
Integer Factorization using the Quadratic Sieve

Chad Seibert*
Division of Science and Mathematics

University of Minnesota, Morris
Morris, MN 56567

seib0060@morris.umn.edu

March 16, 2011

Abstract

We give a light introduction to integer factorization using the quadratic sieve. Al-
though it is not the fastest known factorization algorithm, it provides a stepping stone
for understanding the general number field sieve, the asymptotically fastest known al-
gorithm. We explain the algorithm in detail and work out its complexity and give some
empirical results.

1 Introduction
When we want to factor a large number N , we have several options. One of the most
important is the idea of primality testing. There are algorithms that provably determine
whether a number is prime, e.g. the AKS primality test. If the number is composite, we
have to try something else.
Trial division is a factoring method where we take each prime less than

√
N and see if it is

a factor. This algorithm is extremely slow for large numbers N , such as a RSA modulus.
This is already an enormous calculation if N is thirty digits long and it would take much
longer than the life of the universe for number much larger than it.

2 Difference of Squares
A factorization method that has been around since the era of Pierre de Fermat is Fermat’s
factorization algorithm. Let N be a positive, odd integer. Every odd number can be rep-
resented as the difference of two squares: N = a2 − b2 for a and b greater than zero. Put
another way, we have N = (a−b)(a+b). We can now recast this as the problem of finding
a and b. Rearranging, we obtain a2 − N = b2. For each a > d

√
Ne, we compute a2 − N

and check to see if the result is a perfect square. If it is, we have found a and b and the
factors are simply a− b and a + b. Notice that if a = b, then a− b is zero and we haven’t
actually found a solution. Furthermore, if a ≡ ±b mod N , we still don’t have a solution.
Therefore, we forbade these solutions. Thus, we have the following theorem:

Theorem 2.1. If there exist a and b such that a2 − N = b2 and a 6≡ ±b mod N , then
gcd(a± b,N) are its factors.

Let us give an example of such a factorization. Let N = 6969 and a = d
√

6969e = 84. We
compute 842 − 6969 = 87, which is not a perfect square. We increment a and try again.
We obtain 852 − 6969 = 256, which is a perfect square. Therefore, a = 85 and b = 16.
Since 85 6= ±16, we can use the result of Theorem 2.1. We obtain factors 69 and 101 by
computing gcd(85± 16, 6969).
Now, we ask a simple question: how well does this perform? We can see that if the factors
aren’t near the square root of N , we will have to iterate through many a to find such a b.
But even if we found such a and b, how likely is it that a 6≡ ±b mod N? The following
lemma, taken from [6] provides us with that answer.

Lemma 2.2. If N has at least two different odd prime factors, then more than half of the
solutions to a2 ≡ b2 mod N with gcd(ab,N) = 1 satisfy (2.1).

Proof. For an odd prime power pu, the congruence y2 ≡ 1 mod pu has exactly two so-
lutions. Since N is divisible by at least two different odd primes, the congruence y2 ≡ 1
mod N has at least four solutions. Label these y as y1, y2, . . . , ys where y1 = 1, y2 = −1.
Then a complete enumeration of all the pairs of residues a, b modulo N that are coprime
to N and i take the values of 1, . . . , s. Two of these pairs have i = 1, 2 and s − 2 (out of
s) of these pairs have i = 3, . . . , s. The latter pairs satisfy (2.1) and since s ≥ 4, we are
done.

1

This shows that if we do find such a and b, then it is likely that they do lead to a proper
factorization of N . Therefore, the main question is how do we find such a and b. To
motivate our answer, let us consider another example of Fermat’s factorization algorithm.
This time, let N = 301 and a = 18. We perform the following computations:

a a2 −N
18 23
19 60
20 99
21 140
22 183
23 228
24 275
25 324
26 375
27 428
28 483
29 540

We see that there are no perfect squares in the second column. How long will it take to find
one? It could take quite a while, especially if the number is a semi-prime, the product of
two prime numbers. It turns out that we have enough information to find a factorization.
Although we have don’t have a perfect square in the second column, we do have a product
that is: 60 ∗ 540 = 1802. The significance of this is that instead of a2 = b2 mod N , we
have (ac)2 = (bd)2 mod N for some a2 − N = b′ and c2 − N = d′. We can factor the
number, giving

192 = 60 mod 301

292 = 540 mod 301

192 ∗ 292 = 1802 mod 301.

Thus a = 19 ∗ 29 and b = 180. Finding the factors gives

gcd(19 ∗ 29− 180, 301) = 7

and
gcd(19 ∗ 29 + 180, 301) = 43.

We now have a new strategy for factoring numbers. We have a sequence of integers a2−N
for a ≥ d

√
Ne. We would like to pick out a subsequence that when multiplied together

yields a square. However, we don’t want to try all subsequences, there is an exponential
amount of them. How long does the sequence have to be in order to guarantee that there is
such a subsequence? How do we find it? The answers to these questions require the notion
of smooth numbers.
We say a number m is B-smooth if all prime factors of m are less than or equal to B. We
first note that if such a number in our sequence is not smooth, then it is unlikely to be a part
of our subsequence. Let p be a large prime dividing some element m in the sequence. Then

2

there must be another element m′ in the sequence that has p as a divisor. Since p is large,
multiples of p will be harder and harder to find. Hence, it is profitable to not include them
in our search, and if possible, ignore them entirely. Now, we present the following lemma
[6].

Lemma 2.3. If m1,m2, . . . ,mk are positive B-smooth integers, and if k > π(B) (where
π(B) denotes the number of primes in the interval [1, B]), then some non-empty subse-
quence of (mi) has product which is a perfect square.

Proof. For a B-smooth number m, we define its exponent vector v(m). If m has the prime
factorization

m = Π
π(B)
i=1 p

vi
i

where pi is the ith prime number and each exponent vi is a nonnegative integer, then
v(m) = (v1, v2, . . . vπ(b)). Then a subsequence mi1 , . . .mit has product a square if and
only if v(mi1) + . . .+ v(mit) has all even entries. That is, if and only if this sum of vectors
is the zero vector mod 2. Now, the vector space Fπ(B)

2 , where F2 is the finite field with
2 elements, has dimension π(B). And we have k > π(B) vectors. So this sequence of
vectors is linearly dependent in this vector space. However, a linear dependency when the
field of scalars is F2 is exactly the same as a subsequence sum being the zero vector.

Later on, we will find the notion of exponent vectors a useful one. Exponent vectors are a
concise way of storing the factorization of a B-smooth number. They are also quite sparse
in nature and we can store them in a concise manner, saving on memory requirements.

3 A First Attempt
We now know enough information to devise a simple algorithm to factor numbers. We are
given a number N which satisfies the following requirements:

1. The number is composite.

2. The number has no prime factors up to its logarithm base ten. It is more efficient
to divide these out via the use of some other algorithm(trial division, elliptic curve
method, Pollard’s rho, etc) before we start.

3. The number is not a power. In order to use the lemma, we need two different odd
primes to divide N . This is not the case if N is a power [6].

Then a reasonable first attempt, given what we know now, might be the following:

1. Compute parameter B and find the primes in [2, B]

2. Compute x2 − N and see if it is B-smooth for x ≥ d
√
Ne. Do this until we have

π(B) smooth numbers

3. Using linear algebra, form a matrix M with columns comprised of the exponent
vectors of each smooth number. Find a linear dependency by computing the null-
space.

3

4. Construct a, b in a manner corresponding to Theorem 2.1. If a = ±b mod N , then
start over with step 1.

There are many gaps in this algorithm. In particular, how do we determine whether a
number is B-smooth (which we discuss in Section 4) and how do we choose the parameter
B (which we will discuss in Section 5)?

4 Smooth Numbers

4.1 Determining Smooth Numbers
In order to determine whether a given number N is B-smooth, we need to determine all
prime numbers in the range (2, B). We could naively use trial division on each number and
determine the primes this way. However, we can do much better than this. We will use a
classic algorithm - the sieve of Eratosthenes.
This algorithm requires N − 1 numbers to be stored in memory. To store all the primes
less than 1040 requires 2132.887 bits of memory. The largest computing array has less than
260 bits of memory. Therefore, there is no chance of even storing all these primes. The
algorithm, however, is very useful for determining all the prime numbers less than say one
billion. See algorithm (1).
To determine whether a given number is B-smooth, we can divide N by each prime p in
(2, B). We can use the sieve of Eratosthenes to determine all the primes in the range (2, B).
The prime p may have multiplicity greater than one, so we need to repetitively divide N by
p. More specifically, we have

4.2 Distribution of B-Smooth Numbers
We now possess the methods for finding B-smooth numbers, but a natural question is
wondering how often do the occur? This is a difficult question, and only heuristic analysis
have given satisfactory answers. If B is too small, we will have a hard time finding any
smooth numbers. IfB is too large, then we will have too many smooth numbers and finding

Algorithm 1 The Sieve of Eratosthenes
1: for i ∈ [2, B] do
2: a[i] is unmarked
3: end for
4: for i ∈ [2,

√
B] do

5: if i is unmarked then
6: for each multiple j of i ∈ [i+ 1, B] do
7: Mark a[j]
8: end for
9: end if

10: end for
11: return All unmarked a[i]

4

Algorithm 2 IsSmooth: Determines if a number N is B-smooth. The set PB is the set
primes less than B.

1: for i ∈ PB do
2: while N mod i = 0 do
3: N ← N mod i
4: end while
5: end for
6: if N = 1 then
7: return Is Smooth
8: else
9: return Not Smooth

10: end if

Algorithm 3 FactorOut(N, p): Removes all p from N .
1: while N mod p = 0 do
2: N ← N mod p
3: end while
4: return N

a linear dependency will prove difficult. Heuristic analysis found in [3] show that the upper
bound of

L(n) = e
1
2
ln(N)ln(ln(N))

gives an optimal bound for B. We will use B = dL(n)1/2e, also derived in [3], as our B
value.

5 Smooth Number Generation
Given a smoothness bound B, we wish to quickly find a set of B-smooth numbers. We
first need to find all the primes numbers from 2 to B; this is easily done using the sieve of
Eratosthenes. Then, we need determine which primes could possibly divide any numbers
in our sieving region. Then we use a modified sieve of Eratosthenes to determine which
numbers are smooth.

5.1 Quadratic Residues
First, we need to find a range of numbers to search for smooth numbers in. Computing
x2 mod N is equivalent to finding x2 − N in the range N < x2 < 2n or equivalently
x ∈ [

√
N,
√

2n][1].
The concept of quadratic residues is important for us to determine which primes in our
factor base we should consider. A integer p is a quadratic residue modulo N if there exists
an x such that x2 ≡ q mod N. We consider three cases.

1. First, no such x exists. Then p cannot divide any values of x2−N for x ∈ [
√
N,
√

2n].
Suppose p | x2 − N . Then x2 − N = 0 mod p and x2 = N mod p. Then N is

5

a quadratic residue modulo p. The contrapositive states that if N is not a quadratic
residue mod p, then p - x2 mod N .

2. Second, x exists and is zero. Then 02 = N mod p, implying that p | N . We are
done, since the factors are p and N/p.

3. Third, 0 < s < p. Suppose p | x2 − N . Then x2 = N mod p or equivalently
x2 = s2 mod p. Now x2 − s2 = 0 mod p or (x + s)(x − s) = 0 mod p. Since
Fp is a field, either x − s = 0 mod p or x + s = 0 mod p. This implies x = ±s
mod p. The only two solutions will be s2 = (−s)2 = N mod p.

We define the Legendre symbol as(
a

p

)
=


1 if a is a quadratic residue modulo p and a 6≡ 0 (mod p)

−1 if a is a quadratic non-residue modulo p
0 if a ≡ 0 (mod p).

To compute the Legendre symbol we give the following equivalent definition,(
a

p

)
=


1 if a(p−1)/2 ≡ 1 (mod p)

−1 if a(p−1)/2 ≡ −1 (mod p)

0 if a ≡ 0 (mod p).

This give us a way of determining whether a prime in our factor base could possible divide
a number x ∈ [

√
N,
√

2n]. We simply check to see if a(p−1)/2 = 1 and add these p to the
factor base.

5.2 Generating Smooth Numbers Rapidly
Now, given a range [a, b] ⊂ [

√
N,
√

2n], we wish to determine which x ∈ [a, b] are can-
didates for being smooth numbers. For a given p in our factor base, we note that the first
multiple of p in the range [a, b] is da/pep. Given a s such that s2 = N mod p, the set of
possible smooth numbers containing p as a factor is [1]

x ∈ {da/pep− s, da/pep+ s, da/pep+ p− s, da/pep+ p+ s, da/pep+ 2p− s, (1)
da/pep+ 2p+ s, . . .}. (2)

This provides immense savings in computational power over the naive approach. Now, we
can use a modified version of the sieve of Eratosthenes. Since we only care if an integer
contains the prime divisors in our factor base, rather than divide each number by each prime
in [2,

√
N], we will divide each number by only those in our factor base. Furthermore, for

each prime in the factor base, we will only divide those numbers in the above equation by
p. Like the sieve of Eratosthenes, we need to repetitively divide the number in question by
p.
Once we have performed this step for each prime in the factor base, we need only to look for
those numbers in [a, b] which as a result of repeated division are now one. These represent
numbers smooth with respect to the factor base. That is to say, their prime factorizations
contain only primes in the factor base. We call these numbers relations.

6

6 An Algorithm for Sieving
We now have all the information necessary to devise an algorithm for sieving smooth num-
bers. First, we determine a smoothness bound using equation INSERT HERE. Second, use
the sieve of Eratosthenes to determine all the prime numbers less than our bound and add
them to a list. Third, we calculate the Legendre symbol for each prime in the list and add
it to the factor base if the calculation results in one. Fourth, we create large intervals in the
range (

√
N,
√

2n). Each interval can be given to a separate processor to sieve over. We
perform the next three steps for each interval. Fifth, we calculate x2−N for each x ∈ [a, b].
Sixth, for each prime in the factor base, we find s such that s2 = N mod p. For each x in
(1), we repeatedly divide x by the prime p until x - p. Seventh, for each x ∈ [a, b], if x = 1,
then add x to the list of relations. Union all lists from all computers into a single list. In
pseudo-code, we have the following

7 Computing the Null Space and Finding the Factors

7.1 Review of Null Spaces
Suppose we have a set of vectors v ∈ V with n = |V | and we ask the question if whether
there exist constants ai, 0 ≤ i ≤ n, such that

n∑
i=1

aivi = 0.

This is a classic problem in linear algebra, known as finding the null space of a matrix.
First, we form a matrix such that each column is a vector in V . Then, we perform Gaussian
elimination on this matrix. We determine which columns are zero vectors; such columns
must be linear combinations of other columns. More about Gaussian elimination and null-
spaces can be found in [2].

7.2 Finding the Null Space
At this point, we have a set of smooth numbers in the range [

√
N,
√

2N]. Now we need
to determine a subset of these that, when multiplied together, yield a perfect square. To
do this, we transform the multiplication problem into an addition problem modulo two.
We first find the exponent vectors of each relation. Then the problem of finding a subset
of relations that multiply to a perfect square becomes the problem of finding a subset of
relations that add to the zero vector. This is the classic problem of finding the null space
of a matrix. We form a matrix with each exponent vector as a column. The rows represent
which numbers have a given prime factor. Hence the matrix will be size |F | × |R|, where
|F | is the size of the factor base and |R| is the number of relations. There are many basic
algorithms for finding the null space; for small matrices, Gaussian elimination works well.
For larger matrices (greater than 100000×100000), though, we need to use a more efficient
algorithm, block Lanczos. This algorithm was designed specifically to find the null space
of large matrices. There are even variants for finding the null space modulo two and it has

7

Algorithm 4 The Sieving Phase
1: B ← dL(n)1/2e
2: pB ← SieveOfEratosthenes(B)
3: for p ∈ pB do
4: z ← N (p−1)/2 mod p
5: if z = 1 then
6: F ← F ∪ {p}
7: end if
8: end for
9: Let I contain several large intervals [a, b], one for each processor

10: for [a, b] ∈ I do
11: for x ∈ [a, b] do
12: R[x− a]← x2 −N
13: end for
14: for p ∈ F do
15: Find s satisfying s2 = N mod p.
16: x← da/pep
17: while x− s ≤ b do
18: if a < x− s < b then
19: R[x− a]← FactorOut(x− s, p)
20: end if
21: if a < x+ s < b then
22: R[x+ a]← FactorOut(x+ s, p)
23: end if
24: x← x+ p
25: end while
26: end for
27: for x ∈ [a, b] do
28: if R[x] = 1 then
29: L← L ∪ {x}
30: end if
31: end for
32: end for
33: Union all lists L from all processors

8

become the algorithm of choice for this task. The details of its implementation are outside
the scope of this paper, however, we direct the interested reader to [4].

7.3 Obtaining Factors
After computing the null space, we have a set S such that

rs1 + rs2 + . . .+ rsN = 0 mod 2

for si ∈ S. We now know that multiplying these integers will yield a perfect square. Now,
let

rs1 + rs2 + . . .+ rsN = s

when computed in the integers. We know that s is a perfect square, since there are no odd
exponents in the prime factorization of s. Equivalently, if we have rs1 = x2i mod N , then

x2s1x
2
s2
. . . x2sN = (xs1xs2 . . . xsN)2 = s mod N.

We let r2 = s mod N . If
r 6= ±xs1xs2 . . . xsN

then the factors are
gcd(xs1xs2 . . . xsN − r,N)

and
gcd(xs1xs2 . . . xsN + r,N).

In pseudo-code, we have

8 Computational Results
We present two major computational results regarding the complexity of the quadratic
sieve. We first demonstrate an implementation of the quadratic sieve created by the au-
thors. Then we show that after the number is 100 digits or longer, the general number field
sieve is faster for arbitrary numbers. The general number field sieve is the asymptotically
fastest known algorithm for factoring number longer than 100 digits in length.
Our first result is demonstrating our implementation of the quadratic sieve. It is a straight
forward implementation of algorithms 4 and 5. It is only suitable for numbers in the range
of 20 to 40 digits. This is mostly due to the fact that B-smooth numbers become increas-
ingly rare the larger N becomes. There are ways around this, but these methods are outside
the scope of this paper. The following graph demonstrates the speed of our program as a
function of the number digits.

9

Algorithm 5 Recovers the factors from a set of relations
1: Form matrix M from the exponent vectors of R
2: Reduce matrix M modulo 2
3: Find null space of matrix M
4: for v ∈ N do
5: g← 0
6: r ← 1
7: for i ∈ 1, 2, . . . |L| do
8: if vi = 1 then
9: Get (xi, gi) from L

10: g← g + xsi
11: t← txi
12: end if
13: end for
14: h = 1

2
g

15: Let r be the integer formed from exponent vector h
16: if r2 6= ±t2 mod N then
17: return p = gcd(r − t, N), q = gcd(r + t, N)
18: end if
19: end for

As can be seen, our program works well for number in this range. Extrapolating the ex-
ponential curve shows that it is, however, not capable of numbers greater that 45 digits in
length.
Our second result shows that the general number field sieve is faster for numbers greater
that 100 digits. Since this is outside the range of our program, we use a program written
by Jason Papadopoulos called msieve [5]. The program is capable of factoring numbers
using either the quadratic sieve or the general number field sieve. We created a group of
semi-primes in the range of 80 to 110 digits in multiples of 5. Each group had 10 numbers
in it. We used a local computer lab to factor each number using both the quadratic sieve
and the general number field sieve. The results are presented in the following plot.

10

As we can see, at around 95 digits in length, either algorithm would suffice, but numbers
greater than 100 digits, the general number field sieve generally performs faster. This
confirms the empirical results found by many other groups.

9 Conclusion
The quadratic sieve is one of several algorithms used to factor large integers. For numbers
in the range of 40 to 100 digits, it is the fastest known algorithm. For numbers larger than
100 digits, the general number field sieve tends to perform faster.
We have given a thorough introduction to the quadratic sieve. There are many, many op-
timizations to make it faster. For example, instead of just sieving over the polynomial
x2−N , we can sieve over (ax+ b)2−N . This speeds up the factorization considerable by
not relying on the polynomial x2 −N to generate all the relations. With this optimization,
we can distribute the factorization over a large network of computers by giving each one a
polynomial.
We demonstrated a simple factorization program and showed that it can be used to factor
numbers in the range of 30 to 50 digits in length. It was not optimized enough to larger
numbers, although.
We tested a widely known factorization program known as msieve. It can factor numbers
using the quadratic sieve or the general number field sieve. We showed that for this particu-
lar program, the general number field sieve starts to factor number faster than the quadratic
sieve at around 100 digits. This is consistent with empirical results found by other authors.

References
[1] Gregory V. Bard. The quadratic sieve. In Algebraic Cryptanalysis, pages 159–183.

Springer US, 2009.

[2] David R. Hill Bernard Kolman. Elementary Linear Algebra with Applications. Pearson
Prentice Hall, ninth edition, 2008.

[3] Stephani Lee Garrett. On the quadratic sieve. Master’s thesis, THE UNIVERSITY OF
NORTH CAROLINA AT GREENSBORO, 2008.

11

[4] Peter L. Montgomery. A block lanczos algorithm for finding dependencies over gf(2).
In Proceedings of the 14th annual international conference on Theory and application
of cryptographic techniques, EUROCRYPT’95, pages 106–120, Berlin, Heidelberg,
1995. Springer-Verlag.

[5] Jason Papadopoulos. Integer factorization source code, March 2011.

[6] Carl Pomerance. Smooth numbers and the quadratic sieve. In Buhler and Stevenhagen
2007. University Press, 2005.

12

