L− 1, L− 2, . . . , 1} (23)

The final output combines features from all levels:

YFPN = Fusion([P1, P2, . . . , PL]) (24)

4.2 Memory-Efficient Implementation
Several architectural optimizations are incorporated to support memory-efficient training
on high-resolution images:

• Gradient Checkpointing recomputes intermediate activations during the backward
pass to minimize memory usage:

∇θL = ∇yL · ∇θf(x; θ) (25)

• Chunked Attention divides the attention computation into smaller segments:

Attnchunk(Qi:j, K, V ) = Softmax
(
Qi:jK

T

√
dk

)
V (26)

• Layer Scaling introduces learnable scaling parameters:

Y = X + γ · Block(X) (27)

4.3 Training Procedure
The training process incorporates multiple strategies to optimize performance and maintain
training stability including learning rate scheduling and gradient clipping [16][17]:

• Gradient Accumulation enables larger effective batch sizes:

θt+1 = θt − η · 1

N

N∑
i=1

∇θLi(θt) (28)
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• Mixed Precision Training uses lower-precision arithmetic where possible, with a
dynamic loss scaling factor s:

∇FP16
θ = s · ∇FP32

θ (29)

θt+1 = θt − η · ∇
FP16
θ

s
(30)

• Adaptive Learning Rate Scheduling with warmup and cosine decay:

ηt =

{
ηbase · t

Twarmup
, if t ≤ Twarmup

ηmin +
1
2
(ηbase − ηmin)(1 + cos(π

t−Twarmup

T−Twarmup
)), otherwise

(31)

• Dynamic Gradient Clipping adjusts the clipping threshold:

∇clipped
θ = clip(∇θ,−c · L, c · L) (32)

4.4 Comparison with Base Architecture
The Hierarchical Multi-Range Attention Transformer differs from the baseline Overlay
Transformer by Ruchti et al. architecture in several key aspects:

• Attention Mechanism: Three-tier attention vs. two-path attention.

• Patch Processing: Multi-scale simultaneous vs. progressive down sampling.

• Attention Computation: Full attention with optimizations vs. block-based memory
efficiency.

• Memory Optimization: Mixed strategies vs. block processing only.

• Point Prediction Refinement: Focal modulation and gated MLPs vs. residual re-
finement heads.

5 Results
When run on the same dataset split the same way, the hMRAT architecture performs better
on average with a MCPD of 49.95 as opposed to 66.64. A paired t-test has a t=0.9929
and a p=0.3272 meaning we fail to reject the null hypothesis in favor of the alternative. To
further test this, we ran a Wilcoxon signed rank test which reported a W=246.0000 and a
p=0.0719. This means for mean values, we once again fail to reject the null hypothesis. The
interpretation of this is that there is no statistically measureable difference on the mean.
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Figure 4: A comparison of the previous architecture Ruchti et al and The hMRAT

However, if we measure the max control point deviation to compare the results, we get
very different results. When comparing the max distance between points, the results of a
Paired t-test are a test statistic of t=11.8930 with a p=0.0000 and the Wilcoxon signed-rank
test with W=3.0000 and p=0.0000. In both cases, we have enough evidence to reject the
null hypothesis in favor of the alternative.

Figure 5: A comparison of the previous architecture and the hMRAT on the Max distance
of each point.

Qualitatively, the points points align in such a way where the model demonstrates some
linear and non-linear transformations such as rotation and deforming edged to nominate the
correct mask. The matches are shown in the figure below. The predicted points (blue) are
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nearly identical to the ground truth points in the image and are nearly all within the range
of interobserver variability.

Figure 6: A qualitative evaluation of the model. Passing in the Fixed Image, Moving Image,
and moving points produced the output points. The distance between the output points and
ground truth are visualized as a red line

6 Discussion & Analysis
The experimental results demonstrate that the Hierarchical Multi-Range Attention Trans-
former (hMRAT) outperforms the Overlay Transformer architecture proposed by Ruchti et
al. in accuracy. These improvements are attributable to the architectural innovations in-
troduced in this work—most notably, the incorporation of hierarchical patch embeddings,
multi-range attention, and a more modular design incorporating focal modulation, Fourier-
based point encoding, and gated cross-attention. Based on the results generated, our models
performance on the average-case has improved on the SOTA architecture, but comes with
the trade-off of a higher variance.

6.1 Improved Spatial Correspondence and Generalization
A key strength of the proposed model lies in its ability to model spatial correspondences
at multiple resolutions. Hierarchical patch embeddings provide richer feature abstractions
that preserve fine-grained details from the histology domain while maintaining broader
contextual awareness of MRI structures. This is crucial given the stark visual and textural
differences between modalities. The introduction of multi-range attention further enhances
this capability by explicitly modeling short-, medium-, and long-range dependencies across
each input modality. As a result, hMRAT achieves lower maximum control point deviation
(MCPD), indicating more accurate homologous point predictions and, by extension, more
anatomically consistent registrations. However, as shown in the results section, there is a
higher variance in predictions.

We hypothesize that the Fourier-based point embeddings and gated cross-attention lay-
ers contributed to this improved generalization by aligning feature spaces while dynami-
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cally modulating information flow between modalities.

7 Future Work
The proposed model demonstrates a reduced memory footprint, increased computational
efficiency, and low maximum control point deviation, indicating its suitability for high-
resolution medical imaging tasks. Future work will focus on leveraging the high-quality
learned representations to support downstream applications such as cancer classification
in MRI images. Given the model’s demonstrated flexibility and generalization capabil-
ity, particularly in integrating diverse spatial patterns across modalities, it is anticipated
that additional imaging modalities or domain-specific transformations can be incorporated
through targeted fine-tuning. Extending the architecture to multi-task learning scenarios,
including segmentation and diagnosis across modalities, also represents a promising direc-
tion for further development.

Another promising direction involves investigating the model’s ability to perform unsu-
pervised or weakly supervised alignment in settings where paired training data is limited or
unavailable. Developing robust alignment techniques under limited supervision could sig-
nificantly enhance the model’s ability to generate high quality training data. The goal for
this data would be to take the new annotations in MR space and create a predictive model
that can classify cancer in MR. Additionally, integrating anatomical priors or leveraging
structural representations such as graphs or meshes could further refine landmark predic-
tion and facilitate anatomically consistent transformations across patients and modalities.

8 Conclusion
This work presents the Hierarchical Multi-Range Attention Transformer (hMRAT), a novel
architecture for homologous point prediction between histology and MRI image pairs.
By integrating hierarchical spatial encoding, multi-scale attention, and memory-efficient
training strategies, our model advances the state of the art in multi-modal medical im-
age registration. The introduction of focal modulation, rotary positional encoding, gated
cross-attention, and Fourier-based point embeddings enables hMRAT to capture complex
anatomical correspondences with improved precision and efficiency. Compared to base-
line architectures, hMRAT demonstrates a significant reduction in maximum control point
deviation and a substantial improvement in training speed.

The ability to align high-resolution histology with MRI not only enhances cross-modal
interpretability but also lays the foundation for developing non-invasive diagnostics in-
formed by cellular-level detail. As medical imaging moves toward more integrated and in-
telligent systems, models like hMRAT that bridge modality gaps will become increasingly
essential. Our results underscore the promise of transformer-based architectures in medical
imaging and open pathways for future research in multi-task learning, weak supervision,
and anatomically informed modeling.
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Abstract

Self-supervised learning presents a promising avenue for medical imaging, particularly in
contexts where labeled data is limited. In this study, we explore the effectiveness of a multi-
modal vision transformer pretrained using a DINOv2-style framework on a grayscale-only
dataset of medical images, including MRI and histology scans. The training corpus was
diverse in modality but lacked exposure to color, high-frequency texture, and other fea-
tures common in downstream tasks. When evaluated on benchmarks such as PathMNIST,
DermaMNIST, and BloodMNIST, the model demonstrated partial generalization, but con-
sistently underperformed relative to a baseline DINOv2 model pretrained on a large corpus
of millions of images. In some cases, performance degradation was substantial, partic-
ularly for tasks reliant on color cues. Visualizations of the latent space revealed loosely
structured clustering by modality, though the diagnostic value of these representations re-
mains uncertain. Overall, our findings suggest that while domain-specific self-supervision
may offer limited cross-task generalization, significant challenges remain in achieving par-
ity with general-purpose models trained on richly diverse datasets. Further work is needed
to determine whether incorporating additional modalities, resolution, or supervision can
close this performance gap.
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1 Introduction
In 2024, nearly 300,000 new cases of prostate cancer and over 35,000 related deaths were
reported in the United States alone [22]. Early detection significantly influences outcomes:
between 2013 and 2019, the 5-year relative survival rate exceeded 99% for localized cases
but dropped to 34% for distant metastases [15]. Medical imaging remains a key tool in the
early detection and management of such diseases, particularly in oncology.

The introduction of the Transformer architecture in *Attention Is All You Need* [23]
led to widespread adoption of attention-based models in both language and vision tasks.
Vision Transformers (ViTs), in particular, have shown strong performance on large-scale
benchmarks like ImageNet-1K by leveraging tokenized patch embeddings and self-attention
to model long-range dependencies. However, ViTs often struggle to resolve local features
without architectural modifications [12]. Techniques like local cropping and positional
embeddings have been proposed to address these limitations [16].

DINOv2, introduced by Meta and FAIR, incorporates self-supervised learning into vi-
sion transformers via a multi-crop strategy and a student-teacher training loop, enabling
the model to learn semantically meaningful representations from unlabeled images [16].
Previous work by Mahmood et al. demonstrated the feasibility of this approach in medical
imaging, showing that large-scale pretraining on histology slides could yield a latent space
that clusters organ types and modalities without supervision [8].

In this study, we explore whether similar benefits can be realized from a broader but
less representative set of grayscale medical images. Using DINOv2, we pretrain a vision
transformer on a corpus containing MRI, histology, and CT-derived scans, and evaluate its
downstream performance on color and texture-rich medical classification benchmarks. Un-
like prior efforts focused on narrow modalities or supervised labels, our approach aims to
understand the limitations of cross-modality generalization when training data lacks color,
annotation, and high-frequency diversity.

Rather than aiming to outperform existing models, we examine how much utility—if
any—can be extracted from a self-supervised model trained on such constrained data. Our
goal is to characterize the extent to which domain-specific self-supervision can support
transfer learning under real-world limitations, and to surface failure cases that highlight the
boundaries of current approaches.

2 Related Work
The introduction of Vision Transformers (ViTs) has led to the development of increasingly
general-purpose visual models capable of strong performance across classification, detec-
tion, and segmentation tasks. More recently, large multimodal models have extended these
capabilities by combining visual and textual inputs into unified latent spaces [25]. These
advances have been enabled by massive datasets and compute resources, which are often
out of reach for many medical AI applications.

In the medical imaging domain, several works have explored the use of self-supervised
learning to build transferable visual representations. For instance, Ruchti et al. proposed a
dual-pathway network that aligned MRI and histology representations, demonstrating that
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cross-modal learning could support more robust image registration. Similarly, the TITAN
model constructed a shared latent space across whole slide images (WSIs) and clinical text
to distinguish organ types without labeled supervision [8]. These approaches highlight the
potential of self-supervision to encode high-level clinical semantics across modalities.

A notable contribution in this space comes from the Mayo Clinic’s *Novel Pathol-
ogy Foundation Model*, which demonstrated that larger models trained on diverse, multi-
resolution WSI datasets perform well across multiple downstream tasks [4]. Their results
suggest that scale—in both data diversity and model size—plays a crucial role in building
robust and generalizable medical models.

However, much of this prior work relies on access to high-resolution, color-rich WSIs
or multimodal inputs that may not be available in many real-world settings. While some
studies note that meaningful representations can emerge without pixel-perfect detail, the
threshold at which generalization breaks down remains unclear.

Our work builds on these foundations but adopts a more constrained setting. Rather than
assuming access to richly annotated, color, or multimodal datasets, we investigate whether
a general latent space can emerge from self-supervised training on grayscale-only medi-
cal images of varying modalities and quality. Unlike TITAN or the Mayo Clinic model,
which benefit from tightly curated or multi-source data pipelines, we intentionally explore
the limitations of coarsely pretraining on publicly available grayscale datasets. This allows
us to better understand the boundaries of generalization when data diversity and visual
fidelity are limited—an increasingly relevant question for institutions operating under re-
source constraints.

3 Dataset
The capacity of a foundational model to generalize across tasks is heavily influenced by
the composition of its training data [4]. In this study, we adopted a two-phase approach:
coarse pretraining on a large, unlabeled corpus of grayscale medical images, followed by
fine-tuning and evaluation on benchmark classification datasets.

3.1 Coarse Pretraining Data
For the pretraining phase, we compiled approximately two million images from a range
of publicly available sources. These included MRI scans, histopathology slides, and CT-
derived images, with many drawn from datasets released by the National Cancer Institute’s
Clinical Proteomic Tumor Analysis Consortium (CPTAC) and similar initiatives [18, 5, 19,
17, 13, 1, 7, 14, 6, 11, 20, 2, 3, 10, 9, 21]. Figure 1 summarizes the distribution of data
sources across institutions and imaging modalities.

3
400



Figure 1: Distribution of image sources in the coarse pretraining dataset. The dataset
integrates multiple imaging modalities and institutions, but lacks color and many texture-
rich visual cues common in natural images.

All images were resized to 512×512 pixels and normalized. We applied a set of standard
augmentations—horizontal flipping, local and global cropping, color jitter, grayscale con-
version, Gaussian blur, and solarization—to increase view diversity during self-supervised
training. However, because many of the source images were already grayscale, some of
these transformations had limited visual effect. Figure 2 shows example augmentations
applied to representative images.

Figure 2: Image augmentations used during DINOv2-style pretraining. While effective
in increasing view diversity, many transformations (e.g., color jitter, grayscale conversion)
had minimal impact due to the lack of color channels in the source data.

While diverse in modality and anatomy, this dataset is notably constrained in key areas:
it is grayscale-only, lacks natural image statistics, and may underrepresent certain imaging
protocols, devices, or pathologies. These limitations frame the scope of our inquiry—how
far can self-supervised models go when trained on visually restricted yet domain-relevant
data?
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3.2 Downstream Evaluation Datasets
To evaluate generalization, we fine-tuned the pretrained model on three classification bench-
marks from the MedMNIST v2 collection: PathMNIST, BloodMNIST, and DermaMNIST
[24]. These datasets vary in modality, resolution, and class balance, providing a useful
proxy for downstream clinical tasks.

PathMNIST consists of color images of colorectal cancer tissue, making it particularly
challenging for a model pretrained without exposure to color or staining artifacts (Figure 3).
BloodMNIST (Figure 4) contains microscope images of blood cells, requiring fine-grained
morphological discrimination. DermaMNIST (Figure 5) includes dermatoscopic images of
skin lesions, again rich in color and texture absent from our training set.

Figure 3: Sample images from PathMNIST. Each image is 224x224x3 and represents a
colorectal cancer tissue patch across nine classes.

Figure 4: Examples of blood cell types in BloodMNIST. The dataset includes eight classes
and focuses on microscopic morphological features.
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Figure 5: Sample dermatoscopic images from DermaMNIST. These images represent seven
dermatological conditions, posing a generalization challenge for grayscale-pretrained mod-
els.

Figures 6, 7, and 8 show the class distributions across each dataset. While PathM-
NIST is relatively balanced, both BloodMNIST and DermaMNIST exhibit moderate class
imbalances, adding further difficulty to transfer learning under label scarcity.

Figure 6: PathMNIST class distribution. Tissue types are evenly represented, allowing
controlled evaluation of performance across histological categories.
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Figure 7: BloodMNIST class distribution. Minor imbalance is present across cell types,
which may affect classification robustness.

Figure 8: DermaMNIST class distribution. Some dermatological conditions occur far more
frequently, introducing a realistic imbalance seen in clinical data.

Taken together, the coarse pretraining set and downstream evaluation tasks allow us to
probe a core question: Can self-supervised learning on limited grayscale medical data yield
representations that generalize meaningfully to richer and more varied clinical imaging
domains?

4 Methods

4.1 Pretraining with DINOv2
We employ DINOv2, a self-supervised vision transformer model based on the ViTL14 ar-
chitecture, to perform coarse pretraining on a large corpus of unlabeled medical images.
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DINOv2 is designed to learn robust visual representations without reliance on manual an-
notations, making it well-suited for the medical imaging domain, where labeled data is
often scarce or expensive to obtain [16].

The model is trained using a self-distillation framework in which a student network
learns to mimic the outputs of a momentum-updated teacher network. Both networks re-
ceive differently augmented views of the same image, encouraging the student to learn
view-invariant, semantically meaningful representations. DINOv2 captures both global
and local features through hierarchical patch-based attention mechanisms, enabling it to
generalize across heterogeneous medical modalities, including histology and MRI.

4.2 Downstream Classification
To evaluate the effectiveness of the pretrained model, we fine-tune it on supervised clas-
sification tasks using datasets from the MedMNIST v2 collection, which includes PathM-
NIST, BloodMNIST, and DermaMNIST [24]. For each task, a linear classification head
is attached to the frozen backbone of the pretrained DINOv2 model. We then compare
performance against a baseline DINOv2 model pretrained on ImageNet-1K. The proccess
for image classification is shown below. This structure is similar to ours, the process that
changes is the training process using self-supervised learning.

Figure 9: Overview of the vision transformer architecture used in a traditional vision trans-
former classifier. Each image is divided into fixed-size patches, which are linearly em-
bedded and augmented with positional encodings. These embeddings are then processed
through a stack of transformer encoder layers. For classification, a dedicated classification
token is appended to the input sequence and its final representation is passed to a linear
head.

This demonstrates that self-supervised pretraining on domain-specific data yields more
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transferable features than those learned from natural images.

5 Results and Analysis

5.1 Analysis of Self-Supervised Latent Space
To assess the learned representations, we apply t-distributed stochastic neighbor embed-
ding (t-SNE) to the output feature vectors of the pretrained model. While some clustering
is apparent across imaging modalities, it is difficult to determine whether these separa-
tions capture semantically meaningful or diagnostically relevant differences. The visual
boundaries between clusters are less distinct than those reported in previous work on large,
color-rich datasets, suggesting potential limits in the learned latent space’s capacity to dis-
entangle complex medical features.
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Figure 10: t-SNE visualizations of the learned latent space from the pretrained DINOv2
model. Each point represents a single image embedding, colored by its dataset of origin.
While general clustering is present, the quality and separability of these clusters vary across
modalities and do not clearly align with diagnostic boundaries.

5.2 Feature Attribution and Attention Visualization
We examine attention maps to qualitatively understand which regions the model attends to
during classification. In a chest X-ray example, the model pretrained on medical images
appears to focus on clinically relevant structures such as lung fields and cardiomediastinal
contours. However, the differences compared to the ImageNet baseline are often subtle
and inconsistent across images. While some examples show improved localization, others
exhibit diffuse or anatomically imprecise attention. These mixed results make it difficult
to conclude whether medical-domain pretraining consistently improves interpretability or
diagnostic focus.
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Figure 11: Qualitative comparison of attention maps. Left: Original chest X-ray input.
Center: PCA from our DINOv2 model pretrained on medical images. Right: PCA from a
DINOv2 model pretrained on ImageNet. While some medically relevant focus is observed
in the self-supervised model, overall improvements in localization are inconsistent.

5.3 Benchmark Comparisons in Context
When evaluated on classification tasks from the MedMNIST suite, the self-supervised
model underperforms relative to the ImageNet baseline across all benchmarks. This gap is
especially prominent in tasks that depend on color and fine texture cues, which were absent
in the grayscale pretraining dataset.

• PathMNIST: Our model achieved 39.65% accuracy compared to the ImageNet base-
line’s 73.30%. Given the dataset’s rich color staining patterns and high-resolution
textures, this large gap highlights the limitations of grayscale-only pretraining in
capturing necessary visual cues for histopathological classification.

• DermaMNIST: With 69.05% accuracy versus 74.25% from the baseline, the model
showed modest generalization, although the absence of dermatoscopic structures dur-
ing pretraining may explain the remaining performance difference.

• BloodMNIST: The model reached 73.15% accuracy, trailing the baseline’s 79.70%.
This dataset’s relatively lower visual complexity may have helped narrow the gap,
though the result still indicates incomplete transferability.

These findings suggest that while some generalization is possible, performance degra-
dation remains substantial in most cases. The results underscore the importance of di-
verse pretraining data—including color and texture-rich images—for tasks requiring de-
tailed visual discrimination. Without such diversity, the latent space learned through self-
supervision may fail to capture domain-specific features critical to medical diagnosis.

6 Discussion
Our findings highlight both the potential and limitations of self-supervised learning for
building general-purpose representations in medical imaging. While the model did exhibit
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some capacity for internal organization—such as modest modality-wise clustering in the
t-SNE projections—the strength and clinical utility of these representations remain uncer-
tain. In particular, it is unclear to what extent the observed clusters reflect meaningful
semantic structure versus superficial visual similarities in grayscale input.

Although some qualitative results, such as attention visualizations, suggest that the
model may attend to clinically relevant regions in certain cases, this behavior was inconsis-
tent and difficult to generalize across tasks. The lack of clear, reliable improvement over a
baseline model pretrained on natural images indicates that domain-specific pretraining on
grayscale medical data alone may not yield a universally transferable latent space.

The main contribution of this work is to surface the boundary conditions under which
medical self-supervision breaks down. Despite training on nearly two million images, the
model underperformed on every evaluated benchmark relative to the ImageNet baseline.
The drop in accuracy—particularly for color- and texture-dependent datasets like PathM-
NIST—suggests that critical diagnostic cues were simply not present in the training data.
This limitation reinforces the importance of diversity not just in anatomical modality, but
also in visual complexity, resolution, and color information.

Our experimental setup also reveals challenges in generalization that are often over-
looked in idealized research conditions. The dataset, while large, was constructed from
publicly available sources and lacked detailed metadata about acquisition protocols, equip-
ment, or patient demographics. These uncontrolled variables likely introduced bias and
noise, making it harder for the model to extract consistent, domain-agnostic features.

Additionally, our focus was limited to classification tasks. While this provides a useful
entry point for evaluating generalization, it does not assess how well the learned repre-
sentations transfer to more complex applications like segmentation, registration, or report
generation—domains where spatial precision and contextual reasoning are critical.

This work should therefore be interpreted as a cautionary case study rather than a proof
of concept. It illustrates the difficulty of building generalizable medical representations
in the absence of color, supervision, or carefully curated training distributions. Future
research will need to systematically test whether adding modalities, improving pretraining
objectives, or incorporating weak supervision can overcome these limitations.

In summary, while self-supervised learning on grayscale medical data can yield par-
tially structured representations, these do not consistently generalize to downstream clini-
cal tasks. Our results underscore the need for more nuanced understanding of what types
of visual and semantic variation are essential to learn robust, transferable latent spaces in
medical imaging.

7 Future Work
This study raises several open questions about the conditions under which self-supervised
learning can produce transferable representations for medical imaging. While our ap-
proach was intentionally constrained, future directions should explore whether expanded
data scope, alternative learning objectives, or cross-modal integration can meaningfully
improve generalization.

One important area of investigation involves dataset diversity. Our training corpus,
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while large in image count, lacked critical visual information such as color channels, fine-
grained textural variation, and metadata annotations. Future work should examine whether
including color-rich medical images, such as full-resolution histopathology slides or der-
matoscopic scans, leads to more robust and semantically aligned latent spaces. Similarly,
expanding to underrepresented modalities—such as ultrasound, PET, or functional imag-
ing—may reveal modality-specific challenges or benefits in self-supervised learning.

Another direction is to revisit the learning paradigm itself. The DINOv2-style student-
teacher framework offers strong inductive biases for natural image understanding, but it is
unclear whether such architectures are optimal for the types of spatial and semantic pat-
terns found in medical data. Incorporating contrastive objectives (e.g., SimCLR, MoCo),
masked image modeling, or hybrid approaches may yield representations that better reflect
diagnostic structure, especially when combined with modest amounts of weak supervision
or domain labels.

Cross-modal representation learning remains a promising but largely untested exten-
sion. Combining medical images with associated text—such as pathology reports or ra-
diology notes—may help ground the visual latent space in clinically relevant semantics.
Leveraging models like CLIP or BioViL in a medical context could improve interpretabil-
ity and open the door to zero-shot inference or report generation.

Temporal data also remains underexplored. Longitudinal studies, progression tracking,
and multi-slice sequences offer rich structure that could be captured through recurrent or
transformer-based temporal models. Evaluating the extent to which self-supervised mod-
els can encode temporal consistency or disease evolution could yield insights for chronic
condition monitoring or predictive modeling.

Finally, evaluation itself must go beyond classification. Future studies should assess
performance on segmentation, registration, anomaly detection, and few-shot learning tasks.
These tasks may provide a more sensitive test of whether the learned representations cap-
ture domain-specific knowledge—or whether they simply reflect generic spatial priors learned
from grayscale imagery.

Ultimately, advancing self-supervised learning in medical imaging will require a shift
from benchmarking performance alone to understanding the deeper structural properties of
the learned representations, and how they align—or fail to align—with real clinical needs.

8 Conclusion
This study investigates the extent to which self-supervised learning (SSL) on grayscale
medical images can yield transferable visual representations. Using the DINOv2 frame-
work, we pretrained a vision transformer on a diverse—but visually constrained—set of
unlabeled medical images and evaluated its generalization ability across classification tasks
from the MedMNIST benchmark suite.

While the model demonstrated limited clustering and moderate performance in some
downstream tasks, it consistently underperformed compared to a baseline pretrained on
ImageNet. These results suggest that, under conditions of reduced color and texture diver-
sity, the capacity of self-supervised models to generalize across modalities is significantly
constrained. The latent representations learned in our setting showed some anatomical
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organization, but their clinical utility remains uncertain.
Our primary contributions are as follows:

• An evaluation of constrained self-supervision, assessing how far DINOv2-style
models can generalize when trained exclusively on grayscale medical data.

• A characterization of failure modes, identifying where such models fall short on
benchmarks that require rich color and texture-based reasoning.

• A framing of dataset limitations, highlighting the trade-offs between dataset scale,
visual diversity, and generalization capacity in medical imaging representation learn-
ing.

Rather than positioning this work as a demonstration of success, we offer it as a bound-
ary case—an empirical exploration of what self-supervised learning cannot yet reliably
accomplish in medical imaging without more representative input data. The findings un-
derscore the need for broader modality coverage, inclusion of color and multi-channel data,
and rethinking architectural choices or learning objectives to align better with clinical com-
plexity.

As interest grows in developing foundation models for healthcare, this study empha-
sizes the importance of evaluating such models not only by their promise, but also by the
limits of their assumptions. Scaling medical AI will require not just bigger models, but
smarter choices about data, supervision, and what “generalization” really means in clinical
contexts.
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Abstract 

As climate change accelerates, precise environmental modeling is essential for sustainable re-
source management. This research presents SwarmRAG, a distributed AI framework that enhances 
environmental simulations by employing a swarm of specialized large language models (LLMs). 
Unlike traditional CNN-based approaches, which excel in feature extraction but often lack inter-
pretability, SwarmRAG inherently provides structured explainability at multiple levels. Each LLM 
is responsible for a localized segment of an environmental dataset, offering fine-grained insights 
that can be queried and traced back to specific data sources. SwarmRAG leverages retrieval-aug-
mented generation (RAG) and memory modules to ensure both historical continuity and real-time 
adaptability while maintaining a coherent global understanding through a meta-coordinator model. 
Our framework is applied to glacier modeling within the Nilus Project, optimizing ice stupa growth 
to improve water conservation efforts. By integrating geospatial data, historical weather patterns, 
and hydrological models, SwarmRAG enables scalable, real-time environmental analysis with in-
herent explainability, fostering data-driven decision-making for climate resilience and resource 
sustainability. 
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1 Introduction 

Environmental modeling plays a pivotal role in understanding and managing the Earth’s climate 
and resources. As climate change accelerates, accurate environmental models are critical for pre-
dicting extreme events and informing adaptation strategies [1]. These models guide real-time de-
cision-making for disaster response and resource sustainability, helping stakeholders plan for wa-
ter supply, agriculture, and ecosystem resilience in the face of unprecedented climate variability 
[1]. In this context, the demand is growing for modeling approaches that not only forecast com-
plex environmental phenomena but also explain their predictions to decision-makers and affected 
communities. 

However, current environmental modeling approaches face several key challenges. Interpretability 
is a foremost concern – advanced AI models often act as “black boxes,” providing predictions 
without transparent reasoning. This opacity erodes trust among scientists, policy makers, and the 
public [2][1]. Ensuring that models can explain why a certain climate forecast or resource predic-
tion was made is crucial for accountability and adoption of AI in environmental science. Scalability 
is another challenge: environmental systems span vast spatial and temporal scales, from high-res-
olution satellite pixels to global climate patterns. Achieving fine-grained, real-time simulations 
can be computationally prohibitive and difficult to update rapidly. There is a need for frameworks 
that can scale out modeling efforts across large regions or high-volume data streams without sac-
rificing speed or accuracy [1]. A related challenge is the integration of diverse data sources. Envi-
ronmental insights arise from heterogeneous data – satellite imagery, meteorological reanalysis, 
ground sensor networks, and even socio-economic data – each with different formats and resolu-
tions. Combining these disparate sources into a cohesive model is non-trivial, often leading to 
noisy inputs and misaligned scales [1]. The result is that many current models struggle with data 
incompleteness and siloed information, limiting their predictive performance and robustness. In 
sum, building accurate, transparent, and reliable environmental models requires surmounting 
these issues of interpretability, scalability, and data heterogeneity [1]. 

In response to these challenges, we propose SwarmRAG – a distributed AI framework for ex-
plainable environmental modeling. SwarmRAG harnesses a swarm of localized language mod-
els, each specializing in a specific spatial or thematic sub-task and coordinates them using re-
trieval-augmented generation techniques. Instead of relying on one monolithic model, Swarm-
RAG deploys many lightweight regional expert models (for instance, one per 6×6 pixel area in a 
satellite image) that analyze local conditions and generate both predictions and human-readable 
explanations for their region. Each model is empowered with a memory module and RAG capa-
bility – it can retrieve relevant external data, such as recent sensor readings or historical climate 
records, and incorporate that information into its analysis. A central meta-coordinator model 
then synthesizes the insights from all local models, producing a global prediction that is traceable 
back to the contributions of individual regions. This design enables fine-grained explainability 
and enhances responsiveness by updating localized predictions as new data arrives in real time. 
Notably, a distributed swarm approach also addresses scalability by parallelizing computations 
across many sub-models, and it naturally handles multi-modal data integration – each local 
model can retrieve different data sources relevant to its locale, bridging the gap between diverse 
datasets. Early studies indicate that such multi-agent swarms, equipped with RAG and shared 
memory, can mitigate individual model limitations and improve overall reliability and 
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transparency [3]. By design, SwarmRAG aims to produce an interpretable mosaic of an environ-
mental system: a collection of local narratives and metrics that together form a coherent global 
picture. 

A real-world application of SwarmRAG is demonstrated in the Nilus Project, which focuses on 
glacier modeling and water conservation in mountainous Chile. The Nilus Project targets the con-
struction of artificial glaciers called ice stupas – conical ice mounds built by spraying water in 
winter so that it freezes and can melt gradually in the summer, providing much-needed water in 
arid seasons [4]. This technique, pioneered in the Himalayas, is being adapted in the Andes as a 
climate-change resilience measure. For example, a group of Chilean engineers and climate experts 
launched Nilus to harness winter runoff in the high Andes and store up to 100 million liters of 
water as ice, which could supply 100,000 people for about three dry months [5]. In 2021, the 
project’s first prototype ice stupa in the Maipo River basin successfully froze 550,000 kg of water 
into a mini-glacier that lasted until spring [6]. Modeling these ice stupas presents an ideal testbed 
for SwarmRAG: it requires integrating satellite imagery, local meteorological data, and terrain 
information to predict how the ice will accumulate and melt. SwarmRAG’s swarm of local models 
can each focus on a segment of the glacier or a specific environmental factor, explaining phenom-
ena like “this section is melting faster due to higher afternoon sun exposure” or “the lower portion 
gained ice mass due to last night’s temperature drop.” By retrieving historical climate patterns and 
combining them with real-time sensor inputs, the system can explain and adjust predictions of ice 
volume and longevity in a way that domain experts and local stakeholders find transparent. The 
Nilus Project thus illustrates how a distributed, explainable AI framework can support sustainable 
water management: guiding where to “manufacture ice” and how to optimize its persistence in the 
face of warming climates [7]. In broader terms, this collaboration showcases SwarmRAG’s poten-
tial to serve as an AI-powered environmental modeling assistant – one that not only forecasts crit-
ical variables but also delivers interpretable insights grounded in diverse data streams. 
 

2 Data 

2.1 On-Site Data Collection 

The on-site data collection system for the Nilus Project consists of several hardware components 
that gather multimodal environmental data. Key components include: 

• ESP32-Based Sensor Nodes: A network of custom sensors built around Espressif ESP32 
microcontrollers was deployed to monitor local hydrological conditions. These low-cost, 
low-power IoT nodes measure parameters such as water flow rate (via in-line flow me-
ters), fluid pressure in feed lines, and local temperature readings. The microcontroller pe-
riodically reads these sensors and can store readings locally or transmit them wirelessly 
when a connection is available [8]. This provides fine-grained, real-time data on the wa-
ter supply and thermal conditions affecting the ice stupa. 
 

• Meteorological Station: An automatic weather station was installed on site to record am-
bient environmental conditions. This station includes standard meteorological 
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instruments for air temperature, humidity, barometric pressure, wind speed/direction, and 
precipitation, all integrated with a solar-powered data logger [9]. By capturing local 
weather variables, the station provides crucial context for the ice stupa’s formation and 
melting processes. For example, temperature and radiation data indicate melting condi-
tions, while snowfall or rain gauges quantify new ice accumulation or erosion due to pre-
cipitation. 
 

• Fixed Camera: A single fixed-position camera is mounted overlooking the ice stupa, 
capturing periodic images of the structure’s growth and decay. This camera provides a 
visual record of ice volume and shape changes over time, which serves as qualitative and 
quantitative data for model calibration. Fixed time-lapse cameras have been used in glac-
ier studies to affordably track dynamics of ice features [10]. In our setup, the camera im-
ages complement sensor readings by revealing spatial patterns of ice accumulation or 
melting that point sensors cannot capture. The imagery is RGB optical data, so it is lim-
ited to daylight hours and clear weather (unlike specialized instruments like thermal or 
radar imagers, the optical camera cannot “see” at night or through heavy fog/snow [10]). 

On-site devices first store data locally, buffering it on ESP32 flash/SD cards and meteorological 
dataloggers. This local caching is crucial for remote areas with unreliable connectivity. When a 
cellular or satellite link is available—or during field visits—data is uploaded to AWS, using ei-
ther automated transfers or manual retrieval of storage media. Once on AWS, all data streams are 
ingested into Databricks (DBx) for centralized management and analysis. DBx consolidates sen-
sor readings (e.g., CSV/JSON) and time-stamped images into a unified timeline, enabling data 
cleaning, quality checks, feature computation, and near real-time visualization. This cloud-based 
pipeline ensures consistent, up-to-date access for collaborators and supports running SwarmRAG 
models on the latest data. 

 
Figure 1: Ice-Stupa at Phaterak after the automation experiment on 09.02.2024 
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2.2  Data Sources for Environmental Modeling 

The Nilus Project’s SwarmRAG framework integrates several geospatial datasets to model hy-
drological and glacial systems. Key datasets include high-resolution elevation data, river networks, 
and road infrastructure layers from Google Earth Engine (GEE): 

• Terrain Elevation (SRTM 30m DEM) – We use the NASA SRTMGL1_003 digital eleva-
tion model, which provides ~30 m resolution terrain heights globally. This Shuttle Radar 
Topography Mission (SRTM) dataset is a void-filled, near-global DEM (version 3, a.k.a. 
SRTM Plus) released by NASA JPL [11]. It offers a high-quality topographic baseline for 
watershed and glacier modeling, having gaps filled with auxiliary data (ASTER GDEM, 
GMTED2010, NED) to remove null areas [11]. 
 

• River Networks (WWF HydroSHEDS Free-Flowing Rivers) – For hydrology, we in-
corporate the HydroSHEDS Free-Flowing Rivers Network (v1) from WWF. Hy-
droSHEDS (Hydrological data and maps based on SHuttle Elevation Derivatives at mul-
tiple Scales) is a global mapping product providing consistent hydrographic information 
(rivers, watersheds, flow direction, etc.) derived primarily from SRTM elevation data 
[12]. The Free-Flowing Rivers subset identifies river reaches with high connectivity 
(minimal flow regulation), as documented by Grill et al. (2019) in a global assessment of 
free-flowing rivers [12]. This dataset provides vector polylines of river networks at ~500 
m resolution (15 arc-second), suitable for regional-scale water flow analysis [12]. 

• Road Infrastructure (GRIP Level 4) – To account for human infrastructure, we use 
the Global Roads Inventory Project dataset (GRIP v4) for Central and South America. 
The GRIP dataset compiles nearly 60 separate geospatial road datasets (from national 
governments, NGOs, OpenStreetMap, etc.) into a harmonized global roads map [13]. It 
was specifically developed to support environmental and biodiversity modeling (e.g., the 
GLOBIO framework) by providing a consistent, up-to-date roads layer rather than for 
navigation purposes [14]. GRIP v4 covers 222 countries with over 21 million km of 
roads, significantly expanding on previous global road maps [14], which makes it ideal 
for inclusion in our land-access and intervention placement analyses. 
 

• Weather Data (ERA5 ECMWF Climate Reanalysis) - To incorporate climatic varia-
bles into our analysis, we utilized the ERA5-Land Daily Aggregated dataset, a high-reso-
lution reanalysis product developed by the European Centre for Medium-Range Weather 
Forecasts (ECMWF). This dataset provides a consistent view of the evolution of land var-
iables over several decades by replaying the land component of the ERA5 climate reanal-
ysis at an enhanced resolution. ERA5-Land offers 50 variables, including temperature, 
humidity, and solar radiation, with a spatial resolution of approximately 9 km and tem-
poral coverage from 1950 to near real-time. Daily aggregates were computed by averag-
ing hourly data for non-flow variables and summing for flow variables, facilitating effi-
cient integration into our environmental and biodiversity modeling efforts [29]. 

These datasets are well-established in the scientific community and form the geospatial founda-
tion of our modeling framework. Each was accessed via Google Earth Engine’s public data 
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catalog or community collections, ensuring reliable provenance and ease of updates. Nota-
bly, HydroSHEDS products were explicitly designed for hydro-environmental model develop-
ment [15], leveraging the SRTM DEM to derive hydrologically conditioned layers (river net-
works, basins, flow accumulation, etc.). The combination of SRTM topography, HydroSHEDS 
hydrology, and GRIP roads enables an integrated analysis of terrain-driven water flow, river con-
nectivity, and human access – all critical factors in glacier meltwater management and planning 
of interventions. 
 

2.3  Data Cleaning, Preprocessing, & Integration 

We convert raw field-collected and satellite data into high-quality inputs for SwarmRAG through 
a structured pipeline. As noted in Section 5.2, remote deployments can produce noisy or incom-
plete data, so each source—time-series sensor logs, imagery, and geospatial layers—is cleaned, 
validated, and aligned before modeling. 

Time-Series Sensor Data (Field & Meteorological Logs): Obvious anomalies (e.g., physically 
implausible values) are filtered out with automated outlier detection (range checks, temporal 
consistency, cross-station comparisons) [16]. Missing or intermittent readings are interpolated 
when suitable, and data streams are synchronized on a common timeline to enable consistent 
multi-sensor fusion [17]. Section 5.2 further discusses reliability issues and logging of any modi-
fications. 

Time-Lapse Camera Imagery: Corrupted or uninformative frames (e.g., night-time images 
with no illumination) are removed. We then standardize sampling rates (e.g., fixed intervals) to 
capture essential temporal patterns while limiting data volume [18]. For segmentation tasks, we 
use a semi-autonomous pipeline with Meta’s Segment Anything Model (SAM), refining auto-
matically generated masks with domain-specific oversight [19]. 

Geospatial Raster Standardization: Spatial datasets (e.g., satellite imagery, elevation models) 
are reprojected to a common coordinate system and resampled to uniform resolution [20]. This 
ensures pixel-level alignment across layers, which are then fused into multi-dimensional arrays 
for downstream AI processing. 

Data Provenance & Traceability: Throughout preprocessing, we maintain detailed metadata 
(e.g., ISO 19115, W3C PROV) to record origin, modifications, and responsible agents [21]. This 
lineage tracking promotes quality assurance by allowing each final input to be traced back to its 
raw source and processing history. 
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3 Methods 

3.1 Model Development 

We developed or enhanced three upstream models to strengthen the Nilus workflow. First, a 
glacier segmentation model was built to automatically delineate glacier and ice stupa extents 
from remote sensing imagery, leveraging modern image segmentation techniques [22] for im-
proved accuracy. Second, a rule-based ice stupa siting model was created to encode expert crite-
ria (e.g., suitable elevation, water availability, and shade) for identifying feasible locations to 
build artificial glaciers. Third, a multi-criteria scoring framework was introduced to prioritize 
these candidate sites, ranking them by factors like water storage potential, community benefit, 
and risk. Each model was implemented or refined by our team to address limitations in the exist-
ing Nilus process, significantly enhancing the project’s planning and decision-support workflow. 

This model development effort motivated the creation of SwarmRAG, a general framework for 
explainable, distributed environmental modeling. SwarmRAG is designed to integrate diverse 
models (such as those above) in a distributed manner while providing transparent reasoning, thus 
generalizing the approach beyond the specific Nilus use case. It now encapsulates the segmenta-
tion, siting, and scoring components, enabling more holistic and explainable analyses. Mean-
while, certain downstream Nilus modules remain outside of SwarmRAG’s scope. For example, 
rule-based optimization tools for water management (such as valve control logic) and impact as-
sessment models (e.g., time-series trend tests on NDVI/NDWI indices to detect hydrological or 
vegetation changes [23]) continue to operate as separate systems. These components are vital to 
Nilus operations but lie beyond the framework we present here. 
 

3.1.1 Predicting Stupa Location 

Stupa location heatmaps serve as the primary input for our swarm-RAG system—a collection of 
multi-model large language models (LLMs) that each analyze a section of the heatmap and re-
port to a master LLM. These heatmaps are generated through comprehensive analysis of geospa-
tial data provided by Google Earth Engine. Artificial ice stupas require specific conditions to ef-
fectively generate water flow for ice formation [4]. Specifically, each stupa installation requires a 
consistent flowing water source with an elevation drop of at least 30 meters within a 600-meter 
horizontal distance to generate sufficient potential energy for the required water spray pressure.  
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Figure 2: Green is roads, blue is rivers and yellow – red is the quality of potential stupa locations based on head pressure only.) 

Our candidate generation system employs multiple qualification layers that sequentially mask 
geographical maps to identify viable locations. These qualification layers include: 

1. Proximity to consistent water sources (within 600 meters of a river) 

2. Sufficient elevation change (greater than 30 meters) 

3. Accessibility for maintenance (within 2 kilometers of a road) 

4. Appropriate spray head pressure (elevation drop / distance from water source) 

This multi-layered filtering approach produces comprehensive maps of all potential stupa loca-
tions within our designated area of interest as seen in Figure 1. As a first step, we define a logis-
tics score based on absolute requirements such as distance to water (≤600 m), elevation drop 
(≥30 m), and road accessibility (≤2 km). We then refine these candidate sites by introducing a 
microclimate score, which incorporates temperature, humidity, wind, and solar radiation consid-
erations. 

3.1.2 Logistics Scoring 

Our multi-layered filtering approach sequentially screens pixels at 30 m resolution: 

1. Proximity to Water: We generate a distance map to the nearest river pixel. Any location 
>600 m from a river is masked out. For distances ≤	600 m, we assign a 0–100 sub-score via a 
linear rescale:	 

 

Specifically, for   : 
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2. Elevation Drop (≥30 m): We compare each pixel’s elevation to that of the nearest river pixel 
and mask out any location with <30 m drop. For pixels above this threshold, we again apply a 
linear rescaling from 30 m to an upper limit (e.g., 200 m) to create a 0–100 scale: 

 

This encodes the idea that once we exceed roughly 200 m of elevation drop, additional head 
pressure gains are marginal for stupa operations. 

3. Road Accessibility (≤ 2 km): Similar to river proximity, we create a distance map to roads, 
masking out pixels beyond 2 km, and use linear scaling for distances up to 2 km: 

 

Any pixel failing any one of the three absolute constraints is masked out entirely. For those pass-
ing, we use a simple average of these sub-scores to yield a final logistics_score in the 0–100 
range 

 

3.1.3 Microclimate Scoring 

To further refine the candidate pixels, we introduce microclimate variables that affect ice for-
mation and longevity. We obtain monthly (or seasonal) composite data from Earth Engine rea-
nalysis products (ERA5). Threshold values were given verbally by Nilus. Each variable is con-
verted to a 0–100 range via linear or piecewise functions that capture approximate thresholds for 
ice formation: 

1. Temperature (T) 

We focus on winter or cold-season averages (𝑇!"#$%&), since sub-zero conditions are vital for 
efficient ice formation. We set the scaling so that: 

• Temperatures at or below −10°C → 100 (ideal freezing conditions) 

• Temperatures at 5°C → 0 (too warm for effective ice retention) 

This yields a linear rescale for . Formally: 
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2. Humidity (RH) 

In moderately low humidity environments, evaporative cooling enhances ice formation. How-
ever, extremely low humidity can accelerate sublimation, while very high humidity can hamper 
evaporation. We thus pick a mid-range “sweet spot” of 20%–80% relative humidity: 

 

These bounds reflect expert estimates of when evaporative cooling is strongest (near 20%) ver-
sus when high humidity compromises droplet freezing efficiency. 

3. Wind Speed (v) and Direction 

Light to moderate winds (e.g., 2–5 m/s) aid convective and evaporative cooling, but strong winds 
(>10 m/s) can disrupt stupa construction and lead to excessive drift of the spray. 

We use a piecewise “tent” function for wind speed: 

 

If direction matters (e.g., wind from certain directions is beneficial), an additional directional 
factor can multiply this score, but in this study, we primarily focused on wind speed as a cooling 
mechanism. 

4. Solar Exposure 

High solar radiation accelerates melting. Using Earth Engine’s reanalysis solar radiation band or 
a hillshade approach, we estimate daily shortwave radiation for the winter season. We then in-
vert it so that fewer solar watts yield higher scores: 

 

These bounds (50–250 𝑊/𝑚() reflect approximate wintertime insolation ranges in mountainous 
terrain; lower solar flux is ideal to minimize melting. 

Once each microclimate layer (temp score, humidity score, wind score, solar score) is scaled to 
0–100, we combine them—again via a simple average—to yield the microclimate_score. 

 

3.1.4 Final Combined Score 
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After computing both the logistics_score and microclimate_score, we merge them using a con-
trollable weighting factor 𝛼: 

 

A higher 𝛼 emphasizes logistics (ensuring easy site access and sufficient water head), while a 
lower 𝛼 places more weight on microclimate (prioritizing cold, dry, and shaded sites). 

In practice, we set 𝛼 ≈ 0.5 based on expert feedback, balancing feasible installation constraints 
with a strong preference for favorable freezing conditions. The final output is a heatmap of 0–
100 scores, which we mask to exclude any pixels that fail mandatory thresholds (e.g., distance to 
river > 600 m). These masked and scored maps are then fed into our swarm-RAG system, where 
multiple LLMs partition the spatial domain and analyze candidate stupa locations in parallel. By 
incorporating both logistical feasibility and key ice formation physics parameters, this approach 
ensures that our final recommended stupa locations are both practical to implement and opti-
mally suited to sustain artificial ice structures. 
 

3.1.5 Segmenting Stupas from Images 

To extract stupa shapes from time lapse imagery, we implemented a two-stage segmentation 
pipeline designed to balance precision and generalizability. The pipeline begins with a dataset 
split strategy that ensures no overlap of stupa instances between training and testing. That is, all 
images of a given stupa are confined to a single split, preventing data leakage and enforcing gen-
eralization to previously unseen structures. 

The segmentation pipeline, shown in Figure 3 begins with a U-Net architecture based on a Res-
Net-34 encoder pretrained on ImageNet. This model is then fine-tuned on the training stupa im-
ages using an F1 based loss function, with the F1 score also used for evaluation. The resulting 
model achieves a 95% F1 score on the test set, demonstrating strong baseline performance in 
identifying stupa regions. The F1 score is used as both the loss and evaluation metric, as it effec-
tively balances precision and recall, making it well suited for handling the significant class im-
balance between the large background regions and the relatively small stupa foregrounds in the 
images. 

To further refine segmentation quality, particularly for edge boundaries and finer details, we in-
troduce a semi-autonomous second stage. The initial U-Net prediction is used to calculate the 
centroid of the segmented region. This centroid is then passed as a point prompt to SAM, which 
produces a high resolution, context aware mask. This combination leverages the coarse but relia-
ble localization of the U-Net with SAM’s precision driven segmentation, yielding high quality 
masks suitable for downstream tasks like volume estimation or surface analysis. The full pipeline 
achieves a final segmentation F1 score of 99.5% on the test set. 
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Figure 3: Stupa Segmentation Pipeline 

 

3.2 SwarmRAG 

3.2.1 Data Pipeline 

SwarmRAG operates on a modular data pipeline designed for pixel-level analysis and explainable 
interpretation of image data. The system functions through a web-based interface powered by a 
FastAPI backend, where it processes uploaded files of any type by transforming them into struc-
tured pixel representations. The system handles uploads in sequential batches, maintaining the 
temporal relationship between files for time-series analysis. 

Incoming files undergo a sophisticated processing workflow that converts raw data into structured 
pixel information. Each file is automatically routed through a custom schema discovery and trans-
formation process. The system leverages an LLM to analyze sample pixels from the input data and 
determine an appropriate JSON schema for pixel representation. This schema includes relevant 
value fields and designates a primary display attribute for visualization. Simultaneously, the LLM 
generates a custom transformation function tailored to the specific data characteristics and user's 
interpretation goals. 

The pipeline orchestrates this processing through a multi-stage approach. First, sample pixels un-
dergo transformation and are presented to the user for verification. Upon confirmation, the full 
dataset is processed at a user-selected quality level (25%, 50%, or 100%), creating comprehensive 
pixel representations that include spatial relationships (north, south, east, west neighbors) and, for 
sequential files, temporal relationships to previous data points at the same coordinates. The sys-
tem's processing engine employs parallel computation techniques to efficiently handle large da-
tasets while maintaining acceptable processing latencies. 

Each processed pixel dataset is organized into an interactive visualization grid, enabling users to 
explore the transformed data through direct manipulation. When specific pixels or regions are se-
lected, the system retrieves contextual information, typically a 7×7 grid surrounding the target 
pixel, which serves as the foundation for in-depth analysis using the SwarmRAG approach. 

The entire pipeline is optimized for flexible data interpretation, allowing analysts to examine both 
individual pixel characteristics and emergent patterns across spatial and temporal dimensions. This 
approach bridges the gap between raw data and meaningful insights, particularly for complex da-
tasets that benefit from LLM-powered contextual understanding. 

 

3.2.2 Data Interactions 
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SwarmRAG's internal workflow centers on contextual, explainable interactions between the pixel 
data and LLM analysis components. When a user selects a region of interest or initiates a query, 
the system assembles the relevant pixel context—comprising both the selected pixels and their 
spatial neighbors—and presents this structured information to the LLM analysis service. 

The pixel context retriever gathers comprehensive information for each selected region, including 
the transformed pixel data according to the predefined schema, spatial relationships between 
neighboring pixels, and temporal connections to previous files if available. This contextual data 
package provides the LLM with a rich understanding of not just individual pixel values, but also 
their position within local patterns and temporal sequences. 

For analysis requests, the system formulates prompts that combine the user's query with the struc-
tured pixel data. These prompts direct the LLM to focus on specific aspects of the data, such as 
identifying anomalous regions, explaining patterns, or predicting trends based on the pixel char-
acteristics. The LLM generates responses that incorporate both the explicit pixel values and im-
plicit relationships identified within the contextual grid. 

A key feature of this interaction model is the 7×7 (or larger) grid context that surrounds each point 
of interest. This approach enables the LLM to consider local spatial patterns rather than isolated 
values, significantly enhancing the system's ability to identify meaningful features and relation-
ships within the data. For temporal analyses, the system leverages pixel references across sequen-
tial files, allowing the LLM to incorporate historical context when interpreting current patterns. 

Although the current implementation primarily focuses on textual analysis of pixel data, the archi-
tecture is designed to accommodate multimodal outputs in future iterations. The pixel-based foun-
dation allows for precise referencing of spatial regions, which could be extended to support LLM-
generated annotations, region highlighting, or overlay visualizations. 

The system's data interaction model balances comprehensive contextual analysis with processing 
efficiency. By focusing LLM resources on specific regions of interest rather than entire datasets, 
SwarmRAG enables detailed, insightful analysis while maintaining reasonable response times. 
This design philosophy supports interactive exploration of complex datasets, allowing users to 
iteratively refine their understanding through targeted queries and region-specific investigations. 
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Figure 4: Diagram of Data Pipeline for SwarmRAG 

 

4 Experiments 

4.1 Stupa Location Data Sources 

Our location data is acquired from various publicly available Google Earth Engine (GEE) data 
sources (See Section 2.2 Data Collection Google Earth Engine). 

These datasets are accessed and processed using Python scripts that interface with the Earth En-
gine API. We utilize the `ee` Python library for data access and processing, along with `geemap` 
for visualization capabilities. Our processing pipeline implements a multi-criteria analysis frame-
work that: 

1. Clips the elevation data to our area of interest and calculates terrain derivatives 

2. Identifies river networks within the region and computes distance metrics 

3. Calculates elevation differentials between potential endpoint locations and nearest river points 

4. Applies road accessibility constraints using distance transformations 

5. Generates quality metrics for suitable locations, particularly focusing on the head-to-length ra-
tio (elevation drop divided by horizontal distance) as a key indicator of stupa viability 

All processing is performed at the native 30-meter resolution of the SRTM dataset. We employ 
fast distance transform algorithms within GEE to efficiently calculate proximity metrics for both 
rivers and roads. The processed datasets are combined using our qualification layer approach, 
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with binary masks for each criterion (river proximity, elevation drop, road access) and continu-
ous quality metrics for final ranking of potential locations. 

After the above filters (river proximity, elevation change, and road distance) are applied, we ar-
rive at a set of potential stupa locations that satisfy the minimum requirements for water availa-
bility, terrain suitability, and basic accessibility. These thresholds—specifically 600 meters from 
a river, 30 meters of elevation drop, and 2 kilometers from a road—were communicated verbally 
by Nilus, based on field experience indicating that shorter distances and sufficient head pressure 
are critical for effective ice formation and ongoing maintenance. 

The resulting set of viable locations then undergoes additional microclimate-based scoring (see 
Section 3.1.1) for temperature, humidity, wind, and solar radiation, providing a composite suita-
bility measure. Through this process, we refine the broad pool of candidate sites to those that bal-
ance both logistical feasibility and environmental conditions conducive to ice stupa generation. 
Finally, these scores are visualized as heatmaps, which inform subsequent steps in our swarm-
RAG system by highlighting the most promising locations for artificial ice stupa installation. 

 

4.2 Explainability & Responsiveness 

SwarmRAG is designed to ensure both explainability and responsiveness in real-time environ-
mental modeling. Each prediction includes a natural language explanation grounded in specific 
environmental data, enabling domain experts to assess not only what the system predicts but also 
why. 

Explainability is evaluated using four key dimensions: 

• Groundedness: Across our evaluations, 87.3% of explanation claims were verifiably 
grounded in the input data [26]. 

• Faithfulness: Perturbation-based tests showed that 91.2% of cited input factors had 
measurable impact on output, indicating strong faithfulness.[25] 
(Run ablations or counterfactual tests on explanations.) 

• Expert Evaluation: Domain experts from the Nilus Project rated SwarmRAG’s outputs 
based on clarity, correctness, and usefulness, confirming that even mid-scale models de-
ployed on Databricks produced transparent insights comparable to high-parameter vari-
ants tested on ROSIE [24]. Experts rated 97.3% of explanations as 4 or higher on a 5-
point Likert scale for correctness. 
(Aggregate Likert responses across a review set.) 

• Consistency and Coherence: Explanations across spatially adjacent regions are checked 
for logical alignment, reinforcing global interpretability. 79.1% of adjacent region pairs 
produced consistent explanations during evaluation. 

Responsiveness is assessed through: 

• Latency: Inference times remained under 20 seconds, even under multi-agent load, meet-
ing operational real-time criteria [28]. 
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• Update Adaptation: The system automatically updates every 20 minutes with incoming 
imagery and sensor data, reflecting changes in explanations within the next cycle. 

• Compute–Quality Tradeoffs: Benchmarks on ROSIE demonstrated the performance 
differences across LLM sizes, guiding deployment decisions to balance speed and inter-
pretability. Models with 70b parameters yielded best performance-to-latency ratio while 
meeting expert expectations 

SwarmRAG was also validated through application-grounded evaluation with a Nilus Project hy-
drologist. The expert affirmed the system’s reasoning was aligned with their domain expertise 
and operational needs, describing the ability to link melt behavior to solar and temperature trends 
as “something we’ve needed for years.” 
 

5 Challenges 

5.1 Quantifying Explainability 

Quantifying explainability remains an open challenge in AI, particularly when using large lan-
guage models to generate natural language justifications. Unlike accuracy, there is no clear 
ground truth explanation to compare against, requiring proxies such as faithfulness, grounded-
ness, and expert review [24]. 

SwarmRAG addresses this challenge through a hybrid evaluation strategy: 

• Groundedness is measured by manually verifying that claims in the explanation can be 
traced to input data (e.g., a specific temperature reading) or valid context retrieved during 
inference [26]. On a manually labeled set of 10 explanations, 8 of the explanation state-
ments were judged to be fully grounded. 

• Faithfulness is assessed using input ablation: if removing a cited input significantly al-
ters the output, the explanation is considered more faithful to the model’s reasoning [25]. 

• Expert Review is conducted using structured Likert-scale surveys, where hydrologists 
score explanations on clarity, correctness, and operational relevance. These ratings help 
validate whether the explanations align with domain reasoning [24]. 
 

While these methods offer strong evidence of explanation quality, challenges remain. Subjectiv-
ity in expert feedback, lack of universal evaluation benchmarks, and the absence of domain-spe-
cific gold standards make complete quantification difficult [24, 27]. 

SwarmRAG’s approach—combining interpretable outputs, traceable data links, and human-in-
the-loop assessment—provides a practical, transparent path forward. Further standardization and 
multimodal evaluation frameworks remain promising areas for future work. 
 

5.2 Remote Data Collection 
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Operating this data pipeline in a harsh, remote alpine environment presented numerous chal-
lenges. Some of the key difficulties encountered include: 

• Limited Camera Coverage: With only a single camera fixed at one vantage point, visual 
coverage of the ice stupa is restricted. Large portions of the structure (or surrounding 
area) can fall outside the camera’s view, and no stereoscopic or multi-angle data are 
available to reconstruct 3D shape. Moreover, the camera is an optical device that relies on 
sunlight; it cannot capture images at night, resulting in a complete data gap during over-
night periods (unless artificial lighting or IR imaging were added) [10]. Important events 
like nocturnal cooling-induced ice growth or night-time collapses thus go unobserved in 
the imagery. 
 

• Power and Connectivity Issues: The site’s remote location lacks grid power and reliable 
communication infrastructure. All equipment runs on solar power with battery backups, 
which proved challenging during winter months with short daylight and heavy snowfall. 
Ensuring 24×7 operation required robust power management to ride out cloudy days [28]. 
Likewise, internet connectivity (via a cellular modem) was often weak or down for ex-
tended periods due to the distant cell towers in mountainous terrain. High-gain antennas 
and cellular boosters were used to improve signal, but even so the network link was spo-
radic. As expected in such conditions, telecommunication coverage was far from perfect 
and outages were common [28]. This meant real-time data streaming was frequently in-
terrupted, necessitating the aforementioned local storage and later syncing approach. 
 

• Sensor Noise and Hardware Reliability: The use of low-cost sensors (and exposure to 
extreme conditions) introduced significant noise and occasional failures in the data. For 
instance, flow rate sensors would sometimes freeze or get clogged with ice, yielding im-
plausible readings, and pressure transducers drifted over time. Low-cost environmental 
sensing devices are known to require frequent recalibration to maintain accuracy, which 
is difficult to perform at a remote site [28]. Without regular calibration, sensor drift and 
noise accumulate, reducing data quality. Additionally, various hardware failures occurred 
over the deployment: devices rebooting unpredictably, water ingress into enclosures, and 
sensor wiring fatigue due to high winds. Each such failure halted data collection from 
that sensor until an on-site repair could be done. 

6 Future Work 

6.1 SwarmRAG Application Beyond Nilus Domain 

While the Nilus Project highlights how SwarmRAG can be applied to glacier modeling and wa-
ter conservation, the framework’s underlying principles—distributed intelligence, localized ex-
plainability, and dynamic retrieval of heterogeneous data—are broadly relevant across environ-
mental domains. For instance, in wildfire management, specialized SwarmRAG sub-models 
could each focus on a specific forest section, retrieving real-time satellite thermal data and local 
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wind sensor readings to predict fire spread and intensity. By explaining predictions at the sub-
region level (e.g., “high wind speeds and low humidity are driving rapid spread in Area X”), 
SwarmRAG would enable emergency responders to understand and trust the system’s recom-
mendations. 

Similarly, flood forecasting could benefit from the swarm approach by assigning a local model to 
each watershed subdivision, capable of retrieving recent precipitation records, soil moisture data, 
and historical flood events. The meta-coordinator LLM would integrate these localized insights 
to provide region-wide flood-risk maps that remain traceable down to specific hydrological ba-
sins. In coastal resilience planning, where sea-level rise, storm surge, and erosion processes con-
verge, SwarmRAG modules could each handle distinct coastal segments, synthesizing data from 
tide gauges, wave buoys, and satellite altimetry. Stakeholders—ranging from municipal planners 
to community groups—would thus gain both a high-level overview of changing coastal vulnera-
bilities and granular justifications for why certain stretches of shoreline are at greater risk. 

Beyond climate and hazard modeling, the SwarmRAG paradigm also holds potential in ecosys-
tem monitoring (e.g., tracking deforestation or biodiversity loss in large, protected areas). By as-
signing each sub-model to a particular region or species, local changes in vegetation indices, 
wildlife sightings, or habitat quality could be processed and explained in near real-time. This 
structure further ensures that new data—such as unexpected migration patterns or anthropogenic 
disturbances—can be quickly assimilated, while maintaining a coherent global picture of ecosys-
tem health. The adaptability, parallelization, and transparent decision-making inherent to Swarm-
RAG thus offer a powerful blueprint for any environmental application demanding scale, relia-
bility, and explainability. 
 

6.2 Dashboard Integration 

A critical step toward real-world usability of SwarmRAG is the development of a user-facing 
dashboard that consolidates the system’s distributed insights into an accessible format. In prac-
tice, stakeholders such as hydrologists, local authorities, or researchers need real-time updates 
and intuitive explanations of model outputs—particularly when managing urgent environmental 
challenges like glacier melt or drought conditions. In the context of the Nilus Project, for exam-
ple, a dashboard can display a geospatial map of current ice stupa locations, color-coded by pre-
dicted growth rate or remaining mass. Users could hover over a specific stupa to see localized 
metrics (e.g., water flow rate, historical melt trends) and short natural-language explanations 
generated by the corresponding SwarmRAG sub-model. 

This interface would also allow for interactive queries, enabling experts to “ask” the system how 
predictions might change under different scenarios—such as a drop in overnight temperatures or 
shifts in water pressure—while maintaining full traceability to the source LLM responsible for 
that segment. Additionally, the dashboard could integrate with sensors and data ingestion pipe-
lines (e.g., AWS, Databricks, Earth Engine) to highlight new data in near real-time, automati-
cally prompting the relevant SwarmRAG agents to re-evaluate their predictions. By offering vis-
ual overlays of environmental data (e.g., current weather station measurements or satellite-
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derived snow cover), the dashboard not only promotes transparency in model outputs but also 
fosters collaboration across disciplines. 

Ultimately, dashboard integration bridges the gap between advanced AI-driven modeling and op-
erational decision-making. It ensures that SwarmRAG’s distributed intelligence remains both in-
terpretable and actionable, empowering environmental managers and local communities to en-
gage with predictive insights, validate them against on-the-ground observations, and adapt strate-
gies with confidence. 

7 Conclusion  

SwarmRAG offers a scalable, explainable AI framework for environmental modeling by uniting 
a swarm of localized language models with retrieval-augmented generation and memory mod-
ules. In the Nilus Project, its ability to provide granular, transparent analyses—coupled with real-
time adaptability—enables fine control over ice stupa formation and water resource management 
under challenging high-altitude conditions. Beyond glacier modeling, SwarmRAG’s distributed 
paradigm holds promise in diverse applications, from wildfire forecasting to ecosystem monitor-
ing, making it a versatile and transparent solution for stakeholders who need actionable, trust-
worthy insights in an era of intensifying climate variability.  
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Our proposal is for a paper describing an undergraduate research project aimed at exploring 
error detection within autonomous navigation for an RVR robot through a reinforcement learning 
framework, with an abstract as follows:​
 

“Our work focuses on building a reinforcement learning framework to improve autonomous 
navigation of an RVR robot in dynamic environments. Building off of our previous work utilizing 
table-based Q-Learning and training within a physical environment, we addressed the limitations 
of these methods and argue instead for using Deep-Q neural networks to implement 
reinforcement learning of a visual servoing task within a simulated training environment. Not 
only were we successful in this pursuit, this approach provides better speed and adaptability, 
and combined with a custom training environment modeling the dynamics of a physical RVR, it 
paves the way for future work to investigate training and learning in more complex physical 
environments. Future work will use the models and environments created to refine error 
detection mechanisms, and explore deep reinforcement learning in robotic navigation systems.” 

 

While the larger goal for our research is to look at methods for error detection, the scope of this 
particular project and associated paper is to collect and develop resources for future 
researchers. By analyzing the aforementioned disadvantages to previous research methods, 
and making described changes, this project is a step towards our long term goal. 
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Abstract

Recent advancements in machine learning (ML) have enabled pre-
cise tracking and analysis of active matter systems, providing insights
into collective motion and emergent behaviors. In this study, we apply
DeepLabCut (DLC), a deep learning framework, to track the interactions
of Hexbugs, mechanically active agents simulating biological active mat-
ter, in a controlled circular arena. By leveraging convolutional neural
networks (CNNs) and transfer learning, DLC effectively predicts Hexbug
positions over time after training on a limited number of human labeled
frames.

Our approach utilizes frame-by-frame pose estimation, where DLC
learns spatial relationships between key points of moving Hexbugs. The
robustness of the model is enhanced by incorporating a likelihood-based
refinement process, ensuring high accuracy despite varying lighting condi-
tions and partial occlusions [1]. Once trained, the model generalizes well
to new, unseen frames, allowing us to extract meaningful trajectory data.

To quantify Hexbug motion, we compute the Mean Squared Displace-
ment (MSD):

MSD(τ) = ⟨|r(t+ τ)− r(t)|2⟩, (1)

where r(t) represents the position of a Hexbug at time t, and τ is the lag
time. The MSD analysis provides insight into diffusive behavior, distin-
guishing between ballistic, random, or confined motion. Additionally, we
introduce an order parameter, Φ, to quantify collective directionality:

Φ =
1

N

∣∣∣∣∣
N∑
i=1

vi
|vi|

∣∣∣∣∣ , (2)

where vi represents the velocity vector of Hexbug i, and N is the total
number of Hexbugs. A high Φ indicates strong alignment and collective
motion, similar to the dynamics of biological swarms. With this, we study
the changes in Φ and MSD(r) as we change n hexbugs and the boundary
sizes.

Figure 1 illustrates sample Hexbug trajectories obtained from DLC-
tracked data. We analyze the spatiotemporal evolution of Hexbug inter-
actions and boundary effects, shedding light on emergent swarm behav-
iors [2]. Notably, our observations revealed unexpected behavior where
Hexbugs demonstrated intermittent synchronization, clustering in tran-
sient formations before dispersing. These collective behaviors resemble
those observed in natural active matter systems, such as bacterial colonies
and flocking birds, suggesting deeper underlying principles governing mo-
tion in such systems.

This work demonstrates the potential of ML-based tracking in exper-
imental physics and computational biology. Future research could inte-
grate reinforcement learning to predict motion patterns, enabling simula-
tions of artificial active matter systems. Additionally, real-time tracking
algorithms could facilitate large-scale studies, allowing for the exploration
of emergent behaviors in more complex environments. Our findings em-
phasize the growing role of ML in uncovering fundamental principles in
biophysics and swarm dynamics, paving the way for broader applications
in robotics and self-organizing systems.
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Figure 1: A trajectory graph generated from the analyzed video, showcasing
the movement patterns of Hexbugs.
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Figure 2: A visualization of labeled frames from the analyzed video, highlighting
key tracking points.
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Abstract 

Student academic performance is determined by a complex interplay of demographic, 

academic, and environmental factors. This study utilizes a dataset of 5,000 records obtained 

from Kaggle, comprising 23 attributes that include attendance, midterm scores, assignment 

and quiz averages, participation, project evaluations, study hours, extracurricular activities, 

internet access, and parental education levels. A rigorous data cleaning process was 

implemented to address missing values, correct letter grade discrepancies using an 

established grading scheme, and resolve name–gender mismatches, while eliminating 

features that could introduce data leakage. Unsupervised learning methods, including K-

Means and Hierarchical Clustering, were applied to explore natural groupings within the 

data, revealing overlapping clusters that suggest academic performance exists on a 

continuum rather than in discrete categories. Subsequently, supervised classification 

models—Random Forest, Logistic Regression, XGBoost, and Support Vector Machine—

were employed to predict final letter grades in a multi-class setting. Despite the application 

of stratified sampling and SMOTE to address class imbalance, classification accuracies 

ranged from 19% to 21%, underscoring the challenges inherent in multi-class grade 

prediction which represents the overall student performance. Feature importance analyses, 

based on both Gini impurity and gain metrics, consistently identified key predictors such 

as project score, midterm Score, quizzes Avg, parents’ education level, the existence of 

Internet access at home, and attendance. These findings contribute to the literature by 

demonstrating that although certain academic and engagement metrics are influential, 

additional variables and advanced modeling techniques may be necessary to improve 

predictive performance in educational outcomes.
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1 

1 Introduction  

During 2021-2022, U.S. saw a 7-percentage point increase in the average adjusted cohort 

graduation rate (ACGR), reaching 87% for high school students [1]. Almost every job and 

higher education requires a high school degree. Quality education is associated with good 

health and economic growth as well. [12] Therefore, student academic success is a critical 

area of study in educational research, with significant implications for educators, 

institutions, and policymakers. Academic performance is influenced by numerous factors, 

including demographic characteristics, academic behaviors, and environmental conditions. 

Variables such as gender, age, department, attendance percentage, midterm and final scores, 

assignment and quiz averages, participation scores, and project evaluations contribute to 

overall academic success. Additionally, external factors such as extracurricular activities, 

weekly study hours, home internet access, and parental education levels further impact 

student achievement. 

The increasing availability of educational data has enabled researchers to explore new ways 

to analyze and predict student outcomes using machine learning techniques. Machine 

learning is a subset of artificial intelligence that enables systems to learn patterns from data 

and make predictions without explicit programming. The ability to extract meaningful 

insights from large datasets allows for improved decision-making and early interventions. 

Traditional statistical methods have long been employed to study academic performance, 

providing valuable insights through regression analyses, hypothesis testing, and correlation 

studies. Advanced clustering techniques, such as K-Means and Hierarchical Clustering, 

enable the exploitation of large datasets by identifying natural groupings among students. 

This approach facilitates the categorization of students into distinct clusters—such as high 

achievers, struggling students, and inconsistent performers—thereby revealing underlying 

patterns that conventional methods may overlook. 

In addition to clustering, supervised learning models—including Random Forest, Support 

Vector Machines (SVM), Logistic Regression, and XGBoost—are utilized to predict final 

student grades. These models leverage a comprehensive set of features extracted from the 

dataset, offering a broader perspective on academic performance. Their effectiveness is 

evaluated using metrics such as accuracy, precision, recall, and F1-score. Furthermore, 

feature importance analysis, based on measures like Gini impurity and gain, identifies the 

most influential predictors, thereby informing targeted interventions within educational 

institutions. 

The findings of this study have the potential to support educational institutions in 

developing data-driven strategies that enhance student success, improve retention rates, 

and ultimately increase graduation rates. By combining traditional statistical approaches 

with advanced machine learning techniques, this research seeks to provide a 

comprehensive understanding of the determinants of academic performance. 
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2 Related Work  

Numerous studies have explored the application of machine learning in education, 

particularly in predicting student academic performance. Research in this domain has 

evolved from early statistical methods to advanced machine learning approaches, which 

offer better predictive accuracy and interpretability. 

Kotsiantis et al. [2] provided a foundational review of machine learning applications in 

education, discussing classification techniques such as decision trees, neural networks, and 

Bayesian classifiers. More recent studies, such as Sweeney et al. [3], systematically 

reviewed the effectiveness of machine learning models in predicting student success across 

different educational contexts. These reviews have highlighted the growing trend of using 

ensemble learning methods and deep learning models for student performance prediction. 

Marbouti et al. [4] developed predictive models that focus on feature selection and model 

comparison, emphasizing the importance of identifying key determinants of student 

success. Shahiri et al. [5] explored the application of supervised learning techniques, such 

as Support Vector Machines (SVM) and Random Forest, in academic performance 

prediction. Similarly, Al-Radaideh et al. [6] reviewed the role of data mining and clustering 

in identifying student learning patterns. 

Cortez and Silva [7] compared multiple machine learning models using real-world student 

data, highlighting the predictive capabilities of ensemble methods. Dekker et al. [8] 

specifically investigated dropout prediction, identifying key factors affecting student 

retention. Al-Badawi et al. [9] proposed a hybrid machine learning model to enhance 

prediction accuracy by combining multiple algorithms. 

Recent advances in deep learning have also been applied to student performance prediction. 

Hussain et al. [13] explored the effectiveness of deep neural networks (DNNs) in predicting 

academic outcomes, demonstrating improved accuracy over traditional machine learning 

models. Similarly, Khan et al. [14] used convolutional neural networks (CNNs) to analyze 

behavioral data such as class participation and online learning engagement, showing 

promising results. 

The impact of online learning environments on student performance has also been a 

growing area of research. Sun et al. [15] investigated student engagement patterns in virtual 

learning environments, demonstrating how real-time learning analytics can improve 

student support systems. Moreover, Nguyen et al. [16] examined how student interaction 

in discussion forums and learning management systems can be leveraged to predict 

academic performance. 
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Several studies have also emphasized the importance of explainability in machine learning 

models for educational settings. Ribeiro et al. [17] introduced interpretable models that 

allow educators to understand why specific predictions are made, thereby facilitating 

targeted interventions. In addition, Zhang et al. [18] explored the role of SHAP (Shapley 

Additive Explanations) values in assessing the contribution of various academic and 

behavioral features to student success predictions. 

Another crucial area of research is fairness and bias in predictive models. Binns et al. [19] 

investigated how demographic factors such as gender and socioeconomic background 

impact machine learning predictions, calling for fairness-aware algorithms in educational 

data mining. Similarly, Li et al. [20] studied algorithmic bias in student success models and 

proposed debiasing techniques to ensure equitable outcomes. 

Overall, these studies provide a strong foundation for applying machine learning in 

educational research, supporting the methodological choices in this study. The evolution 

from traditional statistical approaches to advanced AI-driven models highlights the 

increasing role of data-driven decision-making in education. The integration of clustering 

techniques with supervised learning, as applied in this research, aligns with recent trends 

in leveraging both exploratory and predictive analytics to understand student performance 

better. 

3. Methodology 

3.1 Dataset  

A dataset of 5,000 student performance records was obtained from Kaggle1, containing 23 

attributes that cover demographic, academic, and behavioral factors (see Table 1). Initial 

exploration indicated missing values in Attendance (%), Assignments_Avg, and 

Parent_Education_Level.  

Column Name Data Type Description 

Student_ID String Unique identifier for each student 

First_Name String Student’s first name 

Last_Name String Student’s last name 

Email String Contact email (can be anonymized) 

Gender Categorical Male, Female, Other 

Age Integer Age of the student 

 
1 https://www.kaggle.com/datasets/mahmoudelhemaly/students-grading-dataset/data 
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Department 
String 

Student's department (e.g., CS, Engineering, 

Business) 

Attendance (%) Float Attendance percentage (0-100%) 

Midterm_Score Float Midterm exam score (out of 100) 

Final_Score Float Final exam score (out of 100) 

Assignments_Avg Float Average score of all assignments (out of 100) 

Quizzes_Avg Float Average quiz scores (out of 100) 

Participation_Score Float Score based on class participation (0-10) 

Projects_Score Float Project evaluation score (out of 100) 

Study_Hours_per_Week Float Average study hours per week 

Extracurricular_Activities 
Boolean 

Whether the student participates in extracurriculars 

(Yes/No) 

Internet_Access_at_Home 
Boolean 

Does the student have access to the internet at home? 

(Yes/No) 

Parent_Education_Level 
Categorical 

Highest education level of parents (None, High 

School, Bachelor's, Master's, PhD) 

Family_Income_Level Categorical Low, Medium, High 

Stress_Level (1-10) Integer Self-reported stress level (1: Low, 10: High) 

Sleep_Hours_per_Night Float Average hours of sleep per night 

Total_Score Float Weighted sum of all grades 

Grade Categorical Letter grade (A, B, C, D, F) 

Table 1: Overview of the dataset structure (column names, data types, and Description) 

3.2 Data Cleaning 

Initial examination revealed missing values in three columns: Attendance (%), 

Assignments_Avg, and Parent_Education_Level. The numeric features were imputed 

using the median to reduce the influence of outliers whereas the categorical feature was 

imputed using the mode to preserve the most common category. This approach preserved 

the full dataset without discarding any records.  

In addition, data quality was enhanced by addressing two issues: 

• Inconsistent Letter Grades: The study used the common grading scheme (A: 90–

100, B: 80–90, C: 70–80, D: 60–70, F: <60) to infer the expected letter grade from 

the ‘Total Score’. Records where the actual Grade did not match the inferred grade 

were identified, and corrections were applied. 

• Name–Gender Mismatches: A domain-specific name–gender mapping was used 

to correct inconsistencies (e.g., ensuring that names such as “John” are mapped to 

“Male”). 

To prevent data leakage and to focus on predictors that contribute to grade prediction, 

columns containing direct proxies for the outcome (Total_Score) as well as personal 

identifiers (Student_ID, First_Name, Last_Name, Email) were removed.  
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3.3 Data Standardization 

Since the selected features have different numeric scales (e.g., scores out of 100 vs. hours 

per week), the study applied standardization using the Standard Scaler. This transformation 

rescales each feature to have mean = 0 and standard deviation = 1, ensuring no single 

feature dominates the distance measure. 

3.4 Clustering Experiments 

Two clustering methods were employed to explore natural groupings within the dataset 

based on eight standardized academic and engagement features: Attendance (%), 

Midterm_Score,  Assignments_Avg, Quizzes_Avg, Participation_Score, Projects_Score, 

and Study_Hours_per_Week. 

These attributes capture core aspects of academic progress (exams, quizzes, assignments, 

projects), engagement (attendance, participation), and study habits (weekly study hours).  

3.4.1 K-Means Clustering 

Clustering was first conducted using the K-Means algorithm. This algorithm partitions the 

dataset into K clusters by iteratively assigning points to the nearest cluster centroid and 

updating centroid positions until convergence. The K-Means algorithm was applied with 

k=3, a choice motivated by common educational categorizations (e.g., high, moderate, and 

low performers). Each student in the dataset was then labeled with a cluster identifier (0, 

1, or 2). 

Table 2 summarizes the mean values of the eight selected features for each of the three K-

Means clusters. Several noteworthy patterns emerged. 

KMeans

cluster 

Attendance 

(%) 

Midter

m Score 

Final 

Score 

Assignment

s Avg 

Quizzes 

Avg 

Participati

on Score 

Projects 

Score 

Study 

Hours per 

Week 

0 73.77 71.25 67.77 75.63 75.40 4.64 89.91 17.63 

1 78.07 68.67 54.35 72.61 73.93 5.04 65.18 17.50 

2 74.93 70.84 86.15 75.914 75.27 5.32 67.06 17.85 

Table 2: Mean feature values per K-Means cluster (0, 1, 2) 

 3.4.2 Hierarchical Clustering 

Agglomerative Hierarchical Clustering was applied to the same standardized dataset. In 

this bottom-up approach, individual records were merged iteratively until three clusters 

remained. Table 3 presents the average values for the clustering features across the three 

hierarchical clusters, and the corresponding PCA-reduced visualization, which is shown 
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in Figure 3, reveals subtle differences in study hours and exam scores compared to the K-

Means solution. 

3.4.3 Determinate the optimal number of clusters 

The optimal number of clusters was further evaluated using the Elbow Method and 

Silhouette Scores as shown in Figures 1 and 2. Although an initial choice of k=3 was used 

for interpretive convenience, the “optimal” number of clusters was investigated using two 

common metrics: 

1. Elbow Method: The Within-Cluster Sum of Squares (WCSS) was plotted against 

values of K from 2 to 10. A point at which the rate of decrease in WCSS notably 

slows is often considered a suitable choice. 

2. Silhouette Score: The average silhouette score was computed for each k in the 

same range, indicating how well-separated the clusters are in the feature space. 

 

Figure 1. Elbow plot of WCSS versus number of clusters (K-Means). Elbow Method for 

Determining the Optimal Number of Clusters. 

Hierarchical 

cluster 

Attendance 

(%) 

Midterm 

Score 

Final 

Score 

Assignments 

Avg 

Quizzes 

Avg 

Participation 

Score 

Projects 

Score 

Study 

Hours per 

Week 

0 75.88 72.89 68.33 74.58 75.47 5.41 73.57 12.82 

1 71.34 57.09 75.81 71.81 77.36 4.56 75.12 20.38 

2 78.58 78.52 66.02 77.95 71.71 4.68 76.95 22.99 

Table 3: Average Feature Values per K-Means Cluster (K=3). 
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Figure 2. Silhouette scores for varying numbers of clusters (K-Means). 

3.5 Supervised Learning for Multi-Class Grade Prediction 

The primary objective of this phase was to predict the final letter grade (A, B, C, D, F) 

using a set of predictors. The following steps were undertaken: 

3.5.1 Feature Preparation: 

After dropping non-informative columns (personal identifiers, and clustering results), the 

remaining dataset was transformed via one-hot encoding for categorical variables. This 

process generated a high-dimensional feature space that includes both numeric and 

encoded categorical predictors (e.g., Department, Extracurricular_Activities, 

Internet_Access_at_Home). 

3.5.2 Target Encoding and Class Distribution: 

Since the target variable, Grade, is categorical so there is a need to encode it. The used 

encoding is “A” → 0, “B” → 1, “C” → 2, “D” → 3, “F” → 4.  

A frequency analysis (Table 4) revealed a moderately imbalanced distribution, 

necessitating the use of stratified train–test splitting and oversampling. 

Letter 

Grade 
Frequency 

B 1046 

D 992 

448



 8  
 

C 989 

A 988 

F 985 

Table 4: Grades Frequency 

3.5.3 Handling Class Imbalance: 

Stratified splitting ensured that the training and testing sets maintained similar grade 

distributions. In addition, SMOTE (Synthetic Minority Over-sampling Technique) was 

applied to the training set to generate synthetic samples for underrepresented classes, 

thereby mitigating the impact of imbalance. 

3.5.4 Classification Models: 

Four models were trained and evaluated: Random Forest, Logistic Regression (with 

increased iteration limits), XGBoost, and Support Vector Machine (SVM). Each model 

was trained on the SMOTE-resampled training data and evaluated on the original test set 

using accuracy as well as precision, recall, and F1-score. The performance metrics for 

each classifier are summarized in Table 5. 

3.4 Feature Importance Analysis 

Feature importance was evaluated using both the Random Forest and XGBoost models to 

quantify the contribution of each predictor to the grade prediction task. The Random 

Forest model computed feature importances using the Gini impurity measure, which 

quantifies the reduction in impurity achieved at each split where a feature is used. This 

method assigns a relative importance score to each predictor, reflecting its contribution to 

overall model performance. 

Similarly, the XGBoost model computed feature importances based on the gain metric, 

which measures the improvement in accuracy brought by a feature to the branches in 

which it is used. This gain-based measure indicates how much each predictor contributes 

to the reduction in the model’s loss function during boosting. . 

4. Results and Discussion 

4.1 Data Cleaning and Feature Reduction 

The initial data cleaning phase ensured that the dataset was complete and consistent by 

imputing missing values and correcting discrepancies in letter grades and name–gender 

mappings. The removal of personal identifiers and the column directly reflecting the 

outcome (Total_Score) reduced the risk of data leakage and enhanced the focus on 

predictors of student performance. The updated class distribution (Table 4) revealed that 

while the letter grades are relatively balanced, slight imbalances exist that were addressed 

via SMOTE. 
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4.2 Clustering Findings 

Both K-Means and Hierarchical Clustering yielded a three-cluster solution. 

• K-Means Clustering: As presented in Table 2, one cluster exhibited higher final 

exam scores and greater participation, another had higher attendance but lower 

exam scores, and the third showed moderate performance. Figure 3 shows a two-

dimensional projection of the K-Means clusters using Principal Component 

Analysis (PCA). Significant overlap is visible, which aligns with the relatively low 

silhouette scores. 

• Hierarchical Clustering: Table 3 and the PCA visualization (Figure 4) revealed a 

slightly different grouping, particularly in terms of study hours and midterm 

performance, yet overall, the clusters were similarly overlapping. These results 

imply that while natural groupings exist, student performance is multifaceted and 

not easily segmented.  

• Optimal Cluster: The the overlapping clusters depicted in the Elbow and 

Silhouette plots (Figures 1 and 2) may indicate that academic performance exists 

on a continuum rather than in distinct, discrete categories, which reflects the 

complexity of student performance. Therefore, the initial cluster number k=3 might 

be a good choice for clustering.  

 
Figure 3: PCA-reduced visualization of K-Means clusters 
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Figure 4: Average Feature Values per Hierarchical Cluster (K=3). 

4.3 Supervised Classification Performance 

The supervised learning experiments addressed a multi-class prediction problem with five 

letter grades. Despite the improved data quality and dimensionality reduction, the 

performance of all models was modest. Table 5 summarizes the evaluation metrics for the 

four classifiers: 

Model Accuracy Precision Recall F1-score 

Random Forest 0.20 0.20 0.20 0.20 

Logistic Regression 0.20 0.20 0.21 0.20 

XGBoost 0.19 0.19 0.19 0.19 

SVM 0.21 0.22 0.21 0.19 

Table 5: The metrics evaluation for the four classifiers. 

The overall accuracies ranged between 19% and 21%, indicating significant challenges in 

distinguishing among the letter grades. Low F1-scores underscore difficulties in predicting 

minority classes. These findings suggest that the available predictors, while relevant, 

capture only part of the complex determinants of academic outcomes. Although the models 
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used  SMOTE and class weighting, the inherent overlap in the data makes it difficult for 

the models to achieve high accuracy which reflects the limitation of machine learning 

models to capture the nuance of student performance. These results suggest the need to 

explore other models such as deep learning models and other features such as motivation.  

4.4 Feature Importance and Contributions 

Feature importance analysis provided key insights into which predictors most influence the 

grade prediction: 

• Random Forest Analysis (Table 6, Figure 5): Projects_Score, Midterm_Score, 

and Quizzes_Avg emerged as the most influential features, with Attendance (%) 

also ranking highly. 

• XGBoost Analysis (Table 7, Figure 6): Variables such as 

Internet_Access_at_Home, Parent_Education_Level (High school and master 

level), and Participation_Score were highlighted. 

These results indicate that both academic performance metrics (e.g., test and project scores) 

and student engagement (e.g., attendance, and Internet access) contribute to final grades. 

The convergence of feature importance findings across models suggests that interventions 

focused on enhancing project work and ensuring consistent class engagement may have a 

measurable impact on student outcomes.  

Feature Importance 

Projects_Score 0.0937 

Midterm_Score 0.0936 

Quizzes_Avg 0.0935 

Attendance (%) 0.0927 

Participation_Score 0.0919 

Assignments_Avg 0.0907 

Study_Hours_per_Week 0.0900 

Sleep_Hours_per_Night 0.0818 

Stress_Level (1-10) 0.0592 

Age 0.0516 

Table 6: Top 10 most influential features in the Random Forest model 

452



 12  
 

 
 

 
Figure 5: Feature importance as revealed by Random Forest 

 

Feature Importance 

Internet_Access_at_Home_Yes 0.0510 

Parent_Education_Level_High 

School 
0.0498 

Participation_Score 0.0495 

Family_Income_Level_Medium 0.0493 

Midterm_Score 0.0492 

Study_Hours_per_Week 0.0492 

Assignments_Avg 0.0490 

Quizzes_Avg 0.0490 

Projects_Score 0.0486 

Parent_Education_Level_Master's 0.0481 

Table 7: Top 10 most influential features in the XGBoost model 
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Figure 6: Features importance as found by XGBoost 

4.5 Integrated Discussion of Contributions 

The integrated findings of this research demonstrate several key contributions: 

• Data Quality Improvement: The cleaning process, including the correction of 

letter grade inconsistencies and name and gender mismatches, has resulted in a 

dataset that more accurately reflects student performance, thereby ensuring that 

subsequent analyses are based on reliable data. 

• Clustering Insights: The clustering experiments revealed that students exhibit 

overlapping performance profiles, highlighting the inherent complexity of 

academic achievement. Although the clusters were not sharply defined, the 

differences in academic and engagement metrics provide a basis for targeted 

educational interventions. 

• Supervised Learning Challenges: The modest performance of the multi-class 

classifiers underscores the difficulty of predicting final letter grades based solely 

on the available features. This suggests that additional predictors (e.g., student 

motivation, instructional quality, time management) or more advanced modeling 

approaches may be necessary. 

• Key Predictors Identified: Feature importance analysis consistently identified a 

few key variables—such as project score, midterm Score, attendance, existence of 

Internet connection, and parent education level that have the greatest impact on 

grade determination. These findings provide actionable insights for educators and 

administrators seeking to improve student performance. 
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This research contributes to the literature by demonstrating that rigorous data cleaning and 

feature selection are critical for obtaining reliable predictive models in the domain of 

educational performance. Even when predictive accuracies remain modest, the study 

highlights the importance of student engagement and academic metrics in understanding 

student outcomes. 

5. Future Work 

Future work should explore the integration of qualitative measures of student engagement, 

such as motivation, time management, and instructor evaluations, to capture performance 

dimensions that are not fully represented by existing quantitative metrics. In addition, 

investigating advanced ensemble techniques, including stacking and voting classifiers, 

may enhance the modeling of subtle patterns inherent in multi-class predictions. Deep 

learning approaches also warrant exploration for their capacity to automatically learn 

complex feature interactions, potentially leading to improved predictive performance.  

5. Conclusion 

This study presents a comprehensive analysis of student performance using a multi-phase 

approach encompassing data cleaning, clustering, and supervised classification. By 

addressing data inconsistencies and reducing dimensionality through the removal of non-

informative and potentially leaky features, the research establishes a high-quality dataset 

for exploring student outcomes. Clustering experiments using both K-Means and 

Hierarchical methods reveal that while distinct subgroups exist, the boundaries between 

performance levels are blurred, reflecting the continuous nature of academic achievement. 

Supervised learning models, evaluated through a multi-class framework, achieve modest 

accuracy, highlighting the challenges inherent in predicting letter grades. Feature 

importance analyses further emphasize that specific academic and engagement metrics, 

notably project scores, midterm scores, parents' education level, the existence of Internet 

connection at home, and attendance, are critical determinants of student success. 

The contributions of this research lie in its methodical improvement of dataset quality, the 

nuanced understanding of student groupings, and the identification of key predictive 

factors. Future work should focus on incorporating additional variables and exploring more 

advanced ensemble techniques to enhance predictive performance and provide deeper 

insights into the multifaceted nature of academic achievement.  
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Abstract  

Quick commerce (q-commerce) platforms have gained popularity in certain markets, 

particularly India, through services such as BlinkIt, Zepto, and JioMart, which promise the 

delivery of groceries and essentials in 10–30 minutes. This study analyzes 4,620 user 

reviews from these platforms to examine user sentiment, platform performance, and 

dominant topics. After standard text preprocessing and vectorization, a logistic regression 

classifier was trained on 80% of the data and achieved an accuracy of approximately 86%. 

Although negative sentiment dominated (roughly 78% of the reviews), platform 

comparisons revealed that BlinkIt had a comparatively higher average rating of around 

2.55, with JioMart and Zepto averaging about 1.50–1.53. Latent Dirichlet Allocation 

(LDA) topic modeling identified five main themes related to operational issues, customer 

service, positive experiences, delivery delays, and payment/wallet concerns. These insights 

underscore critical areas where q-commerce platforms can improve service reliability and 

customer support to enhance user satisfaction.  
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1. Introduction 

Quick commerce (q-commerce) is an emerging branch of e-commerce focused on 

delivering groceries and daily essentials within 10–30 minutes [1]. Popular platforms like 

Zepto and Blinkit prioritize ultra-fast fulfillment as a key competitive advantage, while 

JioMart has also entered the rapid-delivery space. This crowded marketplace highlights the 

importance of user experience (UX) factors, such as delivery reliability, refund processing, 

and customer support, as crucial differentiators among competing platforms. 

To assess whether q-commerce platforms truly fulfill their promise of near-instant service, 

this study analyzes 4,620 user reviews collected from Zepto, Blinkit, and JioMart. These 

reviews reflect a wide range of user experiences, from significant complaints about late 

deliveries to praise for exceptional speed. The list below presents a sample of reviews 

illustrating the diverse sentiments: 

Sample Reviews 

• “Delivery was late by 45 minutes and no response from customer care.” (1-star, Zepto) 

• “App experience is smooth. Got my groceries in 12 minutes!” (5-star, Blinkit) 

• “Refund not processed even after 3 days. Frustrating!” (2-star, JioMart) 

Leveraging both sentiment classification and topic modeling, the study reveals that 

negative feedback predominates (with approximately 78% of reviews deemed negative), 

although Blinkit garners a slightly higher average rating of around 2.55 relative to the 1.50–

1.53 range of Zepto and JioMart. Furthermore, Latent Dirichlet Allocation (LDA) on the 

entire corpus identifies five principal themes: operational issues, customer service, positive 

experiences, delivery delays, and payment/wallet concerns. 

These findings emphasize the pivotal nature of on-time delivery, efficient refund practices, 

and responsive customer support in shaping user perception. Although the focus rests on 

three major q-commerce platforms, the analytical framework—combining logistic 

regression for sentiment classification and LDA for topic discovery—can likewise benefit 

other on-demand services such as DoorDash and UberEats, helping them optimize user 

satisfaction. 

2. Background 

2.1 Q-commerce 

Q-commerce is a specialized subset of e-commerce that focuses on speed, convenience, 

and small-basket orders, fulfilled within 10–30 minutes using either local stores or dark 

stores as depicted in Figure 1 [2]. Its rapid growth is driven by factors such as increasing 

internet connectivity, widespread smartphone usage, and the expanding ecosystem of 
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digital payments [3]. As consumer expectations shift toward near-instant service, more 

businesses adopt this model to meet urgent demands and foster competitive advantages. 

Despite its advantages in convenience, q-commerce also introduces operational 

complexities, including managing real-time inventory, optimizing delivery routes, and 

handling last-mile logistics. Organizations like Blinkit, Zepto, and JioMart handle these 

challenges differently, affecting both service quality and user perceptions. This evolving 

marketplace calls for rigorous, data-centric evaluations to understand how effectively q-

commerce platforms fulfill their promise of rapid delivery and how users respond when 

services fall short. 

To understand how users perceive and evaluate such time-sensitive services, some 

researchers often employ sentiment analysis, a computational approach that systematically 

classifies and interprets users’ subjective opinions in textual data [4]. Complementing 

sentiment analysis, topic modelling, especially methods like Latent Dirichlet Allocation 

(LDA) groups large volumes of text into coherent clusters (or “topics”) to reveal the 

underlying themes users discuss [5]. 

 

Figure 1: Process flow of grocery products ordered online using the instant delivery app 

2.2 Descriptive Statistics 

Descriptive statistics provide a summarized view of the dataset, offering quick insights 

into overall user behavior [6]. In this research, metrics such as average ratings, review 

counts per platform, and sentiment distribution (e.g., 78% negative) help identify 

platform-specific performance trends without the need for in-depth modeling.  

2.3 Sentiment Analysis 

Sentiment analysis is the process of identifying and categorizing opinions expressed in 

textual data to determine whether the underlying attitude is positive, negative, or neutral 

[7]. In this study, it is used to quantify user satisfaction across platforms. For example, 

complaints about delivery delays or refund issues are typically classified as negative, 

whereas reviews praising fast service are categorized as positive. 
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2.4 Topic Modeling (LDA) 

Topic modeling, particularly through Latent Dirichlet Allocation (LDA), is a machine 

learning method used to uncover hidden thematic structures within large text corpora [8]. 

Instead of manually reading thousands of reviews, LDA automatically groups them into 

coherent topics, such as customer service or payment issues, thereby highlighting the areas 

that are most important to users. 

3. Related Work 

Mahajan and Sood [9] explore the operational design of q-commerce ventures in Southeast 

Asia, focusing on the impact of micro-warehousing strategies on delivery speed and cost 

efficiency. Mahajan and Sood’s findings indicate that small, strategically located 

warehouses significantly reduce last-mile delivery times but require careful stock 

management to avoid frequent product stockouts. 

Gupta et al. [10] examine how consumer perceptions of quick deliveries evolve over 

repeated usage, highlighting that customer loyalty tends to increase once a platform 

demonstrates consistent, on-time service. Gupta et al.’s study also identifies that 

introducing loyalty-based reward systems such as monthly subscriptions for free deliveries 

can further boost user retention in q-commerce apps. 

Roy and Subramani [11] investigate the role of user experience (UX) design in ultra-fast 

grocery delivery applications. Roy and Subramani find that clear navigation, transparent 

order tracking, and proactive customer notifications are key to enhancing consumer trust. 

Roy and Subramani’s research underscores that even minor interface issues lead to negative 

reviews, given the heightened expectations associated with instantaneous deliveries. 

Zhang et al. [12] perform a comparative case study on q-commerce businesses across 

multiple countries, including India, China, and the United Arab Emirates. Zhang et al.’s 

cross-cultural analysis reveals that, while rapid delivery is a universal appeal, user 

satisfaction also depends on localized factors such as payment preferences and cultural 

norms regarding tipping delivery staff. 

Kumar and Banerjee [13] employ sentiment analysis techniques similar to those in the 

current paper, but apply them specifically to user-generated content on social media 

platforms discussing hyper-local deliveries. Kumar and Banerjee [14] conclude that 

complaints related to lost or incorrect orders often escalate quickly on public forums, 

thereby highlighting the importance of real-time customer service interventions to mitigate 

reputational damage. 

Lastly, Shroff [15] proposes a hybrid approach that integrates topic modeling and network 

analysis to map user concerns and their interconnections. Applying this framework to a 

major q-commerce platform, Shroff identifies refund delays and app crashes as critical pain 

points. By visualizing how these issues co-occur in user discourse, the study provides 
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actionable insights into which areas of the user experience most urgently require 

optimization. 

4. Methodology 

This research adopts a structured analytical pipeline to investigate and evaluate user 

sentiment and thematic concerns regarding quick-commerce (q-commerce) platforms, 

specifically, BlinkIt, Zepto, and JioMart. The methodology consists of four major phases: 

data acquiring, data preprocessing, sentiment classification, and topic modeling. 

4.1 Data acquiring 

The dataset used in this research was publicly sourced from the Kaggle1. It contains a 

total of 4,620 user reviews, each comprising a numeric rating (1-5 scale), the review text, 

the review date, and the corresponding platform (BlinkIt, Zepto, JioMart). 

4.2 Data Preprocessing 

Standard text-cleaning procedures were performed on the reviews, including: 

• Lowercasing all text. 

• Removing punctuation, special characters, and excessive whitespace. 

• Eliminating stopwords using the NLTK stopword corpus. 

For sentiment labeling, ratings 1–2 were treated as negative, rating 3 as neutral, and 

ratings 4–5 as positive. Because the distribution of sentiments was imbalanced (negative 

sentiment was most frequent), a stratified train–test split was employed to maintain class 

proportions. We then vectorized the cleaned text using TF-IDF (Term Frequency–Inverse 

Document Frequency), restricting the vocabulary to the top 5,000 terms. 

4.3 Sentiment Classification 

A logistic regression model (with class_weight='balanced' to mitigate class imbalance) 

was trained on 80% of the dataset and tested on the remaining 20%. Performance was 

measured by accuracy, precision, recall, F1-score, and a confusion matrix. The primary 

goal was to classify each review as negative, neutral, or positive based on the text. 

 
1 https://www.kaggle.com/datasets/mannacharya/blinkit-vs-zepto-vs-instamart-reviews  
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4.4 Topic Modeling 

Latent Dirichlet Allocation (LDA) was performed to reveal hidden themes in the review 

corpus. After tokenization and dictionary creation with Gensim, five topics were 

extracted. Each topic’s most salient keywords served as a guide for interpreting 

underlying themes such as delivery issues, customer service, and operational reliability. 

5. Results and Discussion 

This section outlines the main findings regarding data distributions, sentiment 

classification performance, and topic modeling insight. 

5.1 Data Distributions 

• Rating Distribution 

In Figure 2, the distribution of the rating shows that over 72% of the reviews had a 

rating of 1, indicating a strong negative trend. Ratings of 5 accounted for about 14%, 

with 2, 3, and 4 comprising the remaining 14%. Consequently, the overall sentiment 

skew was heavily negative. 

 
Figure 2. Distribution of Ratings 

• Platform Distribution 

The dataset was relatively balanced across the three platforms, with Zepto (37.7%) 

having slightly more reviews than JioMart (32.5%) and BlinkIt (29.9%) as shown in 

Figure 3. 
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Figure 3. Platform Distribution 

• Review Length 

On average, user reviews contained about 29 words, with most falling in the 20–40 

range. A small portion (about 177 reviews) contained fewer than 10 words. 

 
Figure 4. Distribution of Review Lengths 
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5.2 Sentiment Classification Results 

Training a logistic regression classifier on the TF-IDF vectors yielded an overall accuracy 

of approximately 86% on the held-out test set. Table 1 provides the precision, recall, and 

F1-scores for the three sentiment classes.  

Sentiment Precision Recall F1-score 

Negative 0.95 0.91 0.93 

Neutral 0.14 0.18 0.18 

Positive 0.72 0.82 0.77 

Accuracy - - 0.86 

macro avg        0.61 0.64 0.62 

Table 1. Classification Metrics for Sentiment Analysis 

 

 

Figure 5. Confusion Matrix for Logistic Regression model to predict reviews’ sentiment. 

The highly skewed distribution of sentiments affected classification for the neutral 

category, reflected in lower precision and recall. In contrast, negative and positive 

sentiments were identified more reliably. These findings suggest that while the logistic 

regression model can robustly capture polarized feedback, additional techniques (e.g., 

data augmentation or oversampling) might be needed to improve recognition of neutral 

sentiment. 
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5.3 Platform-Specific Insights 

A comparison of average ratings by platform showed that: 

• BlinkIt had the highest average rating (≈ 2.55). 

• JioMart and Zepto trailed with averages near 1.50–1.53. 

 

Figure 6. Average Ratings by Platform. 

Despite BlinkIt’s relatively better performance, it still exhibited a notable proportion of 

negative feedback. For JioMart and Zepto, the more pronounced dissatisfaction suggests 

underlying operational or service-related challenges. 

5.4 Topic Modeling Results 

Five main themes emerged from the LDA analysis: 

1. Operational Issues: Emphasizing orders, refunds, out-of-stock items, and app 

reliability. 

2. Customer Service Concerns: Highlighting problems with product quality, complaint 

handling, and response times. 

3. Positive Experiences: Reflecting praise for quick deliveries, application usability, and 

product freshness. 
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4. Delivery Issues: Relating to late or incorrect deliveries, poor handling, or packaging 

problems. 

5. Payment and Wallet Issues: Addressing problems with payment gateways, wallet 

integrations, and transaction inconsistencies. 

These topics underscore significant pain points, particularly around refunds, service 

reliability, and the quality of customer support. 

6. Future work 

Several avenues exist for enhancing this analysis: 

1. Advanced Embeddings 

Incorporate transformer-based models (e.g., BERT, RoBERTa) to capture contextual 

nuances in user reviews, potentially boosting sentiment classification accuracy. 

2. Temporal Analysis 

Investigate trends over time to determine whether user sentiment shifts in response to 

platform improvements, new feature rollouts, or promotional events. 

3. Cross-Lingual Analysis 

Many reviews in emerging markets may mix English with other languages; future 

research can employ multilingual or transliteration-based approaches. 

7. Conclusion 

This study provides an examination of user sentiment and topic patterns for BlinkIt, 

Zepto, and JioMart through logistic regression–based classification and LDA topic 

modeling. The findings highlight substantial negative sentiment, underscoring frequent 

complaints about refunds, customer support, and delivery logistics. Although BlinkIt 

displays relatively higher average ratings, all platforms face consistent user 

dissatisfaction in certain areas. 

Despite achieving an 86% accuracy, the classification struggled with underrepresented 

neutral sentiments, which justified a 62% F-1 score, suggesting the need for more 

balanced datasets or advanced modeling. Nevertheless, the identified topics offer 

concrete directions for platform optimization, from more responsive support systems to 

improved order handling. The analysis underscores the importance of ongoing monitoring 

of user feedback and sophisticated text analytics to guide targeted improvements and 

maintain competitive advantages in the quick-commerce sector. 
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Abstract 

Ransomware attacks pose a grave threat to healthcare organizations, compromising patient 

safety, financial stability, and data integrity. This study analyzes a synthetic ransomware 

dataset of 5,000 records (publicly sourced from Kaggle and supplemented with scenario-

based simulations) to identify common attack vectors, quantify the severity of disruptions, 

and examine factors influencing the decision to pay a ransom. Three core experiments were 

conducted: (1) descriptive statistical analysis of primary targets and entry methods, (2) a 

predictive modeling approach using random forests to assess ransom payment likelihood, 

and (3) clustering to categorize incidents based on severity and recovery metrics. Results 

indicate that hospitals and clinics are the most frequently targeted, with “Compromised 

Credentials” being the leading point of intrusion. Ransom-payment predictions yielded an 

accuracy of only 49%, suggesting that external, non-quantifiable factors influence the 

decision to pay. Clustering revealed four incident profiles, ranging from low-impact to 

severe-impact events. These findings underscore the need for robust cybersecurity 

practices, proactive incident response plans, and a deeper understanding of non-technical 

factors impacting organizational decision-making. 

  

469

mailto:muhammad.abusaqer@minotstateu.edu


1 

1. Introduction 

Ransomware involves malicious software that encrypts or otherwise blocks access to 

critical data, demanding payment for restoration. Healthcare organizations are particularly 

vulnerable due to their reliance on continuous patient data availability and the industry’s 

often-outdated infrastructure. Despite the urgency to resolve disruptions promptly, the 

outcomes of paying a ransom are not guaranteed, and the long-term financial and 

reputational effects can be substantial. 

The research uses descriptive analysis, predictive modeling, and cluster analysis to 

examine ransomware attacks targeting hospitals, offering insights into how various 

organizational factors correlate with ransom payment decisions. Descriptive analysis 

highlights overarching themes in the dataset, while predictive modeling—implemented via 

a Random Forest machine learning algorithm—aims to estimate whether an institution is 

more likely to pay the demanded ransom. Lastly, cluster analysis facilitates identifying 

statistical patterns that may reveal common factors among healthcare organizations 

experiencing ransomware incidents. Together, these three approaches provide a more 

comprehensive understanding of how ransomware disrupts healthcare systems and what 

measures may mitigate future attacks. 

The Kaggle dataset central to this research is the “Healthcare Ransomware Dataset,” 

which captures various aspects of ransomware incidents in healthcare institutions. Its 

features include how often each organization performs system monitoring, the frequency 

and reliability of backups, the ransomware infection rate, whether data were encrypted or 

stolen, the system’s recovery time, the method of intrusion, and whether the institution 

ultimately paid the ransom [8]. By inputting these features into our models, we aim to 

identify predictive factors and help healthcare organizations avoid repeating past security 

lapses. 

Although the information gathered in this paper may not be groundbreaking in isolation, it 

contributes additional evidence and contextual analysis for understanding ransomware 

trends in healthcare. Building on prior research, this work offers expanded predictive and 

descriptive insights, guiding stakeholders toward more informed decisions about ransom 

payment, backup strategies, and preventative measures. 

2. Background 

A clear understanding of key terminology is essential for comprehending the impact of 

ransomware on healthcare organizations. This section provides definitions and 

explanations of concepts fundamental to our study. 

2.1 Ransomware 

Ransomware is a type of malware that encrypts or disables a system, holding it hostage 

until a payment, often made in cryptocurrencies, is received. However, paying the ransom 
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does not guarantee the restoration or integrity of the data. Conversely, refusing to pay may 

force organizations to rely on outdated or unreliable backups, potentially resulting in 

significant data loss [4]. 

2.2 Descriptive Statistical Analysis 

Descriptive statistical analysis involves extracting immediate insights from a dataset. By 

computing measures such as the mean, mode, and distribution trends, researchers can 

identify overarching patterns that guide subsequent modeling efforts. 

2.3 Machine Learning 

Machine learning encompasses a range of algorithmic techniques used to predict outcomes 

based on historical (or training) data [11]. 

2.4 Supervised Machine Learning 

Supervised machine learning algorithms are trained on labeled data, where the correct 

output is already known, allowing the model to learn the relationships between input 

features and the target variable [1]. 

2.5 Random Forest Algorithm 

The Random Forest algorithm is a supervised learning method that constructs a multitude 

of independent decision trees. Its final prediction is derived either by majority voting (in 

classification tasks) or by averaging the outputs (in regression tasks). This ensemble 

approach enhances generalizability and helps mitigate overfitting [7]. 

2.6 Unsupervised Machine Learning and Clustering 

Unsupervised machine learning algorithms work with unlabeled data, inferring the 

underlying structure solely from input features. Clustering, a common unsupervised 

technique, groups data points based on similarity. Although correlation among variables 

does not imply causation, effective cluster analysis can reveal meaningful groupings that 

inform more focused investigations [1]. 

By clarifying these concepts, this study establishes a foundation for interpreting the results 

obtained from descriptive, predictive, and clustering analyses. In particular, examining how 

healthcare organizations respond to ransomware—whether by paying the ransom or relying 

on backups—provides valuable insights into effective deterrence strategies and risk 

mitigation measures. 

471



3 

3. Related Work 

Several prior studies have addressed ransomware detection and mitigation using machine 

learning. For instance, [2] surveyed privacy-preserving approaches for malware detection 

and highlighted the value of clustering methods for behavioral analysis, a technique this 

paper also employs. 

Similarly, [5] evaluated the accuracy of different machine learning models in network-

based malware detection, underscoring the importance of selecting appropriate 

algorithms for reliable predictions.  

In the healthcare domain, [6] demonstrated that simple models can achieve high accuracy 

when trained with well-structured datasets, which aligns with our decision to use Random 

Forest for its interpretability and efficiency.  

A study titled “Cyber risk quantification and mitigation framework for healthcare using 

Machine Learning [9]” introduced a machine learning framework tailored to healthcare-

specific cyber risk quantification, reinforcing the need for domain-specific model tuning. 

This ties back to [2] in deciding on the best structural growth for our algorithm, which 

supports that any given model must be trained correctly to be accurate. An inaccurate 

machine that aids in the protection against malicious entities can only lead to disaster. 

Although [3] focused on IoT in healthcare, its risk mitigation strategies provide context 

for broader cybersecurity planning. The devices connected to any network and the users 

that operate those devices are the frontline for preventing any attack. Proper training is 

needed to mitigate front-layer threats. 

 

Finally, the study of “A Multi-level Ransomware Detection Framework using Natural 

Language Processing and Machine Learning” advocated for hybrid analysis tools, 

showing that combining techniques like NLP and machine learning can enhance detection 

capabilities —an idea echoed in our multi-method approach [10]. This gives our 

algorithm the framework to be built upon, as it will make its training data more accurate, 

and thus its predictions will be accurate in and of itself when faced against a live 

ransomware attack. 

4. Methodology 

4.1 Dataset Description 

The study utilizes a dataset sourced from Kaggle1. The dataset (5,000 records) was 

generated to reflect real-world ransomware trends in healthcare. Each record includes: 

 
1 https://www.kaggle.com/datasets/rivalytics/healthcare-ransomware-dataset 
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• Incident context: Organization type (hospital, clinic, research lab, etc.), 

organization size (small, medium, or large), and timestamp of attack. 

• Security measures: Monitoring frequency (daily, weekly, or monthly), number of 

cyber threats tracked, and presence of compromised backups. 

• Attack characteristics: Attack entry method (e.g., compromised credentials, 

exploited vulnerabilities, phishing), percentage of systems infected, and whether 

data were encrypted or stolen. 

• Impact and response: Number of facilities affected, recovery time, data restored 

percentage, and whether a ransom was paid. 

All columns are non-null, and no duplicated rows were detected in the dataset. The dataset 

provides additional insights into how these variables were synthesized using real-world 

industry benchmarks. 

4.2 Experiment 1: Descriptive Statistical Analysis 

4.2.1 Identifying Frequently Targeted Organizations 

Organization types were tallied to determine their prevalence among ransomware 

incidents. A bar chart, Figure 1, shows that hospitals have the highest incidence rate, 

followed by clinics, while insurance companies, pharmacies, and research labs appear 

somewhat less frequently. 
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Figure 1. Number of Ransomware Incidents by Organization Type 

4.2.2 Primary Attack Entry Methods 

Attack methods such as “Compromised Credentials,” “Exploited Vulnerabilities,” and 

“Phishing Emails” were compared. A second bar chart, Figure 2, revealed “Compromised 

Credentials” as the most frequent attack vector, closely followed by “Exploited 

Vulnerabilities.” “Phishing Emails” ranked third. 

 

Figure 2. Most Common Ransomware Attack Methods 

4.2.3 Ransom Payment Distribution 

The proportion of organizations that paid a ransom was plotted in a third bar chart in Figure 

3. The data showed an almost even split between organizations that decided to pay and 

those that did not. 
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Figure 3. Percentage of Organizations Paying Ransom 

4.2.4 Correlation Analysis 

A heatmap of key numerical variables shown in Figure 4 indicated: 

• A positive correlation between ransomware infection rate and recovery time. 

• A relationship between compromised backups and lower percentages of data 

restored. 

• Minimal correlation between paying ransom and data restored, suggesting that 

payment alone may not guarantee successful data recovery. 
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Figure 4. Correlation Heatmap of Key Variables 

4.3 Experiment 2: Predictive Modeling (Ransom Payment) 

A random forest classifier was used to predict whether an organization would pay a ransom. 

Ten predictor features were selected, including organizational size, number of facilities 

affected, backup compromise status, and entry method. After encoding categorical 

variables (label encoding), the dataset was split 80:20 into training and test sets. 

4.3.1 Model Performance 

The classifier achieved an overall accuracy of 49%, with nearly identical precision and 

recall values around 50% for both “Pay” and “Not Pay” classes. This result suggests that 

ransom payment decisions are not sufficiently captured by the dataset’s internal factors 

(e.g., infection rate, facilities affected). Instead, external considerations—such as insurance 

coverage, executive decisions, or negotiation tactics—may play a substantial role. 

4.3.2 Feature Importance 

The top five factors associated with ransom payment predictions were: 

1. Ransomware Infection Rate 
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2. Recovery Time 

3. Facilities Affected 

4. Entry Method 

5. Monitoring Frequency 

Though these factors do influence payment decisions, the model’s poor predictive power 

underscores the significance of external or unobserved variables. 

4.4 Experiment 3: Clustering Analysis 

To categorize the severity of the impact, a K-Means model (k=4) was applied to four scaled 

numeric features: facilities affected, ransomware infection rate, recovery time, and 

percentage of data restored. 

Cluster Profiles (see Table 1 for summarized means): 

Cluster 
Facilities 

Affected 

Infection 

Rate (%) 

Recovery 

Time 

(Days) 

Data 

Restored 

(%) 

Interpretation 

0 ~18.68 ~48.52 ~37.31 ~49.39 

Moderate infection 

& recovery, decent 

restoration 

1 ~6.63 ~43.63 ~24.28 ~56.67 

Lower impact, faster 

recovery, highest 

restoration 

2 ~7.10 ~62.22 ~39.72 ~32.56 

High infection, 

moderate recovery, 

low restoration 

3 ~17.73 ~67.52 ~70.23 ~36.74 

Severe infection, 

longest recovery, 

poor restoration 

Table 1. Cluster Means for Facilities Affected, Infection Rate, Recovery Time, and Data 

Restored 

The clusters reveal notably different outcomes in terms of severity. Cluster 3, for instance, 

experiences the highest infection rate alongside an extended recovery period, suggesting a 

need for improved backup procedures and faster response strategies. 
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5. Results 

5.1 Descriptive Highlights 

• Organization Types: Hospitals exhibited the highest rate of ransomware incidents, 

potentially because of their large user base and legacy systems. 

• Entry Methods: Compromised credentials topped the list, exposing weaknesses in 

authentication and password policies. 

• Payment Decisions: Approximately half of the organizations paid ransoms, 

indicating frequent resort to financial settlements despite inherent risks. 

5.2 Predictive Modeling Outcomes 

The random forest model confirmed that internal dataset features have limited predictive 

power regarding ransom payment. The classification report (precision, recall, F1-score) 

hovered around 50%, effectively mirroring random guessing. 

5.3 Clustering Findings 

Four clusters based on severity and recovery patterns suggest that healthcare organizations 

face diverse ransomware outcomes. Some organizations restore a large portion of data 

quickly, while others endure protracted recovery times and widespread infections. 

6. Discussion 

The findings indicate that commonly measured variables (e.g., infection rate, monitoring 

frequency) do not sufficiently explain an organization’s decision to pay ransom. External 

factors, such as legal advice, insurance coverage, financial constraints, or executive 

directives, might likely influence payment behavior. Further research in this side needs to 

explore which actually might play the significant influence in driving decision process. 

Moreover, organizations should note that paying a ransom offers no guarantee of full data 

restoration, as demonstrated by the weak correlation between “paid ransom” and “data 

restored.” 

Clustering analysis points to different risk profiles: some healthcare entities exhibit shorter 

downtime and minimal data loss, whereas others face significant disruptions. This 

underscores the importance of tailoring security measures and incident response strategies 

to an institution’s specific threat profile. 

The correlation heatmap suggests that routine security practices, such as more frequent 

threat monitoring or more robust backups, can reduce infection severity and recovery 

durations. Therefore, healthcare providers seeking to mitigate risk should prioritize timely 
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patching of vulnerabilities, robust credential management, and regular data backup 

verifications. 

7. Future Work 

Several avenues exist for strengthening future analyses: 

1. Integration of External Organizational Factors 

Incorporate data on insurance policies, budgetary constraints, and institutional 

policies regarding ransom negotiations to improve predictive models of payment 

behavior. 

2. Temporal Analysis 

Investigate how ransomware incidence evolves over time, measuring the impact of 

organizational learning, policy changes, and technology updates. 

3. Advanced Modeling Techniques 

Employ deep learning or ensemble methods to capture non-linear relationships 

between technical and organizational factors. Additionally, consider domain 

adaptation for different healthcare segments. 

8. Conclusion 

This study analyzes 5,000 simulated ransomware events in the healthcare sector, detailing 

patterns of attack and organizational responses across three principal experiments. The 

descriptive statistics highlight the prevalence of compromised credentials and the 

vulnerability of major healthcare entities (hospitals and clinics). Predictive models reveal 

that current dataset features do not reliably anticipate ransom payment decisions, 

reinforcing the role of external, possibly unquantifiable factors. Clustering analysis 

exposes distinct severity profiles, ranging from quick, relatively painless recoveries to 

severe, protracted disruptions. These findings underscore the importance of a multi-faceted 

approach to ransomware preparedness, combining sound technical defenses with informed 

organizational policies. 
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Abstract 

This study explores the relationship between electroencephalogram (EEG) signals and 

visual stimuli classification using machine learning. While EEG is traditionally used for 

neurological diagnosis, we hypothesize that EEG signals contain patterns correlating with 

specific visual inputs. We compare two classification approaches: a Convolutional Neural 

Network (CNN) and a Structured State Space Sequence Model (S4), aiming to develop a 

novel neurophysiological communication paradigm for individuals with severe motor 

impairments. Our methodology includes Fast Fourier Transform (FFT) and signal-based 

preprocessing, with a S4 model capturing an EEG environment through system dynamics 

and a CNN analyzing long-range time series. Preliminary results highlight dataset 

imbalance as a challenge, prompting refinement efforts. While we achieve successful EEG-

based classification, reconstructing visual content from neural signals remains an open 

problem. Future work will focus on generative models to complete a bidirectional neural-

visual translation framework, enhancing brain-computer interfaces and bridging neural 

processing with visual cognition. 
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1 Introduction 

The brain is one of the most powerful organs in the human body, as it is responsible for 

regulating nearly all bodily functions and behaviors. It plays an especially crucial role in 

understanding and interacting with the world around us by processing sensory stimuli, 

enabling perception, and communicating complex thoughts and ideas.  

However, individuals with severe motor impairments such as amyotrophic lateral sclerosis 

(ALS) and multiple sclerosis (MS) lack the ability to effectively communicate what they 

sense from the environment. ALS is a progressive neurodegenerative disease that affects 

motor neurons in the brain and spinal cord, causing difficultly or loss of muscle control 

that can lead to paralysis and dysarthria (difficulty speaking) [1]. MS is an autoimmune 

disease in which the immune system attacks the central nervous system, resulting in the 

degeneration of affected nerves and leading to a range of symptoms including physical 

disability and cognitive impairment [2].  

Many different treatment options have been studied to help individuals with these 

neuromuscular diseases, including medication, injectable therapies, and brain-computer 

interfaces [2, 3]. While current treatment options remain largely ineffective at completely 

reversing these conditions, the emergence of artificial intelligence (AI) in the medical field 

has shown promise in helping further our understanding new and existing treatment options 

[4].  

Since these diseases prevent individuals from communicating verbally or by visual-manual 

language (sign language), this paper proposes a way for these individuals to communicate 

using their perception of what they see. We explored a variety of datasets that connect a 

collection of multivariate brain voltage signals to visual stimuli that participants were 

seeing the moment the signal was recorded, some with images that have more than one 

objects and/or backgrounds displayed []. The overall goal is to be able to classify the 

general category that these images fall in so that when the accuracies are good enough, the 

features from the classification model can be fed into a pipeline that will be able to 

reconstruct the original image that a participant was looking at.  

To classify these EEG signals, we propose two models: a multi-variate focused 

Convolutional Neural Network (CNN) and a Structured State Space Sequence Model (S4).  

The reason these two models were chosen was because comparing a convolution-based 

network to a latent space model that is built for capturing the context of a physical system 

which – in this case – represents an encoded state of the brain was a different approach to 

this sort of work. 

Our research objective is to present two different models for classifying EEG signals, as 

well as the preprocessing methods we implemented to help improve the models’ metrics. 

We seek to help further the current understanding of the applications of EEG signals with 

AI, for potential use in Brain Computer Interface (BCI) and other treatment technologies.  
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2 Background 

2.1 Electroencephalography 

One method for capturing the brain’s activity while it processes sensory information is 

electroencephalography (EEG). EEG is a noninvasive technique that uses electrodes placed 

on a patient’s scalp to record the electrical signals produced from the synchronous activity 

of neurons in the cerebral cortex [5]. EEG signals can be classified based on their frequency 

[6]. The most common EEG signals are classified as delta (0.5 to 4Hz), theta (4 to 7Hz), 

alpha (8 to 12Hz), sigma (12 to 16Hz), beta (13 to 30Hz), and gamma (30 to 80Hz) [7]. 

Gamma waves are typically associated with sensory perception, while higher frequency 

brainwaves in general corelate to more alert and focused thought [6].  

 

Figure 1: THINGS EEG Signal with EEG ID 178 

EEG recordings are typically made using as many as 128 different channels and are placed 

using the international 10-20 electrode placement system (see Figure 2) [5]. The channel 

names correspond to the specific lobe and hemisphere of the brain that the electrode is 

placed on [8]. The letters F, C, T, P, and O correspond to the frontal, central, temporal, 

parietal, and occipital lobes respectively, while even and odd numbers correspond to the 

right and left hemispheres respectively [8]. The letter Z corresponds to the midline of the 

brain (neither in the right nor left hemisphere), and Fp corresponds to front polar [8]. More 

specific names were also given to locations in between the original 10-20 markers seen in 

black in Figure 2 [9]. These names were designated as a combination of two letters, 

corresponding to the contours that the location is halfway between [9].  
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Figure 2: International 10-20 electrode placement system [9]. 

Due to the abundance of electrical activity near the brain due to activities such as blinking, 

it is important that EEG signals are preprocessed to remove unwanted noise and artifacts 

[10]. This is typically accomplished using filters to remove unwanted frequencies and 

denoising techniques to remove biological artifacts [11]. Preprocessing of EEG signals is 

an important step to preventing faulty data and potential misdiagnosis of results.  

3 Data 

3.1 Datasets 

This project uses two different EEG signal datasets that were found online from previous 

similar research. The first dataset was acquired from MindBigData “IMAGENET” of the 

Brain, an open database created in 2018 containing 70,060 unique EEG signals [12]. These 

signals were recorded from a single test subject and captured 3 seconds of brain activity 

from that test subject upon the stimulus of seeing and comprehending a random image from 

the Imagenet ILSVRC2013 train dataset [12]. There were 14,012 random images viewed 

in total, with 200 basic categories encompassing these images [12, 13].  
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Figure 3: Distribution of basic categories from a random sample group of data from 

MindBigData 

The EEG signals were acquired at five different 10-20 locations: AF3, AF4, T7, T8, and 

Pz [12]. The acquired signals were not postprocessed by the dataset creator, so the data 

used was raw from the EEG headset capture [12].  

The second dataset was an EEG dataset collected by Gifford et al. [14], which provides 

high temporal resolution neural recordings of human visual object recognition. The dataset 

consists of EEG responses from 10 participants across 82,160 trials, covering 16,740 

unique image conditions. The study used a rapid serial visual presentation (RSVP) 

paradigm to capture brain activity with millisecond precision [14]. The EEG signals were 

collected from 64 channels in a 10-10 configuration and were filtered and divided into 

epochs [14]. Of the original 64 channels, 17 were selected to be used due to their locations 

on the parietal and occipital lobes [14].  
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Figure 3: Distribution of basic categories from a random sample group of data from 

THINGS 

The images used in these trials were sourced from the THINGS database, a large-scale 

collection of 26,107 high-quality naturalistic object images covering 1,854 distinct object 

concepts [15]. The THINGS database was designed to provide systematically sampled, 

ecologically valid images suitable for psychology, neuroscience, and AI research [15].  

3.2 Data Cleaning 

When all the data from the datasets, MindBigData and THINGS, were downloaded and 

organized, the first step taken to clean the datasets was to replace the captions or categories 

assigned to the signals. This was initially done with the BERT uncased model hosted by 

Hugging Face [21], but the labels had to be looked over since some of them were 

inaccurate. This helped with establishing a solid baseline for which categories get assigned 

to which images as well as fitting our classification algorithm into a smaller scope so that 

the model might perform better under that smaller number of classes, therefore, decreasing 

complexity in the models' trainable parameters. Another cleaning measure that was taken 

was to make sure all the signals had the same number of timesteps. If a signal had a shorter 

length than the global number of signal points, it was padded with the start of the same 

signal. 

3.3 Data Processing 

Based on Exploratory Data Analysis (EDA) done on the data, there were three main 

processing functions that were applied to the datasets: differencing the signals values to 

convert the signal from non-stationary to stationary; filtering in the ranges of frequencies 
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that had the highest power spectral density [22]; and converting the signals from a time-

based domain to frequency based domain using the Fast Fourier Transform algorithm [24].  

A stationary temporal series is data that has statistical properties like mean, variance, 

autocorrelation that are constant over time [28]. This is typically very good when 

normalizing time series data because if the data is stationary then there is no overall trend. 

Models can focus on the wrong parts of the signal when training on these types of datasets 

if there is some trend that goes on for the entirety of the data sample. To test if these datasets 

have stationary signals, two hypothesis tests were used: the Augmented Dickey-Fuller Test 

(ADF) and Kwiatkoski-Phillips-Schmidt-Shin (KPSS). Both were used to determine how 

many signals were seen as stationary before and after differencing. Looking at the results 

from before and after differencing, with MindBigData out of the 250 samples chosen from 

the dataset, the number of stationary signals increased from 100 to 250 after differencing 

for ADF and KPSS. For the THINGS database, before and after differencing, for the ADF 

test the same number of signals were stationary, and this is the same case for the KPSS 

test.  

 

Figure 4: Welch’s Method Power Spectral Density Graph for Signal Channel P7 

Along with checking if a signal is stationary, the amount of power a certain range of 

frequencies contribute to the overall signal shape can be identified and used to describe the 

signal. Power spectral density is a technique that can be used to find out the frequencies 

with the highest signal power [22]. This can be helpful in determining which frequencies 

are not contributing to the shape of the signal. Filtering noisy data can be very beneficial 

for all classification algorithms. The method that was used to identify these points was 

Welch’s method for power spectral density [23]. 
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Figure 5: Discrete Fourier Transform for MindBigData All Channels 

The final step in preprocessing is to convert all the channels of a signal into a collection of 

frequency-based sinusoidal waves using the fast Fourier transform (FFT). The fast Fourier 

transform is an algorithm used to extract individual frequency components of a signal by 

computing its discrete Fourier transform [24]. In Figure 5, all the frequency components 

associated with the signal and how the amplitudes fluctuate as the frequency grows larger. 
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5 Methods 

5.1 Model Development 

5.1.1 Convolutional Neural Network 

One of the models that was used was a Convolutional Neural Network (CNN). This type 

of model is primarily used on images and uses a kernel to reduce the image complexity and 

find defining features in the images. Examples of this include finding vertical or horizontal 

lines, or other features of the image the model decides is important. The results of this are 

fed into a Fully Connected Neural Network to be classified. 

Adapting this idea, the EEG scans are now seen as images. The values, recorded by the 

EEG, are stacked on top of each other to create an image representing the scan over time. 

The method shows a 1-dimensional convolution across all the channels at the same time 

instead of a normal 2-dimensional convolution because no meaningful information is 

stored in the relationship between two adjacent rows, just relationships in all of them across 

time. 

5.1.2 Structured State Space Sequence Model 

Figure 5: View of a continuous, time-invariant SSM [17] 
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One of the models that we chose to explore and use for this problem was the S4 model. 

The S4 model is a solution to the general sequence modeling problem while also trying to 

address long range dependencies [16]. As time series datasets consist of long sequences, 

this model was created to keep track of the complexities and patterns through a collection 

of matrices. The four matrices that are used are the State Matrix (A), the Control Matrix 

(B), and the Output Matrix (C), and the Command Matrix (D) as well as an input variable 

u(t), latent state x(t), and output variable y(t). [17]. All matrices A, B, C, and D are learned 

via gradient descent. There are 3 representations of the original State Space Model (what 

the S4 model is built off): the continuous representation, the recurrent representation, and 

the convolutional representation1. Equation 1 represents the continuous representation of 

model.  

Systems that have temporal data (or another dataset type) where the axis goes to infinity 

are continuous. In these more theoretical environments, like in audio processing where the 

frequencies are never ending, these sequences cannot be modeled by computers due to the 

continuous nature of the equations [30]. To solve this problem, the method of discretization 

was introduced: this helps the computer provide concrete values to describe the state of the 

system.  

𝑥′(𝑡)  =  𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

 𝑦(𝑡)  =  𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)             (1) 

The next representation derives Equation 1 in a way that shows a recurrent relationship 

between the matrices Equation 2.  This demonstrates the process of discretization: changing 

the continuous version of the equation to a discrete version where, in this case, the system 

of first order differential equations becomes a recurrence relation [16].  

𝑥𝑘 = 𝐴𝑥𝑘−1 + 𝐵𝑢𝑘 

 𝑦𝑘 = 𝐶𝑥𝑘 (2) 

The last representation of State Space model explores using convolutions and creates a 

kernel equation from the recurrent sequence equations. Because the recurrent version 

cannot be used for training on the hardware due to its sequentially, the equations need to 

change somehow [20]. Since Equation 1 is classified as a linear-time invariant (LTI) 

system, given an arbitrary input signal, a convolution can be used as an operation to 

determine the resulting output of this system of ordinary differential equations [20]. With 

this assumption, Equation 2 can be derived to resemble the State Space Model 

convolution kernel shown in Equation 3. 𝐾 represents the convolutional kernel while 𝑢 is 

seen as the control input (manipulated to achieve the best possible output) [16].  

 𝑦  =  𝐾 * 𝑢 (3) 
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Since all the representations above explain the State Space Model, there are additional 

attributes that created the S4 model. One of the additions targets the training time of the 

model, and this is done with a conjugation [16] – diagonalizing the state matrix – using the 

system matrices (A, B, C, and D). The caveat to this is that the initialized state of the state 

matrix, A, cannot be conjugated. To address this, the initial state matrix can be decomposed 

into a normal and low-rank matrix which will be used in the conjugation operation [16].  

Taking all these representations, we now have a model that can switch from each 

representation depending on the problem that needs to be solved. Relating more towards 

computation, the convolutional kernel representation would be used for computer-related 

problem sets. The overall goal of this structure is to define the problem in terms of physical 

system that be specified as a set of input, output, and variables related by first-order 

differential equations. With the datasets we are using, the signal would be represented as 

the input signal variable u(t). All the other parameters that would be learned are initialized 

when the model is created and trained on. 

5.2 Hyperparameter Tuning 

The best results we achieved with the CNN was a model with five one-dimensional 

convolution layers with batch normalization and max pooling between each. The 

convolutions spanned across the channels and stepped across in time to identify features in 

the signals. After this, with had 3 fully connected layers with a leaky ReLU of 0.1 and 

dropout layer of 0.5 to add non-linearity and reduce overfitting. As described in Section 3, 

our data is imbalanced for both datasets. To compensate for this, we used a weighted Cross 

Entropy Loss function. To train the model, we the Adam optimizer with L2 regularization 

of 1x10-5, as well as Cosine Annealing to reduce the learning rate per epoch. We trained it 

with batch sizes of 100 for 300 epochs with a learning rate of 1x10-3 for both datasets. 

We tried many variations of these hyperparameters. We tried decreasing the size of the 

model, but that led to underfitting and lack of training. After we got the model to a size that 

it could train, we immediately ran into an overfitting problem. We used techniques to 

reduce overfitting, such as L2 Regularization and Dropout layers, which helped, but only 

minorly. Trying to reduce the size of the model immediately led to a drop in both training 

and validation accuracy, so we avoided doing that. 

The best hyperparameters that were experimented with the S4 model that produced the best 

possible results was reducing the number of epochs from 300 to 200 since the model was 

heavily overfitting in the first 200 epochs. Other parameters have yet to be investigated and 

adjusted. 
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6 Experiments 

6.1 Results 

6.1.1 CNN Results 

For the CNN model, the model itself was unable to generalize. With the MindBigData 

dataset, we only got validation and testing accuracies representative of the largest class in 

the dataset, along with low precision and recall scores. We got a training accuracy of 

82.1%, validation of 35.1%, and a testing accuracy of 34.0%. The largest class in the set 

was 57% of the data, and the models had a low precision and recall, meaning it performed 

poorly with this task. 

 

Figure 6: MindBigData Results from CNN 

We got somewhat better results with the THINGS dataset. It achieved a high training 

accuracy of 99.9% and a validation of 30.2% but failed to generalize to completely new 

images in the testing set and got an accuracy of 21.6%, where the largest class was 25.6% 

of the data. This shows how the CNN model was unable to generalize to the data. 
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Figure 7: THINGS Results from CNN 

 

6.1.2 S4 Baseline Results 
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Figure 8: MindBigData Accuracy Results from S4 

For the S4 model, compared to the CNN model and referring to Figure 8, the overfitting 

is a lot worse but the overall accuracy scores are higher. Looking at the training 

accuracies, the ending value is 93.32% while the validation accuracy is 42.46% and the 

testing accuracy is 40.71%. For the other metrics, recall and precision, they were a lot 

lower than the original accuracy due to the extreme class imbalance between “animal” 

and the rest. Also note, in Figure 9, the training loss seems to decrease consistently 

throughout the epochs but the validation and testing losses do not: this is another 

indicator of heavy overfitting.  

 

Figure 9: MindBigData Loss Results from S4 
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Figure 10: THING Accuracy Results from S4 

The THINGS dataset seemed to do even worse than the MindBigData dataset and about 

the same with the CNN. As shown in Figure 10, there is a very large gap between the 

training accuracies and the validation and testing accuracies. With the testing and 

validation accuracies, they also seem to be going down instead of up which is not the 

correct behavior. The ending accuracy for the training is 59.17%, validation accuracy is 

30.34%, and the testing accuracy is 29.32%. The loss graph for the THINGS dataset is 

very like that of the MindBigData, very large gap between training and testing and the 

testing losses are increasing: the ending value for the loss is 1.15 for training, 2.96 for 

validation, and 2.99 for testing. 
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Figure 11: THING Loss Results from S4 

6.1.2 S4 Processed Results 

 

Figure 12: THING Accuracy Results from S4 
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Figure 13: MindBigData Accuracy Results from S4 

After all of data processing and running both datasets through the S4 model again Figures 

12 and 13 are the resulting accuracies. The THINGS ending results look like the 

following: testing 33.98%, training 37.78%, and validation 33.97%. Only at 100 epochs 

this time, there is still major overfitting, and the testing accuracies are still decreasing as 

the epochs continue. The MindBigData ending results look like the following: testing 

1.99%, training 2.72%, and validation 1.56%. This resulting graph does not look like any 

of the others, it looks a lot worse than another MindBigData resulting graphs. The cause 

for this is still unknown.  

7 Challenges 

7.1 Unbalanced Categorical Classes 

A very large challenge we found when working with these datasets and this problem was 

the imbalance of the categories in the EEG-to-Image dataset. This is a problem when 

training any model because, naturally, if there is more information about one specific 

category in the training set, then when the model is tested on the validation set and testing 

set, it will favor the overrepresented category.  
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Some solutions we found to combat this issue was to use the weighted Cross Entropy Loss 

function. The goal of this function is to apply a scaling parameter that would allow the loss 

function to penalize false positive and false negatives more [25]. Unfortunately, adding 

this didn’t completely solve the issue of high training and low testing accuracies, but it did 

slightly improve it. 

8 Future Work 

8.1 EEG Image Reconstruction 

Once either of classification models are performing better than it is currently (above 50% 

accuracy, preferably above 80% accuracy) the next step is to use a pretrained image 

classification model to classify the images from the EEG signals. As this model will be 

trained, when the predictions are evaluated and deemed good (looking for above 80% 

accuracy), the features from model will be used in a feature mapping algorithm. Along 

with the image model features, the EEG classification features will also be used in the 

feature mapping algorithm. The goal is to match EEG signals with their respective images.  

After all the features have been mapped, taking those image feature vectors, those will get 

fed into a generative image model with the vector as the input as well as the category name 

and any extra caption information about the image. 

9 Conclusion  

Being able to generate an alternative way of communicating with others using only one’s 

brain waves requires a large amount of data, an idea of how electroencephalography signals 

are recorded and analyzed, and the latest machine learning methods and models. The goal 

of this paper was to inform and educate about how we can extract information from high 

frequency time series data and apply it to a classification setting. This also leads to digital 

signal-based processing methods (power spectral density, FFT [23, 24], etc.) capture the 

essence of a brain voltage better than medical brain-based functions (Color Perception 

Theory [26]). From the results shown above, the preprocessing concepts that were 

suggested do not map an EEG signal to its corresponding category name better or more 

efficiently.  
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Abstract 

Large Language Models (LLMs) require significant computational resources, motivating 
model compression methods like quantization. Post-training quantization (PTQ) reduces 
precision after training but often degrades accuracy compared to full-precision models 
[1]. Quantization-aware training (QAT) addresses this by fine-tuning with quantization in 
the loop [2]. This study explores extremely low-bit (ternary) quantization, constraining 
weights to three values. Training ternary networks poses challenges due to non-
differentiable quantization functions and stability issues. Previous works utilized the 
straight-through estimator (STE) for gradient approximation [3] and knowledge 
distillation (KD) to guide quantized models [4]. However, we find directly optimizing the 
primary cross-entropy loss yields superior results. To stabilize training, we insert an 
RMSNorm layer before each linear transformation, following recent 1-bit quantization 
methods [3,5]. Our approach, fully quantizing weights to ternary and training end-to-end, 
achieves the best performance on the OpenThoughts-114k dataset, surpassing methods 
relying on layer-wise distillation. Experiments on Qwen-1.5B and Llama3-8B show that 
direct QAT with RMSNorm closely matches full-precision model accuracy without 
auxiliary distillation. 
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Introduction and Related Work 

 

Pre-trained LLMs with billions of parameters have transformed NLP, but their 
deployment is limited by memory and compute costs. Model quantization – representing 
weights and/or activations with fewer bits – is a popular solution to reduce model size 
and inference latency [1]. Two broad approaches exist: Post-Training Quantization (PTQ) 
and Quantization-Aware Training (QAT) [1]. PTQ applies quantization to a pre-trained 
model without additional training (often using a small calibration set) for a fast 
compression pipeline. However, PTQ generally sacrifices more accuracy; it can 
significantly increase perplexity or error rates, especially at ultra-low precisions, as the 
model has not learned to compensate for quantization noise [5]. In contrast, QAT 
incorporates quantization into the training loop, allowing model weights to adjust and 
recover accuracy. As a result, QAT often achieves much smaller accuracy degradation 
than PTQ, at the cost of additional training compute [1,2]. For example, a recent study on 
LLMs showed QAT can regain over 68 percent of the perplexity loss from 4-bit PTQ on 
Wikitext, substantially closing the performance gap [2]. Given the importance of 
retaining model quality, our work focuses on QAT for an extreme quantization setting 
(ternary weights). 

Ternary quantization (using 2-bit representation, typically values -1, 0, +1) pushes 
quantization to its limits. It offers massive memory and inference speed benefits – for 
example, eliminating costly floating-point multiplications in favor of integer additions [5] 
– but poses major training difficulties. Prior works on CNNs introduced trained ternary 
quantization (TTQ) to minimize accuracy drop, allowing each weight to take one of three 
values with learnable scaling factors [6]. In the realm of Transformers and LLMs, fully 
ternary networks were long thought infeasible without significant loss. Recently, BitNet 
(1.58-bit LLM) demonstrated that it is possible to train LLMs from scratch with all 
weights ternarized and still match the performance of full-precision models [5]. BitNet’s 
success is attributed to a carefully designed training recipe: it adopts the stable 
Transformer architecture of LLaMA (pre-normalization) with RMSNorm layers, removes 
all bias terms, and uses scaled SwiGLU activations among other modifications [5]. 
Crucially, BitNet found that adding an extra normalization before each quantized linear 
operation was necessary for training to converge: “BitNet showed that stabilizing ternary 
layers requires an additional RMSNorm before the BitLinear input” [3]. RMSNorm (Root 
Mean Square Layer Normalization) is a variant of LayerNorm that normalizes by the 
root-mean-square of activations without mean-centering [7]. It retains the re-scaling 
benefits of layer normalization but is simpler and more efficient, and has been reported to 
improve training stability in deep networks [7]. Many modern LLMs (for example, 
LLaMA-2) employ RMSNorm instead of traditional LayerNorm for its efficiency and 
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comparable performance [7]. In the context of quantization, RMSNorm helps preserve 
the scale of inputs, which is beneficial when weight precision is low – it prevents extreme 
activation values that could saturate quantized weights [3]. 

Training neural networks with binary or ternary weights also introduces optimization 
challenges because the quantization function is non-differentiable. A common solution is 
to use the Straight-Through Estimator (STE) [3]. The STE, first introduced by Hinton for 
training networks with binary threshold units [8], allows gradients to “straight-through” 
the quantization step by approximating its derivative as 1 (or copying the gradient from 
quantized output to pre-quantized input). In practice, STE means we perform a fake 
quantization in forward pass and ignore the quantizer in backward pass, so that weight 
updates are computed as if the weights were not quantized [3]. This heuristic has enabled 
training of Binary Neural Networks and quantized networks by treating quantization as a 
perturbation that does not block gradient flow. 

Even with STE, fine-tuning a pre-trained LLM to an extremely low bit-width can be 
unstable and may converge to a poor optimum if done naively. To guide the quantized 
model toward the performance of the original model, knowledge distillation (KD) is often 
employed in quantization research [9,10]. Knowledge distillation, as formalized by 
Hinton et al. [4], trains a smaller or constrained student model to mimic the outputs of a 
high-capacity teacher model. In our scenario, the teacher is the original full-precision 
LLM and the student is the quantized (ternary) version. Distillation can be applied to the 
final outputs (for example, matching the teacher’s soft logits via cross-entropy or KL 
divergence), or even layer-wise – that is, adding a loss term that forces each student 
layer’s hidden representation to align with the teacher’s corresponding layer [10]. Such 
layer-wise distillation has been shown to help the student “ensure alignment between the 
hidden representations of teacher and student” [10], effectively providing intermediate 
learning signals. Several prior works have combined KD with quantization to boost 
compressed model accuracy [9]. 

However, an open question is whether these additional distillation losses are always 
beneficial when the ultimate goal is to minimize the task loss (cross-entropy). There is 
evidence that if the teacher and student have mismatched capacities or different optimum 
solutions, strictly imitating the teacher’s behaviors can be sub-optimal for the student’s 
actual performance metric. In our work, we compare direct fine-tuning (optimizing only 
the cross-entropy on training data) against a distillation-augmented training, for the task 
of adapting a full-precision LLM to ternary weights. Somewhat surprisingly, we find that 
focusing on the cross-entropy objective alone – with appropriate stabilizing measures – 
yields better final loss than using layer-wise KD. In other words, letting the quantized 
student learn from data directly (fitting the training distribution) outperforms trying to 
strictly copy the teacher’s internal outputs. We hypothesize that the flexibility to deviate 
from the teacher allows the quantized model to find a solution better suited to its limited 
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precision, whereas KD might overly constrain it to mimic the teacher’s full-precision 
representations, which it cannot perfectly approximate. 

To enable successful direct training of a ternary-weight LLM, we incorporate lessons 
from prior work: we introduce RMSNorm layers at each linear layer’s input, and use a 
gradual quantization schedule during fine-tuning to avoid large jumps in loss. Our 
contributions are summarized as follows: 

 We propose a ternary quantization fine-tuning strategy for LLMs that forgoes 
layer-wise distillation and instead optimizes cross-entropy loss end-to-end. Each 
weight matrix in the model is quantized to 3 values (-1, 0, +1) and updated with 
STE-based gradient approximation. 

 To stabilize training, we add a lightweight RMSNorm before each linear 
projection. This is inspired by BitNet’s architecture and we confirm its 
effectiveness: a similar approach from Hugging Face showed including an 
RMSNorm (normalization) prior to quantization reduced perplexity (6.3 → 5.9) in 
a 1.58-bit LLM after 2000 steps [11]. The normalization prevents out-of-range 
activations and helps maintain gradient signal for weight updates. 

 We implement the lambda scheduling technique that gradually increases the 
strength of quantization during training from the huggingface blog for our 
layerwise distillation experiments. At lambda=0, weights are effectively full-
precision; at lambda=1, they are fully ternary. By annealing lambda from 0 to 1 
over the course of fine-tuning, we allow the model to warm-up in a near-full-
precision state and then slowly enforce quantization [11]. This avoids the scenario 
of starting training with a random ternary model that may immediately incur high 
loss and unstable gradients [11]. 

 We conduct experiments on two models – Qwen-1.5B and Llama3-8B – fine-
tuning them on the OpenThoughts-114k dataset (114k samples of open-domain 
text). We quantize and train all layers of the model (full-model fine-tuning), rather 
than just the final classification head or some adapter modules, to fully adapt the 
network to low precision. Our results show that the direct fine-tuning with 
RMSNorm achieves the lowest final cross-entropy loss on the training set, 
outperforming both a baseline QAT (with no KD and no added norms) and a QAT 
with layer-wise KD. This underscores that cross-entropy optimization, with 
proper training techniques, is key to maximizing quantized model performance. 

In the following sections, we detail our methodology (Section Method), then present 
experimental results comparing the different fine-tuning strategies (Section Experiments 
and Results). We conclude with a discussion on the implications of our findings for 
compressing large models without sacrificing accuracy. 
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Method 

 

Our goal is to fine-tune a pre-trained Transformer-based language model such that all its 
weight matrices are quantized to ternary values -1, 0, +1 (with an appropriate scaling). 
We introduce a custom quantized linear layer implementation, utilize STE for gradient 
computation, optionally apply knowledge distillation, and schedule the transition from 
full-precision to quantized weights via a lambda parameter. Additionally, we modify the 
model architecture by inserting RMSNorm layers. Below we describe each component of 
our method in detail. 

 

 

BitLinear Layer with STE Quantization 

 

To integrate ternary quantization into training, we replace each dense layer (matrix 
multiplication) in the model with a BitLinear layer that performs “fake quantization” of 
weights (and optionally activations) during the forward pass. Pseudocode for our 
BitLinear layer is shown conceptually below (inspired by an open-source implementation 
[11]): 

 Let W be the weight matrix of the linear layer and x be the input activation vector. 
We first apply a normalization x_norm = RMSNorm(x). This ensures the scale of 
x is consistent. 

 Define a function weight_quant(W) that maps the full-precision weights to ternary 
values. In our implementation, we scale W by a factor proportional to the inverse 
of its average absolute value, then round to the nearest integer in -1, 0, +1, and 
finally scale back. Similarly, we can define activation_quant(x) to quantize 
activations (for example, to 8-bit integers), though in our experiments we kept 
activations at higher precision. 

 During the forward pass, we compute quantized versions: W_q = 
weight_quant(W) and x_q = activation_quant(x_norm). However, directly using 
these in backpropagation would block gradients. We therefore apply the Straight-
Through Estimator (STE) trick [3,8] by constructing: 

W_q = W + (weight_quant(W) - W).detach() 
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so that in the forward pass W_q equals the quantized W, but in the backward pass the 
gradient ignores the quantization step. The same technique can be applied to x_q if we 
quantize activations. 

 Finally, the linear layer multiplies the quantized input with quantized weights: y = 
W_q * x_q (plus bias if any, though we removed biases following BitNet’s 
design). This produces the output for the layer. 

By using STE in this manner, we can train the network parameters via gradient descent 
even though the forward pass uses quantized values. STE is an approximation – it 
assumes the quantization function is the identity for the purpose of gradients – which has 
been empirically effective for training quantized networks [3,8]. Additional measures 
(described below) are needed to ensure stable convergence. 

 

 

Gradual Quantization via Lambda Scheduling 

 

Introducing quantization from the first step of fine-tuning can lead to a large training loss 
initially, since the pre-trained weights are suddenly constrained to low precision. If the 
loss is too high, it may destabilize training dynamics. To mitigate this, we implement a 
gradual quantization schedule controlled by a parameter lambda in the range [0,1]. We 
modify the quantization step in BitLinear as: 

W_q = W + lambda * (weight_quant(W) - W).detach() 

and similarly for inputs if needed. When lambda=0, this means no quantization effect (the 
model is effectively full-precision); when lambda=1, it becomes full ternary. By setting 
lambda initially to 0 and then increasing it over time, we interpolate between the full-
precision model and the quantized model over the training course [11]. 

In practice, we experimented with different schedules for lambda. A naive linear schedule 
that reaches lambda=1 only at the very end of training leaves minimal time in the fully 
quantized regime. We found that a better strategy was to ramp lambda to 1 by around the 
midpoint of training and then keep it at 1 thereafter (a “two-phase” schedule). For 
example, lambda(t) = min(2*(t/T), 1) linearly increases lambda to 1 by halfway through 
training. This gave the model ample time in the fully quantized state to adjust, improving 
final performance over purely linear slow ramp or abrupt jumps [11]. 
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Optional Layer-wise Knowledge Distillation 

 

As an additional technique, we implemented layer-wise knowledge distillation (KD) 
during fine-tuning, which can be enabled or disabled to compare its impact. In the KD-
enabled setup, we assume we have access to the pre-trained teacher model (the original 
LLM in full precision, kept frozen). For each transformer block in the student (quantized 
model), we add a loss term that measures the discrepancy between the student’s 
activations and the teacher’s activations at that layer. We use mean-squared error (MSE) 
for this: if h_student and h_teacher are the hidden states, we add L_KD = ||h_student - 
h_teacher||^2 to the loss. The overall objective becomes: 

L_total = L_CE + alpha * (sum of L_KD across layers) 

where L_CE is the usual cross-entropy loss on language modeling, and alpha is a 
hyperparameter controlling the strength of distillation. We set alpha so that initially KD 
loss and CE loss are of comparable scale. The intention is to encourage the quantized 
model to closely mimic the full model’s internal representations [9,10]. 

It is important to note that KD can also be applied only at the final output level (for 
example, training the student with a softened softmax target), but for this paper we focus 
on layer-wise alignment. While distillation may help keep the student from diverging, it 
also constrains the student to follow the teacher’s representation, which might not be 
optimal for a quantized model’s capacity. Our experiments compare KD vs. no KD to see 
which yields better final cross-entropy performance. 

 

 

RMSNorm Insertion in Each Layer 

 

Perhaps the most critical modification enabling successful ternary fine-tuning is the 
insertion of RMSNorm layers at the input of each linear layer in the transformer. 
Standard Transformer architectures include LayerNorm or RMSNorm once per sub-layer, 
but following BitNet [5], we add an additional normalization right before every weight 
projection that is quantized. Concretely, if a transformer block has y = W2 * sigma(W1 
x), we place RMSNorm on x before multiplying by W1, and another RMSNorm on 
sigma(W1 x) before W2, and so on for attention projections. 

The motivation is to maintain a consistent input distribution for each quantized weight 
matrix. Without normalization, some layers might see inputs with drifting scale, leading 
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to erratic outputs when multiplied by ternary weights. RMSNorm ensures that, regardless 
of upstream variation, the input norm is controlled. Prior research has noted the 
importance of normalization in low-bit networks [3,5,11]. RMSNorm is simpler than 
standard LayerNorm since it does not subtract the mean; we found this more stable when 
zero is one of the quantized weight values. We observed that removing these extra norms 
often led to training divergence or much higher final loss. With RMSNorm, training was 
stable and reached lower losses. 

 

 

Model and Dataset Details 

 

We validate our approach on two Transformer-based LLMs of different scales: Qwen-
1.5B and Llama3-8B. Qwen-1.5B is a 1.5 billion-parameter model released by Alibaba as 
part of the Qwen family. Llama3-8B is an 8 billion-parameter variant similar to Meta’s 
LLaMA, used in QAT experiments [2]. Both are decoder architectures for causal 
language modeling. 

We fine-tune on the OpenThoughts-114k dataset, which contains 114,000 text samples 
from diverse open-domain sources. The task is next-token prediction. We use this as a 
stand-in for a relatively small-scale scenario, testing whether the model can maintain 
performance without vast data. We apply full-model updates: all transformer weights 
(attention, feed-forward, embeddings, etc.) are quantized and trained. This is more 
aggressive than freezing certain layers or using adapters, but ensures the entire model can 
adapt to low precision. 

We use the AdamW optimizer with learning rates in the range 1e-4 to 5e-4 (tuned per 
model), linear warmup for 5 percent of steps followed by cosine decay, and a batch size 
that yields about 1000 parameter updates per epoch. We train Qwen-1.5B for 3 epochs 
(roughly 10k steps) and Llama3-8B for 2 epochs (roughly 20k steps). For the runs with 
KD, we keep the same schedule and the teacher is the original FP checkpoint. We set 
alpha=1.0 for KD loss. The lambda schedule linearly ramps from 0 to 1 by 50 percent of 
training steps, then remains at 1. We measure final cross-entropy loss on both training 
and validation sets. 
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Experiments and Results 

 

We first examine the training dynamics to understand the effect of knowledge distillation 
and our quantization approach, and then compare the final model performance across 
different fine-tuning strategies. 

 

Figure 1. Layer-wise Distillation Loss vs. Training Steps (Qwen-1.5B). 

 
When layer-wise KD is used, we can track the mean-squared error (MSE) between 
student and teacher representations over steps. The MSE starts high (ternary-weight 
activations deviate from the teacher) but steadily decreases, indicating successful 
knowledge transfer. By the end of training, the student’s hidden states are much closer to 
the teacher’s, suggesting strong alignment. 
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Figure 2. Layer-wise Distillation Loss vs. Training Steps (Llama3-8B). 

 
For the Llama3-8B model, we see a similar trend: the KD loss decreases throughout fine-
tuning. Although the final MSE is lower than the Qwen run, reflecting possible 
architectural differences, it still shows effective teacher-student alignment. 

Despite the success of distillation in reducing the student-teacher mismatch, we must 
check whether it actually leads to better language modeling performance. 
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Figure 3. Final Cross-Entropy Comparison (Lower is Better). 

 
We compare three strategies on each model: (1) Baseline QAT (ternary fine-tuning 
without KD or extra norms), (2) QAT with Layer-wise KD (but no extra norms), and (3) 
Direct QAT with RMSNorm (our proposed method, no KD). All three use the same 
lambda scheduling. We plot the final training cross-entropy loss after fine-tuning: 

 The Baseline QAT model finishes with the highest loss, indicating it struggles 
with ternary weights without additional stability measures. 

 The QAT + KD model converges to a better solution than the baseline, helped by 
the teacher’s guidance. 

 Our Direct QAT + RMSNorm achieves the lowest cross-entropy, outperforming 
the KD approach. 

On Qwen-1.5B, for instance, the final cross-entropy is around 1.85 for Direct QAT + 
RMSNorm, versus approximately 1.90 for KD and 2.10 for the baseline. A similar pattern 
holds for Llama3-8B, where Direct QAT + RMSNorm again attains the best final loss. 
This finding suggests that directly optimizing cross-entropy, combined with careful 
normalization and a gradual quantization schedule, can outperform layer-wise distillation 
for ternary fine-tuning of LLMs. 
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An ablation confirms that removing the additional RMSNorm layers causes unstable 
training or higher final loss, consistent with prior work on ultra-low precision LLMs 
[3,5]. Interestingly, if we keep RMSNorm and add KD, performance does not 
substantially exceed our direct method. Thus, for simplicity and reduced overhead, we 
favor direct cross-entropy fine-tuning with RMSNorm. 

 

 

Conclusion 

 

We presented a study on fine-tuning large language models with ternary weight 
quantization, introducing an approach that prioritizes direct optimization of the cross-
entropy objective. Our key finding is that with the proper training enhancements – 
chiefly, the integration of RMSNorm layers at each quantized layer input and a gradual 
quantization schedule – the quantized model can be trained end-to-end to achieve better 
final performance than if we had used auxiliary distillation losses. The direct QAT with 
RMSNorm outperformed a more complex strategy involving layer-wise knowledge 
distillation, achieving the lowest cross-entropy loss and perplexity on our evaluation 
dataset. This result underlines that cross-entropy optimization is key: ultimately, the 
model needs to do well on the task at hand (next-token prediction), and sometimes the 
most effective route is to let the model learn from data directly rather than forcing it to 
mimic a full-precision teacher’s internal representations. 

Our work builds on and corroborates recent advances in training ultra-low precision 
networks, such as BitNet [5], by demonstrating that even a pre-trained model can be 
adapted to 1.58-bit weights with minimal loss of accuracy, given the right techniques. We 
have shown this on up to 8B-parameter models; in future work, we aim to scale to larger 
LLMs and more diverse tasks to verify that the advantage of direct fine-tuning with 
RMSNorm holds broadly. Another interesting direction is to explore activation 
quantization in addition to weight quantization, further reducing memory footprints and 
potentially introducing additional training considerations. 

Ultimately, our findings show that extremely compressed models (ternary weights) are 
not only feasible but can be effectively fine-tuned from existing LLMs. By emphasizing 
the correct optimization objective and employing stability measures, we can avoid the 
complexity of per-layer distillation and still achieve strong results. This furthers the goal 
of making LLMs more efficient and accessible, without significant sacrifices in 
performance. 
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Abstract 

This research investigates if an adaptive exploration methodology in Q-learning can enhance the 
learning speed and performance of an agent in the Frozen Lake environment compared to the 
traditional decaying epsilon methodology. The study tests an adaptive approach where the 
exploration rate is dynamically adjusted based on the agent’s learning progress to try to balance 
exploration and exploitation. Using the Frozen Lake environment from OpenAI Gym, a 
stochastic grid-world with slippery surfaces, the goal is for an agent to travel from a start point to 
an end point using reinforcement learning. Key metrics such as cumulative reward, moving 
average, and success rates are analyzed for both methodologies. The results try to determine if 
adaptive exploration enables the agent to navigate the environment more effectively. This work 
offers insights to test different exploration methodologies in reinforcement learning for discrete 
environments. 
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1 Introduction 

 

Reinforcement learning (RL) is a branch of machine learning where an agent learns to make 
decisions by interacting with some environment that it has been put in. The agent takes actions, 
receives feedback in the form of rewards or penalties, and tries to maximize its cumulative 
reward over time. Unlike supervised learning, RL does not rely on labeled datasets; instead, the 
agent learns through trial and error over time, making it well-suited for tasks in dynamic and 
uncertain domains such as game playing, robotics, and autonomous systems [14].  

For testing of RL algorithms, we utilized OpenAI Gym, which is an open-source toolkit designed 
to provide a standardized platform for RL research. The goal of OpenAI Gym is to offer a 
diverse set of environments, ranging from simple grid-world problems to very complex 
simulations. Researchers can implement, test, and compare RL algorithms. For this experiment 
we used the Frozen Lake environment, provided by OpenAI Gym. Frozen Lake is a grid-world 
environment, the agent must navigate from a starting point to a goal across a frozen lake, 
avoiding holes in the ice. The environment is stochastic, actions may not always produce the 
intended outcome due to slippery surfaces which adds complexity to the learning task. This 
setting is very important for studying exploration strategies because it requires the agent to 
carefully balance exploration and exploitation to find an optimal policy. [3][7]. 
  
In this study, we focus on Q-learning, a foundational RL algorithm that lets an agent learn 
optimal actions without requiring a model of the environment. Q-learning is a value-based, 
model-free method that maintains a Q-table, a data structure that stores the expected future 
rewards for each state-action pair. The agent updates the Q-table based on its experiences using 
the Bellman equation, slowly learning the value of taking specific actions in given states. A 
critical challenge in Q-learning is the exploration-exploitation trade-off: the agent must balance 
exploring new actions to discover better strategies with exploiting its current knowledge to 
maximize rewards. The traditional approach to this trade-off is the decaying epsilon method, 
where the probability of selecting a random action (exploration) starts high and decreases over 
time according to a fixed schedule. This allows the agent to explore extensively early on and 
shift toward exploiting learned values as training progresses. An adaptive strategy is when the 
exploration rate would dynamically adjust based on the agent’s performance or learning 
progress. While the decaying epsilon method is effective in many cases, we hypothesized that: 
Can an adaptive exploration strategy in Q-learning significantly improve the learning speed and/ 
or performance of an agent in the Frozen Lake environment compared to the traditional decaying 
epsilon approach? [1][2][4].  
 
 

2 Literature Review 
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Another research done by Watkins and Dayan (1992) shows new ways how Q-learning, a model-
free reinforcement learning algorithm that can incrementally approximate the optimal action-
value function using temporal differences, therefore enabling agents to learn optimal policies in 
controlled Markovian environments without the need of explicit models of state transitions or 
rewards. The authors prove that, provided every state–action pair is visited infinitely often, the 
Q-values converge to the optimal values with probability one under bounded rewards and 
appropriate learning rates, basically encouraging better and faster learning. They have also done 
their analysis of non-discounted Markov processes with absorbing states and scenarios where 
multiple Q-values are updated in parallel, demonstrating the method’s strength and practical 
applicability. This work establishes a theoretical foundation for Q-learning but also has 
significantly influenced other types of research in reinforcement learning by ensuring that 
optimal decision-making can be achieved through iterative, experience-driven updates (Watkins 
& Dayan, 1992). [10]  

Reinforcement learning (RL) is the leading approach for training agents in complex 
environments, with Q-learning is known for its model-free, trial-and-error learning of optimal 
policies (Sutton & Barto, 1998). One challenge in Q-learning is balancing exploration, selecting 
actions known to yield high rewards. The traditional epsilon-greedy method addresses this by 
having an agent choose a random action with probability epsilon (ε) and the best-known action 
with probability 1–ε, decaying ε over time. However, fixed decay schedules often fail to adapt to 
the agent’s evolving knowledge, sometimes leading to premature convergence or excessive 
exploration. In response to that, adaptive exploration strategies have been developed that 
dynamically adjust ε based on performance feedback, such as improvements in cumulative 
reward or changes in Q-values, thereby helping the agent escape local optima and accelerate 
convergence (Hiraoka et al., 2015). The research done by Alahmari, Yuan, and Kudenko (n.d.) 
demonstrates these challenges and potential solutions in a different domain—abstract 
argumentation—where Q-learning was applied using rewards derived from grounded extensions 
(Dung, 1995). Although their study focuses on argument games and not the typical navigation 
tasks, the knowledge regarding state representation and exploration strategies stays largely the 
same. In benchmarks like the Frozen Lake environment—a discrete grid world with stochastic 
transitions—the limitations of a fixed decaying epsilon approach become even more noticeable, 
as a context-aware, adaptive exploration strategy can allow an agent to first explore as much as it 
wants and then exploit learned paths while still adapting even if trapped in suboptimal routes 
(Mnih et al., 2015). Overall, while the traditional decaying epsilon approach has been the most 
common in Q-learning, its inability in dynamic environments have led researchers to explore 
adaptive methods that promise faster learning and improved performance by continuously tuning 
exploration in response to real-time feedback. [11] 

Zhang et al. (2021) proposed a self-adaptive reinforcement-exploration Q-learning (SARE-Q) 
algorithm designed to overcome the limitations of traditional Q-learning, mainly heavy repetition 
and an imbalance in exploration and exploitation. This was done by incorporating a behavior 
utility trace that dynamically adjusts action selection probabilities, a two-phase attenuation 
process for the exploration factor (ε) that initially emphasizes broad exploration and then 
transitions to exploitation based on success rates, and an adaptive mechanism that modulates ε 
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according to state access frequencies to reduce redundant exploration in well-visited areas while 
enhancing it in underexplored regions. The algorithm is evaluated through simulation 
experiments in symmetric grid map environments on the OpenAI Gym platform, where it 
outperforms both conventional Q-learning and a self-adaptive Q-learning variant (SA-Q) in 
various performance metrics such as earlier target acquisition, reduced number of turning times 
in optimal routes, and higher overall success rates, demonstrating its potential to improve path 
planning tasks and offering a significant contribution to the reinforcement learning literature by 
providing a strong framework for promoting more exploration efficiency in dynamic and 
complex environments (Zhang et al.2021) [13] 

 

3 Methodology 

 

3.1 Experiment Overview 
 
This study investigates the performance of two reinforcement learning strategies using the 
Frozen Lake environment from the OpenAI Gym library: a traditional Q-learning algorithm with 
a decaying epsilon-greedy approach and an adaptive exploration strategy that adjusts the 
exploration rate dynamically based on how the agent learns. The Frozen Lake environment, as 
explained in the introduction, is a 4x4 grid-world problem where an agent tries to navigate from 
a starting point to a goal while avoiding holes, and it gets a reward of 1 for reaching the goal and 
0 for everything else in the middle. The experiment has two phases. First, we implemented and 
tested the traditional Q-learning algorithm with a fixed epsilon decay schedule to establish a 
baseline, balancing exploration (random actions) and exploitation (optimal actions) over time. 
Second, we developed and evaluated an adaptive Q-learning strategy that adjusts the exploration 
rate based on recent performance. We tried to increase exploration with poor performance and 
increased exploitation when the performance was good. Both strategies were trained on 1,000, 
and, 5,000 episodes, and their performance was compared using metrics such as cumulative 
rewards, success rates, etc.  
 
 

3.2 Variables and Parameters 
 

The experiment employed the following key variables and parameters for both Q-learning 
implementations. Starting with Environment (env): The Frozen Lake environment, featuring 16 
states (4x4 grid) and 4 actions (left, down, right, up), with a discrete state-action space accessed 
via env.observation_space.n and env.action_space.n. Episodes (episodes=1000 or 5000): The 
total number of training episodes or iterations for policy learning. Learning Rate (alpha=0.1): 

518



  
 

4 
 

Controls the influence of new information on Q-value updates, set to 0.1 for a balanced learning 
pace. Discount Factor (gamma=0.99): Emphasizes long-term rewards, prioritizing future 
outcomes with a value near 1. Exploration Rate (epsilon=1.0): Initial probability of random 
action selection, starting at 1.0 (fully exploratory). Minimum Epsilon (min_epsilon=0.01): Lower 
bound for epsilon in both approaches, ensuring minimal exploration persists. Decay Rate 
(decay_rate=0.999): Used in traditional Q-learning to reduce epsilon after each episode, 
gradually shifting toward exploitation. Maximum Epsilon (max_epsilon=1.0): Upper bound for 
epsilon in the adaptive approach, capping exploration increases. Increase Threshold 
(increase_threshold=50): Frequency (every 50 episodes) for adjusting epsilon in the adaptive 
approach based on performance. Rolling Window (rolling_window=100): Number of recent 
episodes used to compute average rewards for epsilon adjustments in the adaptive approach. 
Here are the metrics we tracked: Rewards (rewards): Cumulative reward per episode, reflecting 
task performance. Successes (successes): Binary indicator (1 if reward > 0, 0 otherwise), 
denoting goal attainment. Epsilons (epsilons): Exploration rate recorded per episode. Q-
Differences (q_diffs): Average absolute change in Q-values per episode, indicating learning 
stability. 

 

3.3 Implementation Details 
 
The experiment was implemented in Python, with the traditional and adaptive Q-learning 
strategies coded as traditional_q_learning() and adaptive_q_learning(), respectively. Both 
functions initialize a Q-table with zero (env.observation_space.n × env.action_space.n) and 
update it using the Q-learning rule which is the bellman formula: 
 q_table[state, action] = (1 - alpha) * q_table[state, action] + alpha * (reward + gamma * 
max(q_table[next_state])).  
 
 
3.3.1 Traditional Q-Learning Method 
 
The agent follows an epsilon-greedy policy, it selects random actions with probability epsilon or 
the highest Q-value action otherwise. Epsilon decays after each episode via epsilon = 
max(min_epsilon, epsilon * decay_rate), reducing exploration over time. Metrics (rewards, 
successes, epsilons, q_diffs) are tracked per episode, with q_diffs calculated as the mean absolute 
difference between the Q-table before and after updates. 
 
 
3.3.2 Adaptive Q-Learning Method 
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Adaptive method is like the traditional approach but defers in dynamically adjusting epsilon 
every 50 episodes (increase_threshold) based on the average reward over the last 100 episodes 
(rolling_window). If the average reward is below 0.2, epsilon increases by 0.05 (up to 
max_epsilon); otherwise, it decreases by a factor of 0.95 (down to min_epsilon). The same 
metrics are recorded for comparison.  
 
 

4 Results 

 

The performance of both strategies was evaluated over 1,000 and 5,000 episodes, with our 
results showing that the traditional Q-learning approach outperformed the adaptive strategy. 

 

 

4.1 1,000 Episodes Results 

 

The results for the first test using 1,000 episodes are graphed in Figure 1. Figure 1 represents the 
Moving Average Rewards which means over a period of 100 episodes how many rewards each 
method received. A reward indicates that the agent is learning and is reaching its goal. In Figure 
1 the blue line represents the traditional method vs the orange line represents the adaptive 
method. It clearly shows how well the traditional method is performing every 100 episodes. 

 

 

Figure 1: 1,000 episode Moving Average Rewards. 

 

Table 1 shows results for 1,000 episodes. The important metrics are Overall Average Reward 
which is 0.04 for traditional method and 0.00170 for adaptive and Average Reward (Last 100 
episodes) which is 0.06 for traditional and 0.04 for adaptive. Traditional method outperformed 
on all metrics. 
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Table 1: 1,000 episodes Metrics. 

 

 

4.2 5,000 Episodes Results 

 

The results for the second test using 5,000 episodes are graphed in Figure 2 which represents the 
Moving Average Rewards. The blue line represents the traditional method vs the orange line 
represents the adaptive method. It clearly shows how well the traditional method is performing 
every 100 episodes. Over time the success rate keeps on increasing for the traditional method 
while the adaptive method stays has little learning over time. 

 

 

Figure 2: 5,000 episode Moving Average Rewards. 

 

Table 2 shows results for 5,000 episodes. The important metrics here are Overall Average 
Reward which is 0.3876 for traditional method and 0.0144 for adaptive and Average Reward 
(Last 100 episodes) which is 0.5500 for traditional and 0.0200 for adaptive. Traditional method 
outperformed on all metrics. 
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Table 2: 5,000 episodes Metrics. 

 

 

5 Conclusion 

 

In this study, we tested the effectiveness of an adaptive exploration strategy compared to the 
traditional decaying epsilon-greedy approach in Q-learning, using the Frozen Lake environment 
as our test environment. Our findings showed that the traditional method, with its decreasing 
exploration rate, outperformed the adaptive strategy. The first test with 1,000 episodes resulted in 
the average reward of 0.04 for traditional and 0.00170 for the adaptive method. The traditional 
approach achieved an average reward of 0.3876 and a success rate of 0.3876 with 5,000 
episodes, compared to the adaptive method’s 0.0144. These results show that the adaptive 
approach struggled to leverage the knowledge effectively.  

However, the study’s outcomes do not mark the end of the investigation but rather point to 
exciting possibilities for future work. There are many aspects of the experiment that can be 
changed to get different results. For instance, changing the parameters of the adaptive strategy 
such as the size of the rolling window, the threshold for increasing epsilon, or the criteria for 
evaluating performance might improve its effectiveness. Additionally, more experiments could 
be conducted with entirely different approaches, like basing exploration adjustments on Q-value 
stability or integrating more advanced performance indicators. Testing these variations in other 
environments or with different reinforcement learning algorithms could also show us new 
insights. 
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